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Abstract

Gleason score, a measure of prostate tumor differentiation, is the strongest predictor of lethal 

prostate cancer at the time of diagnosis. Metabolomic profiling of tumor and of patient serum 

could identify biomarkers of aggressive disease and lead to the development of a less-invasive 

assay to perform active surveillance monitoring. Metabolomic profiling of prostate tissue and 

serum samples was performed. Metabolite levels and metabolite sets were compared across 

Gleason scores. Machine learning algorithms were trained and tuned to predict transformation or 

differentiation status from metabolite data. A total of 135 metabolites were significantly different 

(Padjusted < 0.05) in tumor versus normal tissue, and pathway analysis identified one sugar 

metabolism pathway (Padjusted = 0.03). Machine learning identified profiles that predicted tumor 

versus normal tissue (AUC of 0.82 ± 0.08). In tumor tissue, 25 metabolites were associated with 

Gleason score (unadjusted P < 0.05), 4 increased in high grade while the remainder were enriched 

in low grade. While pyroglutamine and 1,5-anhydroglucitol were correlated (0.73 and 0.72, 

respectively) between tissue and serum from the same patient, no metabolites were consistently 

associated with Gleason score in serum. Previously reported as well as novel metabolites with 

differing abundance were identified across tumor tissue. However, a “metabolite signature” for 

Gleason score was not obtained. This may be due to study design and analytic challenges that 

future studies should consider.

Introduction

Gleason score, a pathologic measure of the degree of differentiation of prostate tumor 

tissue, is one of the strongest predictors of lethal prostate cancer (1). Many men diagnosed 

with low-grade Gleason score 6 tumors are treated with radical prostatectomy (RP) or radio

therapy, resulting in substantial overtreatment of the disease. Recently, more patients with 

low-grade prostate cancer have been recommended for active surveillance (2), a continued 

monitoring of potential disease progression with repeated PSA measurements and prostate 

biopsies. However, due to the multifocality and heterogeneity of prostate cancer, biopsies 

can miss higher grade tumors. Approximately 43%–65% of patients who are Gleason score 

6 at diagnosis are upgraded at RP (3–5). PSA is currently the main biomarker used to 

detect the presence of high-grade disease, with a recent study showing that among men with 

Gleason score 6 at diagnosis, those with PSA 10–20 ng/μL had a 30% chance of being 

upgraded at RP (6). Commercially available genomic testing predicts outcome based on the 

lesion biopsied (7, 8) rather than detecting the presence of occult higher grade tumors. A 

nontissue-based, less-invasive assay would be an ideal method to address the heterogeneity 

and multifocality of prostate cancer to monitor patients and inform treatment decisions.
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Metabolic rewiring appears to be specific to the genomic alterations that occur in tumor cells 

(9). Thus, metabolic profiling may help identify new biomarkers to differentiate high from 

low-grade prostate cancer as these differentiation states appear to be molecularly distinct 

(10–12). Metabolic markers have previously been shown to differ not only in patients with 

and without prostate cancer, but also in aggressive and nonaggressive disease (13). In tumor 

tissue, McDunn and colleagues (14) identified several metabolites associated with Gleason 

score, including palmitoyl sphingomyelin, citrate, choline, and ADP. Giskeodegard and 

colleagues (15) observed that high-grade tumors had lower levels of citrate and spermine 

when compared with low-grade tumors. Using in situ mass spectrometry imaging, lipid 

abundance has been shown to tightly correlate with increasing Gleason score (16), and 

citrate represents the predominant source for de novo lipogenesis that is responsible for lipid 

abundance. These data suggest that metabolomics could contribute molecular insights into 

the metabolic rewiring that underpins the biological behavior and differentiation of prostate 

tumors.

As tumors with higher Gleason score appear to produce and may excrete different 

metabolites or differing amounts from tumors with only lower grade present, we hypothesize 

that these metabolites could potentially be detected using serum metabolomics. This would 

be a necessary first step in the development of a less-invasive metabolomics-based assay to 

monitor active surveillance patients. Previous work in this field has had limited success. Fan 

and colleagues identified metabolites in serum that could distinguish prostate cancer from 

benign prostatic hyperplasia. However, this “signature” was not associated with Gleason 

score (17). The authors did observe that several metabolites were significantly different in 

the serum of patients with low versus those with intermediate/high Gleason score prostate 

cancer. Osl and colleagues attempted to develop a serum metabolite signature to distinguish 

men with Gleason score 6 from men with