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Abstract

Introduction: Cytosolic sulfotransferases (SULTs)-mediated sulfation is critically involved in the 

metabolism of key endogenous compounds such as catecholamines and thyroid/steroid hormones, 

as well as a variety of drugs and other xenobiotics. Studies performed in the past three decades 

have yielded a good understanding about the enzymology of the SULTs and their structural 

biology, phylogenetic relationships, tissue/organ-specific/developmental expression, as well as the 

regulation of the SULT gene expression. An emerging area is related to the functional impact of 

the SULT genetic polymorphisms.

Areas covered: The current review aims to summarize our current knowledge about the above­

mentioned aspects of the SULT research. An emphasis is on the information concerning the effects 

of the polymorphisms of the SULT genes on the functional activity of the SULT allozymes and the 

associated physiological, pharmacological, and clinical implications.
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Expert opinion: Elucidation of how SULT SNPs may influence the drug-sulfating activity of 

SULT allozymes will help understand the differential drug metabolism and eventually aid in 

formulating personalized drug regimens. Moreover, the information concerning the differential 

sulfating activities of SULT allozymes toward endogenous compounds may allow for the 

development of strategies for mitigating anomalies in the metabolism of these endogenous 

compounds in individuals with certain SULT genotypes.
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1. Introduction

Biological sulfation in humans was first documented in 1876 with the detection of phenyl 

sulfate in the urine of a patient who was treated with phenol as an antiseptic [1]. This finding 

provided the initial clue that sulfation may play a role in the metabolism of xenobiotics. In 

line with this notion, many studies subsequently performed using experimental animals or 

human subjects have demonstrated the metabolism of drugs and other xenobiotics through 

sulfation [2,3]. It is generally accepted that sulfation may lead to the inactivation and/or 

facilitated excretion of xenobiotics. The enzymes responsible for catalyzing the sulfation 

reactions, now called the cytosolic sulfotransferases (SULTs) [4], however, were not 

identified until 1980 when two “phenol sulfotransferases” were isolated [5]. Interestingly, 

one of these two enzymes was found to display high affinity for dopamine and other 

catecholamines [6], indicating that sulfation may also play a role in the metabolism 

of endogenous compounds. It is now well documented that SULT-mediated sulfation is 

involved in the metabolism of not only catecholamines, but also thyroid and steroid 

hormones, as well as bile acids [7]. Sulfation of these endogenous compounds is believed 

to be involved in their homeostasis and/or transport in the body. Like other genes, genetic 

polymorphisms have been reported for the genes encoding SULTs [8–12]. In view of the 

physiological and pharmacological involvement of the SULTs, it is possible that the SULT 
genetic polymorphisms may predispose differential metabolism of catecholamines, steroid/

thyroid hormones and other endogenous compounds, as well as xenobiotics including drugs, 

and therefore differential disease risks or clinical outcome for individuals with different 

SULT genotypes. This review aims to summarize our current knowledge about the SULTs, 

particularly the effects of the polymorphisms of the SULT genes on the functionality 

of the coded SULT allozymes and the possible resulting physiological/pharmacological 

implications. Figure 1 shows a typical SULT-mediated sulfation reaction. It is noted that 

during the reaction, the enzyme, SULT1A1, catalyzes the transfer of the sulfonate group 

from the co-substrate, 3’-phosphoadenosine 5’-phosphosulfate (PAPS), to the hydroxyl 

group of the substrate, acetaminophen.

2. Major classes of the SULTs and their roles in the metabolism of 

endogenous compounds and xenobiotics

Prior to the mid-1990s, the SULTs were mostly classified based on their substrate 

specificity and thus assigned names such as “monoamine”, “simple phenol”, or “estrogen” 
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sulfotransferases [5,6,13]. Such a nomenclature system, however, suffered from the 

overlapping substrate specificity among SULT enzymes. With the advent of molecular 

cloning and nucleotide/amino acid sequence analysis, it has become clear that the all SULTs 

across vertebrate species constitute a gene superfamily [4]. Among vertebrates, six gene 

families have been classified within the SULT gene superfamily [4,14,15]. Members of 

the same SULT gene family share at least 45% amino acid sequence identity. Within 

each SULT gene family, members of each subfamily share greater than 60% identity in 

amino acid sequence [4]. In humans, eighteen SULT genes, including five pseudogenes, 

have been identified and classified into five gene families [15]. Of the eighteen human 

SULT genes, twelve belong to the SULT1 family and comprise five subfamilies: SULT1A, 

SULT1B, SULT1C, SULT1D and SULT1E. Three belong to the SULT2 gene family with 

two subfamilies: SULT2A1 and SULT2B1. In contrast to SULT1 and SULT2 families, 

SULT3A1P, SULT4A1 and SULT6B1 contain only sole members in their respective 

families. Figure 2 shows a diagram illustrating the possible phylogenetic relationship 

between the eighteen human SULT genes. It is noted that SULT1D1P, SULT1D2P, 

SULT1C5P, SULT2A2P, and SULT3A1P are pseudogenes, with no corresponding protein 

products [15].

2.1. Human SULT1 subfamily

Human SULT1A subfamily consists of 4 SULT genes, encoding 3 SULT isoforms: 

SULT1A1, SULT1A2, and SULT1A3. Sequence analysis revealed that SULT1A3 and 

SULT1A4 genes encode identical protein products, designated SULT1A3 [16]. Of the three 

SULT1A isoforms, SULT1A1 is known to play a pivotal role in the sulfation of phenolic 

xenobiotics, including polyphenols and number of drug compounds (cf. Table 1) [17,18]. 

p-Nitrophenol, naphthol, acetaminophen, and minoxidil are typical substrates of SULT1A1. 

SULT1A3 is known to be involved in the sulfation of monoamines and structurally related 

compounds (Table 1) [17,18]. Dopamine, serotonin, and isoproterenol are typical substrates 

of SULT1A3. Sulfation of phenolic compounds as mediated by SULT1A members plays an 

important role in the metabolism, and usually, the inactivation and excretion of the substrate 

compounds. It is noted, however, that the biological activity of minoxidil is activated upon 

sulfation [19].

Human SULT1B1 is the sole member of SULT1B subfamily. The main physiological 

function of SULT1B1 has been proposed to be in the sulfation of thyroid hormones (Table 1) 

[20,21]. It is noted, however, that dopa and tyrosine have also been shown to be substrates 

for rat SULT1B isoform [22]. Sulfation of thyroid hormones is proposed to regulate the 

iodothyronine metabolism through iodothyronine deiodinase, since sulfated metabolites of 

thyroxine (T4) and triidothyronine (T3) undergo deiodination faster than unsulfated T4 and 

T3 [23].

Human SULT1C subfamily consists of 4 genes (including 1 pseudogene), encoding 4 SULT 

isoforms, SULT1C2, SULT1C3a, SULT1C3d, and SULT1C4. SULT1C5P gene is located 

between SULT1C2 and SULT1C4 and was originally designated SULT1C2P. In order to 

avoid redundant designation, the SULT1C pseudogene is designated SULT1C5P in this 

review. SULT1C5P contains some frameshifts, including start codon and the exons 2 - 
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5 and exons 6 - 7 [15]. SULT1C subfamily members have been proposed to catalyze 

the sulfation of some procarcinogenic compounds, e.g., N-hydroxy-2-acetylaminofluorene 

and hydroxybenzopyrene, leading to the activation of their carcinogenic activities [24–26]. 

Although the physiological substrates of SULT1C enzymes have not been fully elucidated, 

a number of endogenous and xenobiotic compounds have been reported to be sulfated by 

SULT1C enzymes (Table 1) [27]. Among these substrate compounds, thyroid hormones 

have been shown to be substrates for SULT1C2 [28]. SULT1C4 appeared to exhibit the 

broadest substrate specificity toward xenobiotic compounds including polyphenols and some 

drug compounds [27, 29–31]. Since the expression of human SULT1C subfamily members 

has been shown to be more prominent in fetal tissues, it has been suggested that SULT1C 

enzymes may play a role in the metabolism of xenobiotics and thyroid hormones during fetal 

development [24,27].

Human SULT1E1 is the sole member of SULT1E subfamily. The main physiological 

function of SULT1E1 is believed to be in the sulfation of estrogens, including estrone 

(E1) and 17β-estradiol (E2) [13,32] (Table 1). Xenobiotic estrogen-like compounds such 

as 17β-ethynylestradiol (EE2) and daidzein have also been shown to be substrates for 

SULT1E1 [32–34]. Since estrogen sulfates are the major circulatory estrogens and can be 

hydrolyzed by steroid sulfatase, sulfation of estrogens has been proposed to play a pivotal 

role in the steroid homeostasis, in conjunction with the sulfatase pathway [32,35]. Therefore, 

the balance of sulfation and desulfation may be critical in the adjustment of estrogenic 

activity in vivo.

2.2. Human SULT2 family

Human SULT2 family comprises three subfamilies, SULT2A and SULT2B. SULT2A1 is the 

sole member of the SULT2A subfamily. SULT2A1 and SULT2A2P are paralogous genes. Of 

the two, SULT2A2P is a pseudogene which contains some frameshifts, including start codon 

and reversed order of exons 4 - 6 [15]. SULT2A1 is known to play a fundamental role in the 

metabolism of androgens and bile acids (Table 1) [36,37]. Steroid drugs such as budesonide 

and tibolone have also been shown to be substrates for SULT2A1 [38,39]. For endogenous 

androgens, sulfation has been shown to act as a reversible metabolic pathway, as in the 

case of estrogen metabolism [35]. Therefore, sulfation of androgens plays an important 

role in the deactivation and storage of androgens. It is worthwhile noting that estrogens 

are generated from androgens under the action of aromatase (CYP19A1), implying that 

sulfation of androgens by SULT2A1 may also affect the homeostasis of estrogens.

While human SULT2B1 is the sole member of SULT2B subfamily, two N-terminal splice 

variants, SULT2B1a and SULT2B1b, have been reported [40,41]. SULT2B1a has been 

shown to play an important role in the sulfation of pregnenolone, while SULT2B1b is 

responsible for the sulfation of cholesterol. Similar to other steroid sulfates, pregnenolone 

sulfate and cholesterol sulfate are also hydrolyzed by steroid sulfatase, implying that 

the SULT2B1 isoforms play an important role in the homeostasis of steroid/sterol, in 

conjunction with steroid sulfatase [35]. Pregnenolone sulfate has been reported to act both as 

a neuromodulator and as a neurotransmitter via N-methyl-D-aspartate (NMDA) receptor 

and γ-aminobutyric acid type A (GABAA) receptors [42]. Sulfation of pregnenolone 
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may be a key factor in the learning and memory, as well as other synaptic functions. 

Cholesterol sulfate has been reported to act as a second messenger that functions in 

keratinocyte differentiation [43]. Besides, recent studies using the mouse model have 

shown that cholesterol sulfate may exert immune regulatory functions [44,45]. Sulfation 

of cholesterol has been suggested to be an important reaction that converts cholesterol to 

a signaling molecule. Therefore, the two SULT2B1 enzymes, SULT2B1a and SULT2B1b, 

appear to play multiple physiological roles, not just the deactivation and metabolism of 

steroids/sterols.

2.3. Human SULT4 family

Human SULT4A1 is the sole member of the SULT4 family. Although a great many 

studies have been performed to investigate the enzymatic characteristics of SULT4A1, 

no substantial sulfating activity of SULT4A1 has been detected [27,46,47]. Therefore, 

SULT4A1 is now considered likely an orphan SULT, although it has been shown to be 

highly expressed in nervous system. In recent years, genetic analyses have suggested that 

mutation in the untranslated regions of SULT4A1 gene may contribute to the etiology 

of schizophrenia [48,49]. Nevertheless, no mutations (synonymous or nonsynonymous) in 

coding regions of the SULT4A1 gene have been found in schizophrenia patients [50]. More 

recently, SULT4A1 knockout mouse or zebrafish models, have been developed to investigate 

the physiological relevance of SULT4A1 [51,52]. These animal studies have suggested that 

SULT4A1 may play a role in physical activity and behavior.

2.4 Human SULT6 family

Human SULT6B1, the sole member of the SULT6 family, is likely an orphan SULT. No 

enzymatic activity of human SULT6B1 has been reported. In contrast, zebrafish, chicken, 

and mouse SULT6 enzymes have been shown to exhibit sulfating activities toward a 

variety of substrate compounds [53–55]. Zebrafish SULT6 showed strong sulfating activities 

toward simple phenols and polyphenols, while chicken SULT6 exhibited sulfating activities 

toward E2 and corticosterone [53,54]. Mouse SULT6B1, on the other hand, displayed weak 

sulfating activities toward thyroxine and bithionol [55]. It thus appears that physiological 

functions of SULT6 may not be conserved among vertebrates and further studies are needed 

in order to elucidate any possible functions of human SULT6B1.

Table 1 shows the thirteen human SULTs with their polypeptide length, the chromosomal 

location of their coding genes, and their prototype substrates.

3. SULT genetic polymorphisms and functional implications

Like many other genes, single nucleotide polymorphisms (SNPs) occur for genes 

encoding the SULTs [8–12], and, significantly, SULT SNPs have been shown to be 

ethnically distributed [56]. SULT SNPs were first reported for the gene encoding 

human SULT2A1 (dehydroepiandrosterone sulfotransferase) [8], and has since been 

demonstrated for the genes encoding SULT1A1 [8], SULT1A2 [9], SULT1A3 [10], 

SULT1C2 [11], and SULT1E1 [12]. SNPs among the SULTs may lead to individual 

differences in the metabolism of both endogenous compounds and xenobiotics, including 
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drugs, through sulfation [9,11,56,57]. Such differences may correlate with the occurrence 

of certain pathophysiological conditions. For example, molecular epidemiology studies have 

demonstrated the correlations between certain SULT1A1 SNPs and risks for cancers [58]. In 

view of the involvement of SULT-mediated sulfation in the metabolism of certain drugs, it 

is possible that SULT SNPs may also influence the metabolism of drugs in individuals with 

different SULT genotypes [58]. To understand better the correlations between SULT SNPs 

and particular disease states/risks or differential metabolism and, therefore, efficacy of drugs 

in different individuals, it is important to clarify their functional impact on the resulting 

protein products, i.e., SULT allozymes. To date, a number of studies have been performed 

to investigate the differential sulfating activity of different SULTs. The results obtained from 

these studies, as summarized in Table 2, are described in detail below. Table 3 summarizes 

the clinical relevance of human SULT gene polymorphisms and chromosomal mutations in 

respective SULT genes.

SULT1A1 SNPs and SULT1A1 allozymes

As noted above, SULT1A1 is one of the major SULTs involved in xenobiotic metabolism 

and detoxification [59, 60]. Pertaining to this important function is the ubiquitous expression 

of SULT1A1 in human tissues/organs [59, 60]. It has been reported that SULT1A1 

exhibits the highest hepatic expression level among all SULT1 enzymes. SULT1A1 is also 

expressed, albeit at lower levels, in almost every extrahepatic organ/tissue, including brain, 

breast, gastrointestinal tract (GIT), kidney, platelets, and skin [61–63]. Furthermore, from a 

developmental biology perspective, SULT1A1 has been reported to be widely expressed at 

fetal stages [64–66]. The extensive expression during fetal development implies an essential 

role of SULT1A1 in the chemical defense during fetal development, through neonatal/child 

development, onto adulthood [66].

SULT1A1 gene has long been recognized to have a polymorphic nature [8, 9, 67, 68]. 

Earlier studies revealed that SULT1A1 alleles encode allozymes with variations in not 

only the level of activity but also thermal stability [8, 60, 69]. Functional genomic 

studies have revealed that changes in nucleotide sequence could be translated into amino 

acid replacements with variations in enzyme function in the SULT gene family [8, 9, 

70]. Distinct SULT1A1 allozymes were shown to be expressed as a result of single 

nucleotide polymorphisms (SNPs) in the SULT1A1 gene [71]. Studies have demonstrated 

an alteration in the processing of xenobiotics, including therapeutic drugs, due to SULT1A1 
polymorphisms that influenced the SULT1A1 enzyme activity [72, 73].

Earlier studies have revealed a number of non-synonymous coding SNPs (cSNPs) of 

the SULT1A1 gene, including SULT1A1-R213H, SULT1A1*3 (M223V), SULT1A1*4 
(R37Q), and SULT1A1*5 (F247L) [70, 74, 75]. Among these allelic variants, SULT1A1­

R213H, which occurs in exon seven of the SULT1A1 gene, appeared to be the most 

prevalent SULT1A1 genetic polymorphism [60, 76]. The coded SULT1A1-R213H allozyme 

appeared to be less thermostable and displayed decreased binding affinity toward different 

substrate compounds, including some pro-mutagens, compared to the wild-type SULT1A1 

[77]. A more recent study investigated the effect of nine missense SULT1A1 cSNPs, 

SULT1A1-R37Q, SULT1A1-P47S, SULT1A1-M77I, SULT1A1-H149Y, SULT1A1-Y169D, 
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SULT1A1-R213H, SULT1A1-T227P, SULT1A1-V243D, and SULT1A1-F247L, on the 

sulfation of acetaminophen, O-desmethylnaproxen, and tapentadol [78]. Similar patterns of 

differential sulfating activities were found for the nine SULT1A1 allozymes towards all three 

drug compounds. Of the nine allozymes, SULT1A1-M77I and SULT1A1-F247L exhibited 

sulfating activities that were higher/comparable to that of the wild-type SULT1A1. The other 

seven SULT1A1 allozymes displayed lower specific activities than that of the wild-type 

enzyme, with SULT1A1-T227P showing the lowest activity [78]. It is noted that SULT1A1­
R37Q and SULT1A1-R213H SNPs had also been identified in earlier polymorphic studies, 

which showed that the platelet samples corresponding to the SULT1A1-R213H genotype 

presented with a much lower sulfating activity than the platelet samples corresponding to 

wild-type SULT1A1 genotype [8, 9, 71].

Some human population studies have revealed that the enzymatic activity of SULT1A1 

in platelet differs by gender [79, 80]. Distinct allelic frequencies of some SULT1A1 
genotypes have been found in different ethnic groups [76, 81]. The allele occurrence 

of SULT1A1-R213H SNP in the population appeared the highest among a number of 

SULT1A1 genotypes studied. For instance, it occurred at a frequency of about 0.30 in 

the Caucasians and about 0.17 in the Japanese population [77]. Additionally, SULT1A1­
R213H SNP was found to be common among African American subjects (about 29%) 

[76]. Chinese populace presented with allelic frequencies of about 0.08 and 0.006 for 

SULT1A1-R213H, SULT1A1*3 (M223V), respectively. Both of these two alleles presented 

with higher frequencies in African American subjects, 0.294 for SULT1A1-R213H and 

0.229 for SULT1A1*3 (M223V) [74, 76]. These differences in SULT1A1 allele frequencies 

might contribute to the observed variability in drug disposition and metabolism among those 

different ethnic groups [72]. Due to the high frequency of SULT1A1-R213H SNP in the 

population and its potential effect on the bioconversion of different drugs and carcinogens, 

this variant has received much attention in genotyping studies [82].

A good number of molecular epidemiological studies has been carried out aiming to link 

SULT1A1-R213H polymorphism to disease susceptibility. An initial report suggested that 

the SULT1A1-R213H SNP is an independent risk factor for esophageal cancer in men [83]. 

Other studies suggested a positive correlation between SULT1A1-R213H allele and the 

risk of breast cancer [84], gastric cancer [85], as well as brain tumors [69]. Additionally, 

SULT1A1-R213H polymorphism has been shown to be a risk factor for lung cancer in 

different ethnicities/populations, including Caucasian [86], Turkish [87], and Bangladesh 

[88]. The exact mechanism underlying the risk for different cancers due to certain SULT1A1 
genotypes remains unclear [8, 9, 83, 89]. Contradictory results, however, also exist that 

indicated a lack of association between SULT1A1 genotype and the risk for colorectal 

cancer [90] or prostate cancer [91] in Caucasian populations, as well as lung cancer [92] and 

urothelial epithelial cancers in a Japanese populace [93]. Moreover, in some other studies, 

SULT1A1-R213H SNP has been shown to be associated with a reduced incidence of bladder 

and colorectal cancers [82, 94]. It has been proposed that individual susceptibility to certain 

promutagenic and procarcinogenic compounds may ultimately be influenced by SULT1A1 
genetic polymorphisms [95].
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SULT1A3/SULT1A3 SNPs and SULT1A3 allozymes

As noted above, SULT1A3 and SULT1A4 genes encode identical protein products, 

collectively designated SULT1A3 [16]. SULT1A3 is the major enzyme responsible for 

the sulfation of the catecholamines such as dopamine, epinephrine, and norepinephrine, as 

well as a number of drug and dietary compounds [5]. Unlike other SULTs, SULT1A3 is 

expressed only in humans and closely related primates [113]. In adult humans, SULT1A3 

is expressed predominantly in the upper gastrointestinal tract, constituting nearly one-third 

of the total amount of SULTs present in the small intestine. In contrast, it has a very low 

level of expression in the liver [62,114]. Substantial expression of SULT1A3 is also found 

in the brain, lung, and platelets [56]. From the developmental standpoint, hepatic expression 

of SULT1A3 was found to be high at early stages of fetal development, but decreased 

substantially in late fetal/early neonatal liver, and essentially absent in adult liver. In the 

lung, significant SULT1A3 activity was observed in the fetus, whereas neonatal levels were 

considerably lower. In brain, low and widespread activity was recognized for SULT1A3 in 

different regions other than choroid plexus [64].

Earlier studies revealed a link between the SULT1A locus and the predisposition to 

autism spectrum disorders [115,116,117]. More recently, a correlation between autism and 

mutations in chromosome 16 at position 16p11.2, where the SULT1A3 and SULT1A4 genes 

are located, was reported [118,119]. Furthermore, the sequences surrounding the SULT1A3 
and SULT1A4 genes were found to be associated with several pathological disorders 

[120]. Individuals with microdeletions in these sequences were found to manifest high 

frequency of cognitive, developmental, and speech delay as well as behavior abnormalities 

[121] and autism spectrum disorders [117,122]. Moreover, duplications in the sequences 

surrounding the SULT1A3 and SULT1A4 genes have been found to be associated with 

obesity [123], schizophrenia [124] and attention deficit hyperactivity disorder [125]. Genetic 

polymorphisms of both SULT1A3 and SULT1A4 have been studied. Initial studies revealed 

ethnic-specific inherited differences in the capacity of catecholamine sulfation [10,126]. 

In an earlier study, eleven SULT1A3/SULT1A4 SNPs were identified and two of them, 

designated C302T, and C302A, were found to be cSNPs [16]. Corresponding SULT1A3 

allozymes, expressed in COS-1 cells displayed lower enzymatic activity in comparison 

with the wild type enzyme, while without significant alterations in substrate kinetics [16]. 

In another study using DNA samples from 60 African-American (AA) and 60 Caucasian 

American (CA) subjects, eight single nucleotide polymorphisms (SNPs) were observed in 

AA and five in CA subjects, and a single amino acid change, Lys234Asn, has been shown to 

lead to accelerated SULT1A3 degradation [10]. In another study, four SULT1A3 allozymes 

(Lys234Asn, Pro101Leu, Pro101His and Arg144Cys) were found to display lower sulfating 

activity, compared with the wild-type enzyme, with ritodrine as a substrate [57].

More recently, the effects of SULT1A3/SULT1A4 cSNPs on the sulfating activity 

of SULT1A3 allozymes were systematically investigated [127,128,129]. Twelve known 

SULT1A3 allozymes (SULT1A3-T7P, SULT1A3-S8P, SULT1A3-R9C, SULT1A3-P10L, 

SULT1A3-V15M, SULT1A3-V18F, SULT1A3-P101L, SULT1A3-P101H, SULT1A3­

R144C, SULT1A3-K234N, SULT1A3-N235T and SULT1A3-S290T), bacterially expressed 

and purified, showed differential sulfating activity toward catecholamines and serotonin 
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as substrates. Interestingly, the variations in the sulfating activity of SULT1A3 allozymes 

toward dopamine were markedly smaller than those toward epinephrine, norepinephrine, 

and serotonin. Kinetic studies demonstrated differences in both substrate affinity and 

catalytic efficiency of the tested SULT1A3 allozymes. Of these allozymes, SULT1A3­

N235T displayed the lowest sulfating activity and catalytic efficiency [127]. Several drugs 

including acetaminophen, morphine, tapentadol, O-desmethyltramadol, phenylephrine and 

salbutamol, were tested as substrates for these SULT1A3 allozymes [128,129]. The tested 

allozymes exhibited a similar pattern of differential sulfating activity toward these drugs, 

and kinetic studies showed further significant variations in their substrate-binding affinity 

and catalytic efficiency. The SULT1A3-N235T allozyme also exhibited the lowest sulfating 

activity toward the tested drugs. These findings may imply the differential pharmacokinetics 

and, consequently, efficacy and associated toxicity of these drugs when administered to 

individuals with distinct SULT1A3 and SULT1A4 genotypes [128,129].

SULT1B1 SNPs and SULT1B1 allozymes

Only a limited amount of information is available concerning the genetic polymorphism 

of SULT1B1. Studies have shown that certain SULT1B1 SNPs may influence the activity 

of thyroid hormones and the mutagenicity of polycyclic aromatic hydrocarbons [130, 

131]. Three nonsynonymous cSNPs (Leu145Val, Glu186Gly, and Glu204Asp) have been 

identified in human populations [132–134]. Among them, Leu145Val, with a 17% frequency 

in African American, had been shown to display a higher affinity toward 1-hydroxypyrenes 

than the wild-type enzyme [134]. No significant correlation between the SULT1B1variants 

and pathologies (colorectal or prostate cancers) associated with the subjects studied, 

however, was observed.

SULT1C2/SULT1C4 SNPs and SULT1C2/SULT1C4 allozymes

SNPs of SULT1C2 and SULT1C4 genes have been reported in human population [11,133]. 

For SULT1C2, 4 nonsynonymous cSNPs (encoding Asp60Ala, Arg73Gln, Ser111Phe, and 

Ser193Ala) have been identified in Caucasians [11]. Among the corresponding SULT1C2 

allozymes, Asp60Ala and Arg73Gln showed reduced sulfating activity (15% of wild-type) 

toward p-nitrophenol and Ser111Phe showed no detectable activity [11]. Arg73Gln showed 

a much higher Km with PAPS, while Asp60Ala showed no change in Km with PAPS. These 

observations suggested that substitution of Arg73 with Gln may affect the interaction with 

PAPS. Since Ser111 is located in catalytic region that includes also the catalytic residue 

His109, substitution of Ser111 with Ala may alter the interaction of the enzyme with the 

substrate, p-nitrophenol. On the other hand, Ser193Ala showed no change in the catalytic 

properties. For SULT1C4, a nonsynonymous cSNP (encoding Asp5Glu) has been reported 

[133]. Although no information on the catalytic properties of the corresponding allozyme is 

available, Asp5Glu has been reported to correlate with a higher post-treatment relapse rate 

in acute myeloblastic leukemia [135]. Therefore, the clinical significance of the SNP will 

need to be clarified. It should be pointed out that polymorphisms of SULT1C subfamily may 

be particularly important in the fetal physiology vs. that of the adult in view of their more 

prominent expression at fetal stages [24,27].
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SULT1E1 SNPs and SULT1E1 allozymes

SULT1E1 is known to be the most efficient SULT enzyme in catalyzing the sulfation 

of endogenous estrogens (E1 and E2), while with a lower efficiency in sulfating other 

hydroxysteroids (e.g., DHEA, pregnenolone), as well as some xenobiotics, including a 

number of drug compounds [13,32,39, 136–143]. SULT1E1 has been shown to be expressed 

in adult human lung, liver, and small intestine [62]. SULT1E1 expression has also been 

detected in other organs including breast, endometrium, adrenal gland, placenta, jejunum, 

lung, skin, and testis [32, 144–147], as well as human fetal kidney, liver, lung, thyroid gland, 

and choroid plexus [66].

Genetic variations of the SULT1E1 gene have been found to be associated with the risk 

for certain cancers/disease etiologies, and responses to therapies [56,58]. In earlier studies, 

the SULT1E1-64G/A (rs3736599) genotype was found to be associated with a significant 

increase in the risk for developing endometrial tissue cancer [148], particularly in women 

receiving long-term hormone replacement therapy (HRT) [149]. A correlation between 

SULT1E1-64G/A (rs3736599) and catechol-O-methyl-transferase (COMT Val158Met), 

resulting in lower serum estradiol levels as well as increased risk for ischemic stroke, has 

also been reported [150]. Another study revealed that Korean women breast cancer patients 

with SULT1E1 *959G>A (rs3775778) and SULT1E1 IVS4-1653 T>C (rs3775775) base 

changes manifested a 4-fold increase in the risk for breast cancer [103]. Furthermore, a 

correlation between SULT1E1 *959 G>A (rs3775778) and reduced bone mineral density 

at the distal radius and calcaneus in healthy Korean women has been reported [151]. In 

another study, missense mutation (His224Gln) in SULT1E1 protein was implicated as a risk 

factor for breast cancer in Jewish women [152]. A more recent study revealed that two 

SULT1E1 SNPs (SULT1E1 rs1238574 and SULT1E1 rs3822172) were associated with poor 

survival rate of colorectal cancer patients [153]. In a clinical study, three variants of the 

SULT1E1 gene (SULT1E1 -9-899G>A, SULT1E1 -9-682A>G and SULT1E1 -9-469A>G) 

were found to result in inter-individual variations of plasma concentrations of tamoxifen 

metabolites in breast cancer patients treated with tamoxifen, indicating contribution of 

SULT1E1 to tamoxifen metabolism in vivo [154]. Another clinical study showed a 

significant correlation between genetic variations of SULT1E1 gene (SULT1E1 rs3775777, 

SULT1E1 rs4149534, SULT1E1 rs10009305, SULT1E1 rs3775770, SULT1E1 rs4149527, 

and SULT1E1 rs3775768) and the time to treatment failure (TTF) of abiraterone therapy 

in male patients with metastatic castration refractory prostate cancer [155]. The presence 

of one or more rare alleles among these six SNPs resulted in shorter TTF compared 

to those with wild-type alleles. These findings suggest that genetic variations of the 

SULT1E gene could potentially reduce the interval between abiraterone administration and 

its discontinuation due to different reasons including patient decision, cancer progression, 

adverse effects, and patient death.

Several studies on the effects of SULT1E1 cSNPs on the functional activity of SULT1E1 

protein product have been reported [12,156,157]. In an earlier functional genomic study, 

COS-1 cells transfected with constructs containing two nonsynonymous SULT1E1 cSNPs 

(Ala32Val and Asp22Tyr) were found to exhibit reductions in both SULT1E1-sulfating 

activity toward E2 (40% and 90%, respectively) as well as enzyme expression level 
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[12]. In a more recent study, five missense cSNPs of the SULT1E1 gene (SULT1E1­

A43D, SULT1E1-A131P, SULT1E1-R186L, SULT1E1-P214T, and SULT1E1-D220V) were 

bacterially expressed, purified, and characterized in regard to their sulfating activity 

toward endogenous estrogens (E1, E2, estriol (E3)), EE2, 4-hydroxytamoxifen (4-OHT), 

and diethylstilbestrol (DES) [156,157]. Compared with the wild-type enzyme, all five 

SULT1E1 allozymes showed significant variations in the kinetics parameters (Vmax, Km, 

and Vmax/Km) toward E2, 4-OHT and DES, reflecting the effect of these cSNPs on the 

sulfoconjugation of E2, 4-OHT and DES by SULT1E1 allozymes [156]. With respect to 

the remaining substrates (E1, E3, and EE2), the sulfating activities of the five SULT1E1 

allozymes were all significantly lower in comparison to the wild-type SULT1E1. The 

inhibitory effects of triclosan on E2 sulfation by these SULT1E1 allozymes has also been 

evaluated [157]. In the presence of triclosan (150 µM), SULT1E1-A43D, SULT1E1-A131P, 

SULT1E1-R186L, and SULT1E1-D220V displayed 80%, 9%, 22%, and 70% decrease in 

E2-sulfating activities, respectively, compared to the wild-type SULT1E1. These results 

demonstrated the significant inhibitory effect of triclosan on E2 sulfation by SULT1E1 

allozymes, indicating that exposure to triclosan may impact the endogenous estrogens 

hemostasis as well as the bioavailability of the compounds that are metabolized by 

SULT1E1. These results provide support for the notion that individuals with different 

SULT1E1 genotypes may differ in biotransformation capacity in sulfating endogenous 

and exogenous estrogenic compounds as well as xenobiotics, suggesting inter-individual 

variations in susceptibility to certain diseases and responses to relevant therapies.

SULT2A1 SNPs and SULT2A1 allozymes

As noted above, SULT2A1 is known to display a strong activity toward DHEA and 

other hydroxysteroids, as well as a number of xenobiotic compounds including drugs 

[158–160]. Studies have demonstrated the expression of SULT2A1 at high levels in liver 

and intestine, as well as adrenal glands [161], and at low levels in the kidney and lung 

[161]. Being the primary enzyme responsible for the sulfation of DHEA, SULT2A1 plays 

an important role in the homeostasis of DHEA [162]. Effects of the variations of the 

SULT2A1 gene on the sulfating activity of SULT2A1 or DHEA homeostasis have been 

studied. In an earlier study, a 4.6-fold variation in SULT2A1 enzymatic activity level 

was detected among 94 human hepatic tissue samples analyzed [163]. In a later study 

sequencing the SULT2A1 gene in DNA samples from African-American and Caucasian­

American individuals, a total of 15 SNPs were identified [164]. Three of these SULT2A1 
SNPs were non-synonymous cSNPs, with corresponding amino acid changes: Ala63Pro, 

Lys227Glu and Ala261Thr [164]. Intriguingly, these SULT2A1 cSNPs were only detected 

in African-American individuals. The expression of SULT2A1 allozymes in COS-1 cells 

resulted in enzymes with varying levels of DHEA-sulfating activity when compared to 

wild-type SULT2A1 [164]. Another study conducted to analyze the SULT2A1 gene in DNA 

samples from normal African-American men revealed the presence of two cSNPs, Ala63Pro 

and Ala261Thr, similar to those reported earlier [165]. Interestingly, a significant increase 

in the DHEA:DHEA-sulfate ratio was observed in individuals with a heterozygous G187C/

G781A genotype that codes for the amino acid change Ala63Pro [165]. In a genome-wide 

association study of 14,846 individuals, a SULT2A1 SNP (rs2637125) was identified as one 

of the eight common genetic variants linked to variations in serum DHEA-S levels [166]. 
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In another study performed to investigate the association of SULT2A1 SNPs with plasma 

DHEA-S concentration, it was found that both SULT2A1 SNPs rs2637125 and rs182420 

were associated with decreased levels of DHEA-S in 12-16 year old children [167]. In a 

more recent study, it was demonstrated that SULT2A1 SNP rs182420 was associated with 

prostate cancer risk in Caucasians, while SULT2A1 SNP rs2547238 was associated with 

prostate cancer risk in African-Americans [168]. Another epidemiological study revealed 

that SULT2A1 SNP rs182420 was associated with a variation in DHEA-S levels in women 

with polycystic ovary syndrome [169]. Collectively, these studies indicated that SULT2A1 
SNPs have implications in the homeostasis of DHEA/DHEA-S as well as DHEA/sex 

hormone-associated diseases, including prostate cancer and polycystic ovary syndrome. In a 

study investigating the effects of SULT2A1 SNPs, nine SULT2A1 allozymes, in comparison 

with the wild-type enzyme, were shown to display differential sulfating activities toward 

tibolone [170]. More recently, the functional consequences of a set of seven SULT2A1 
non-synonymous cSNPs were investigated [171,172]. The sulfating activities of these seven 

SULT2A1 allozymes were characterized with three kinds of substrates, those that carry 

hydroxyl group in their chemical structures, including DHEA, pregnenolone, tibolone, 

and budesonide, those that carry amine groups in their chemical structures, including 

ciprofloxacin and desipramine, and Δ4-3-ketosteroids, such as 4-androstene-3, 17-dione 

and progesterone, that do not carry hydroxyl or amine groups in their chemical structures. 

Results indicated that the seven SULT2A1 allozymes analyzed displayed differential 

sulfating activities toward all three types of substrates, compared with wild-type SULT2A1, 

reaffirming the impact of SULT2A1 SNPs on the functional activity of SULT2A1 protein 

products [172].

SULT2B1 SNPs and SULT2B1b allozymes

As noted above, two N-terminal variants, SULT2B1a and SULT2B1b, have been reported 

to be derived from the alternative splicing of the primary SULT2B1 transcript [40,41]. 

Of the two, SULT2B1b has been reported to display a strong activity toward cholesterol, 

and thus dubbed a cholesterol sulfotransferase [173]. Additionally, SULT2B1b has also 

been shown to display activity toward hydroxysteroids, particularly 3β-hydroxysteroids 

including dehydroepiandrosterone (DHEA), pregnenolone, and androstenediol [174, 

43]. Moreover, SULT2B1b can also sulfate oxygenated derivatives of cholesterol, 

collectively called “oxysterols”, such as 7-ketocholesterol (7KC), 5α,6α-epoxycholesterol 

(5α,6α-EC), 5β,6β-epoxycholesterol (5β,6β -EC), 25-hydroxycholesterol (25HC), and 24­

hydroxycholesterol (24HC) [175–177]. Besides the endogenous substrates, SUlT2B1b has 

been reported to display sulfating activity toward xenobiotics, including a number of drug 

compounds, e.g., 3-OH-tibolone, raloxifene, bisphenol A, 4-n-octylphenol, 4-n-nonylphenol, 

diethylstilbestrol, 17-α-ethynylestradiol, and p-nitrophenol [174, 140, 39]. On the other 

hand, several antiandrogens including galeterone, abiraterone, cyproterone, and danazol have 

been reported to inhibit DHEA sulfation by SULT2B1b [136].

The ability of SULT2B1b to sulfate some important steroids and hydroxysteroids and 

its expression in many tissues/organs (including prostate, placenta, breast, endometrium, 

uterus, ovary, small intestine, colon, lung, platelet, brain, and skin), suggest the critical 

involvement of SULT2B1b in some physiological and pathological conditions in the human 
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body [178–183]. Indeed, reduction or elevation in SULT2B1b activity or expression level 

due to genetic variations have been linked to disease states like autosomal recessive 

ichthyosis and several types of cancers including prostate cancer, esophageal squamous 

cell carcinoma, hepatocellular carcinoma, gastric cancer, endometrial cancers, and colorectal 

cancer [184–192]. Several studies have been conducted to study the effect of SULT2B1 
genetic polymorphisms on the sulfating activity of the expressed enzyme [193–195]. 

The first such study revealed that of the samples taken from 120 African American 

and Caucasian subjects, four non-synonymous cSNPs (SULT2B1b-Leu51Ser, SULT2B1b­

Asp191Asn, SULT2B1b-Arg230His, and SULT2B1b-Peo345Leu) were detected [193]. 

Corresponding SULT2B1b allozymes were transiently expressed in COS-1 cells and the 

sulfating activity was characterized using DHEA as a substrate [193]. Compared to wild­

type SULT2B1b, the level of the tested allozymes in COS-1 cells varied from 79% to 112%, 

while their sulfating activity varied from 76% to 98% [193]. In a more recent study, the 

impact of ten SULT2B1 non-synonymous cSNPs on the functional activity of corresponding 

SULT2B1b allozymes was investigated using cholesterol as a substrate [194]. Amino acid 

changes in three of the ten allozymes, SULT2B1b-Gly72Val, SULT2B1b-Arg147His, and 

SULT2B1b-Gly276Val, were found to result in a complete loss of the enzyme activity [194]. 

The other seven allozymes (SULT2B1b-Pro69Ala, SULT2B1b-Thr73Met, SULT2B1b­

Asp191Asn, SULT2B1b-Arg230His, SULT2B1b-Ser244Thr, SULT2B1b-Arg274Gln, and 

SULT2B1b-Pro345Leu) all resulted in a dramatic decrease in the sulfating activity, 

substrate affinity, and catalytic efficiency [194]. Similar findings were later reported 

for these SUL2B1b allozymes using DHEA or pregnenolone as substrate [195]. Three 

allozymes (SULT2B1b-Gly72Val, SULT2B1b-Arg147His, and SULT2B1b-Gly276Val) 

exhibited no detectable sulfating activity toward DHEA or pregnenolone, whereas the other 

seven (SULT2B1b-Pro69Ala, SULT2B1b-Thr73Met, SULT2B1b-Asp191Asn, SULT2B1b­

Arg230His, SULT2B1b-Ser244Thr, SULT2B1b-Arg274Gln, and SULT2B1b-Pro345Leu) 

displayed differential sulfating activity and affinity toward DHEA or pregnenolone [195]. 

Interestingly, only SULT2B1b-Pro69Ala and SULT2B1b-Arg274Gln showed a significant 

decrease in the co-substrate (PAPS) binding when tested using pregnenolone as the substrate 

[195]. Interestingly, among the ten SULT2B1 genotypes studied, SULT2B1-Arg274Gln 

heterozygous allele has been implicated in autosomal recessive ichthyosis (ARCI), 

previously reported to be associated with a reduced skin cholesterol-sulfating activity [189]. 

In a phenotype-genotype association study, two missense SULT2B1 cSNPs (p. Arg100Trp 

and p. Glu78Lys) have also been implicated in a specific subtype of ARCI called congenital 

ichthyosiform erythroderma for which the underlying molecular mechanisms is yet to be 

clarified [190].

4. Concluding remarks

Despite that the biological sulfation has been known for well over a century, the research 

on the responsible enzymes had been slow until the 1980s. The past three decades have 

witnessed significant progress made in the elucidation of the diversity of the SULT enzymes 

and their enzymatic characteristics, the phylogenetic relationships between the SULTs, 

the structural biology of the SULTs, the developmental expression of the SULTs, and 

the mechanisms underlying the regulation of the SULT gene expression, as well as the 
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development of the zebrafish as a model for use in SULT research. While continued efforts 

need to be made in all these aspects of the SULT research, additional fronts, particularly the 

implications of the polymorphisms of the SULT genes and the systems biology regarding the 

physiological involvement of the SULTs - not only in the detoxification of xenobiotics but 

also in the homeostasis of key endogenous compounds such as thyroid/steroid hormones and 

catecholamine neurotransmitter/hormones - will need to be addressed.

5. Expert opinion

By virtue of their involvement in drug metabolism, drug-metabolizing enzymes play 

a crucial role in influencing the level of drugs in vivo [196]. With the advent of 

pharmacogenomics, mounting evidence has indicated that genetic variations of the genes 

coding for drug-metabolizing enzymes may lead to the differential metabolism and thus 

efficacy, as well as adverse drug reactions, of drugs in individuals with different genotypes. 

Variations in the genes coding for both Phase I enzymes, such as cytochrome P-450 

2C9 [197] and 3A4 [198], and Phase II enzymes, such as COMT [199, 200] and N­

acetyltransferase [201, 202], and UDP-glucuronosyltransferases [203, 204], have all been 

reported to significantly affect the efficacy and adverse effects of a variety of drugs. An 

important application of such information may lie in helping to formulate personalized 

drug regimens for individuals with unique drug-metabolizing enzyme genotypes. Compared 

with other Phase II enzymes, less is known concerning the impact of genetic variations 

of SULT genes on the metabolism of drugs that are metabolized, in part at least, by the 

coded SULT enzymes. A better understanding about how SULT SNPs may influence the 

drug-sulfating activity of SULT allozymes will similarly help understand the differential 

drug metabolism and aid in formulating personalized drug regimens. It should be reiterated 

that while nonsynonymous coding SULT SNPs have been shown to affect the drug-sulfating 

activities of resulting SULT allozymes, there is evidence that the stability and expression 

level of different SULT allozymes may also vary [8,10, 60,69]. More studies are warranted 

in order to fully elucidate the impact of SULT SNPs on the metabolism of relevant drugs.

In association with the role of SULT SNPs in influencing the efficacy of drugs are the 

associated adverse drug reactions. For example, doxorubicin, which has been reported 

to be metabolized by sulfation [205], is known to cause cardiotoxicity when used in 

the treatment of hematologic malignancies as well as solid and soft tumors [206,207]. 

Studies have shown that not all patients who received the same chemotherapeutic regimen 

developed cardiotoxicity, implying likely an underlying genetic predisposition [208,209]. 

The enzyme responsible for the sulfation of doxorubicin has been shown to be SULT1C4 

[30]. It is an interesting question whether genetic polymorphisms of the SULT1C4 gene may 

influence the doxorubicin-sulfating activity of SULT1C4 allozymes, thereby influencing 

the susceptibility to the development of cardiotoxicity in patients with different SULT1C4 
genotypes. Another example is the occurrence of idiosyncratic skin rash associated with the 

use of nevirapine (NVP) in the treatment of human immunodeficiency virus (HIV) infection 

[210,211]. Sulfation of 12-OH-NVP, a metabolite of NVP, has been proposed to be involved 

in this NVP-induced adverse drug reaction [212,213]. An interesting question is whether 

the genetic polymorphisms of the gene encoding SULT1A1, a major 12-OH-NVP-sulfating 

SULT [214] which is expressed in human skin cells [215,216], may influence the level 
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of 12-OH-NVP generated, thereby dictating the development of skin rash in patients with 

different SULT1A1 genotypes.

Another area worthy of attention is the SULT-mediated sulfation of 3-nitrotyrosine 

and 3-chlorotyrosine as pertaining to intracellular oxidative/nitrative stress [217–219]. 

Studies have shown that 3-nitrotyrosine, generated via de novo nitration of tyrosine or 

degradation of tyrosine-nitrated proteins, can induce oxidative DNA damage [220] or trigger 

apoptosis in cultured cells [221], while 3-chlorotyrosine has been reported to increase 

free radical production and attenuate the intracellular NO synthase enzyme expression 

[222,223]. Studies have revealed SULT1A3 as the only SULT enzyme capable of sulfating 

3-nitrotyrosine and 3-chlorotyrosine [217–219]. In view of the pathogenic effects of these 

latter compounds, it is an interesting question whether the genetic polymorphisms of the 

genes coding for SULT1A3, SULT1A3 and SULT1A4, may dictate the differential sulfating 

activity of coded SULT1A3 allozymes, thereby influencing the capacity in mitigating the 

adverse effects of 3-nitrotyrosine and 3-chlorotyrosine generated under oxidative/nitrative 

stress conditions.

Finally, the effects of SULT genetic polymorphisms on the sulfation of endogenous 

compounds should not be overlooked. Several human SULTs, including SULT1A3, 

SULT1B1, SULT1E1, SULT2A1, SULT2B1a, and SULT2B1b (cf. Table 1), have 

been shown to be involved in the metabolism of key endogenous compounds such 

as catecholamine neurotransmitters and thyroid/steroid hormones. Anomalies in the 

metabolism of these endogenous compounds in individuals with certain SULT genotypes 

have been shown to lead to increased risk for cancers and other pathological conditions as 

elaborated above.
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Article highlights

• Cytosolic sulfotransferases (SULTs)-mediated sulfation is critically involved 

in the metabolism of key endogenous compounds such as catecholamines and 

steroid/thyroid hormones, as well as drugs and other xenobiotics.

• In humans, eighteen SULT genes, including five pseudogenes, have been 

identified and classified into five gene families.

• Like many other genes, single nucleotide polymorphisms (SNPs) occur for 

genes encoding the SULTs.

• Studies have shown that certain SULT genotypes may predispose risks for 

diseases.

• SULT allozymes, coded by distinct SULT genotypes, have been reported to 

display differential sulfating activities.

• Elucidation of the functional relevance of SULT SNPs may eventually aid 

in formulating personalized drug regimens and help develop strategies for 

mitigating anomalies in the metabolism of key endogenous compounds.
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Figure 1. 
SULT-mediated sulfation of acetaminophen. SULT1A1 catalyzes the transfer of the 

sulfonate (-SO3
−) group from 3-phosphoadenosine-5’-phosphosulfate (PAPS), a co­

substrate, to the hydroxyl (-OH) group of acetaminophen.
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Figure 2. 
Diagram illustrating the possible phylogenetic relationship between human SULT 

genes and pseudogenes. Phylogenic tree was prepared with CDS nucleotide sequences 

of SULT1A1 (NM_001055), SULT1A2 (NM_001054), SULT1A3 (NM_177552), 

SULT1A4(NM_001017390), SULT1B1 (NM_014465), SULT1C2 (NM_001056), 

SULT1C3a (NM_001320878), SULT1C4 (NM_006588), SULT1C5P(AK056906), 

SULT1D1P (NG_002642), SULT1D2P (NC_000003.12), SULT1E1 (NM_005420), 

SULT2A1 (NM_003167), SULT2A2P (), SULT2B1b (NM_177973), SULT3A1P 
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(NC_000014), SULT4A1 (NM_014351), SULT6A1 (NM_001367551). Hypothetical CDS 

nucleotide sequences of SULT1D1P were generated from the regions of exons 2 - 8 based 

on the NG_002642. For SULT1D2P, NC_000003.12, containing exons 2 - 8, was directly 

used as hypothetical CDS nucleotide sequences of SULT1D2P. For SULT1C5P, exons 2 - 

7 were retrieved from AK056906 and NC_000002.12 using BLAST search as hypothetical 

CDS nucleotide sequences of SULT1C5P. For SULT2A2P, exons 2 - 3 were retrieved 

from NC_000019.10 using BLAST search as hypothetical CDS nucleotide sequences of 

SULT2A2P. For SULT3A1P, NC_000014, containing exons 2 - 7, was directly used as 

hypothetical CDS nucleotide sequences of SULT3A1P. Analysis of aligned sequence data 

was carried out in MEGA 11 ALPHA.
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Table 1.

Human cytosolic sulfotransferases (SULTs) with their amino acid sequence length, gene location on 

chromosomes, substrate specificity and gene cloning timeline.

SULT
1 No. of AA2 Gene Location on 

Chromosome Prototype Substrate References

1A1 295 16p12.1 p-Nitrophenol Wilborn et al., 1993; Dooley et al., 1994;

1A2 295 16p12.1 p-Nitrophenol Zhu et al., 1996; Her et al., 1996

1A3 295 16p11.2 Dopamine Dooley et al., 1994; Aksoy and Weinshilboum, 1995

1B1 296 4q13.3 Iodothyronines Fujita et al., 1997

1C2 296 2q12.3 p-Nitrophenol Her et al., 1997; Sakakibara, 1998

1C3 304 2q12.3 Bile acids; iodothyronines Freimuth et al., 2000; Kurogi et al., 2017

1C4 302 2q12.3 p-Nitrophenol Freimuth et al., 2000; Sakakibara et al., 1998

1E1 294 4q13.1 17β-estradiol Aksoy et al., 1994

2A1 285 19q13.3 DHEA
1 Otterness et al., 1992; Kong et al., 1992

2B1a 350 19q13.3 Pregnenolone Her et al., 1998

2B1b 365 19q13.3 Cholesterol Her et al., 1998

4A1 284 22q13 unknown Walther et al., 1999; Falany et al., 2000

6B1 265 2p22.3 unknown Freimuth et al., 2004

1
Dehydroepiandrosterone
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Table 2.

Summary of differential sulfating activities of human SULT allozymes toward endogenous hormones and 

drugs.

SULT Allozymes Effects on the activities with hormones and drugs References

1A1 Arg37Gln
acetaminophen (↓)

*
, O-desmethylnaproxen (↓)2 78

Pro47Ser acetaminophen (↓), O-desmethylnaproxen (↓) 78

Met77Ile
acetaminophen (↑)

** 78

His149Tyr acetaminophen (↓), O-desmethylnaproxen (↓) 78

Tyr169Asp acetaminophen (↓), O-desmethylnaproxen (↓) 78

Arg213His thyroxine (↓), acetaminophen (↓), O-desmethylnaproxen (↓) 71, 78

Thr227Pro acetaminophen (↓), tapentadol (↓) 78

Val243Asp acetaminophen (↓), O-desmethylnaproxen (↓) 78

Fhe247Leu acetaminophen (↑), O-desmethylnaproxen (↑) 78

1A3 Ser8Pro O-desmethyltramadol (↓), salbutamol (↓) 128, 129

Arg9Cys norepinephrine (↓), serotonine (↓), acetaminophen (↓), morphine (↓), O-desmethyltramadol (↓) 127, 128

Pro101Leu ritodorine (↓), serotonine (↓) 57, 127

Pro101His ritodorine (↓) 57

Arg144Cys ritodorine (↓), serotonine (↓), acetaminophen (↓), phenylephrine (↓), 57, 128, 129

Lys234Asn ritodorine (↓) 57

Asn235Thr dopamine (↓), epinephrine (↓), norepinephrine (↓), acetaminophen (↓), morphine (↓), tapentadol (↓), 
O-desmethyltramadol (↓), phenylephrine (↓), salbutamol (↓)

127, 128, 129

1E1 Asp22Tyr 17β-estradiol (↓) 12

Ala34Val 17β-estradiol (↓) 12

Ala43Asp estrone (↑), estriol (↑), 17β-estradiol (↓) 4-HO-tamoxifen (↓), diethylstilbestrol (↓) 156, 157

Arg186Leu 17β-estradiol (↓), 4-HO-tamoxifen (↓) 156

Pro214Thr 17β-estradiol (↓), diethylstilbestrol (↓) 156

Asp220Val 17β-estradiol (↓), 4-HO-tamoxifen (↓), diethylstilbestrol (↓) 156

2A1

Lys44Glu 4-androstene-3, 17-dion (↓), progesterone (↓) tibolone (↓) 172

Ala63Pro DHEA (↓) 164

Pro76Thr DHEA (↓), pregnenolone (↓), 4-androstene-3, 17-dion (↓), progesterone (↓), tibolone (↓), budesonide 
(↓)

171, 172

Glu147Lys DHEA (↓), progesterone (↓), tibolone (↓) budesonide (↓) 171, 172

Glu148Lys DHEA (↓), pregnenolone (↓), 4-androstene-3, 17-dion (↓), progesterone (↓), tibolone (↓) budesonide 
(↓)

171, 172

Leu159Val DHEA (↑) 170

Lys227Glu DHEA (↓), tibolone (↓) 164, 170

Leu246Pro DHEA (↓), pregnenolone (↓), 4-androstene-3, 17-dion (↓), progesterone (↓), tibolone (↓), budesonide 
(↓)

171, 172

Phe258Leu DHEA (↓), pregnenolone (↓), 4-androstene-3, 17-dion (↓), progesterone (↓), tibolone (↓), budesonide 
(↓)

171, 172

Gln262Glu DHEA (↓) 171

2B1 Pro69Ala DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195

Gly72Val DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195
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SULT Allozymes Effects on the activities with hormones and drugs References

Thr73Met DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195

Arg147His DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195

Asp191Asn DHEA (↓), cholesterol (↓) 193, 194, 195

Arg230His DHEA (↓), cholesterol (↓) 193, 194, 195

Ser244Thr DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195

Arg274Gln DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195

Gly276Val DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195

Pro345Leu DHEA (↓), pregnenolone (↓), cholesterol (↓) 194, 195

*
(↓) refers to decreased activity toward the corresponding compounds.

**
(↑) refers to increased activity toward the corresponding compounds.
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Table 3.

Summary of potential diseases related to human SULT genetic polymorphisms.

SULT Polymorphism Related diseases References

1A1 Arg213His brain tumor 69

breast cancer 82, 84

esophageal cancer 83

gastric cancer 85

lung cancer 86, 87, 88

colorectal cancer (reduced risk) 82

bladder cancer (reduced risk) 94

endometrial cancer 148, 149

Met223Val endometrial cancer 149

3’-UTR variant (rs6839, rs1042157) endometrial cancer 148

1A3 low copy number alzheimer’s disease 120

chromosomal mutation in SULT1A3/
SULT1A4 gene area (16p11.2)*

autism 115–119, 121, 122

obesity 123

schizophrenia 124

attention deficit hyperactivity disorder 125

1C4 Asp5Glu higher post-treatment relapse rate in acute myeloblastic 
leukemia

133

1E1 His224Gln breast cancer 152

5’-UTR variant (rs3736599) endometrial cancer 148, 149

ischemic stroke in young adults 150

intron variant (rs3775778) breast cancer 103

reduced bone mineral density 151

intron variant (rs3775775) breast cancer 103

intron variant (rs1238574) poor survival rate of colorectal cancer 153

intron variant (rs3822172) poor survival rate of colorectal cancer 153

2A1 intron variant (rs182420) prostate cancer, polycystic ovary syndrome 168, 169

intron variant (rs2547238) prostate cancer 168

2B1 Arg274Gln autosomal recessive ichthyosis 189

Arg100Trp congenital ichthyosiform erythroderma 190

Glu78Lys congenital ichthyosiform erythroderma 190

intron variant (rs4149455) esophageal squamous cell carcinoma 191

intron variant (rs3760806) colorectal cancer 153

4A1 5’-UTR variant (D22s1749e) schizophrenia 48

intron variant (rs138060) schizophrenia 49

intron variant (rs138097) schizophrenia 49

*
These mutations (deletion and duplication) occur in the 16p11.2 at which SULT1A3/SULT1A4 genes are located in. No potential SULT allozymes 

have been identified in these studies.
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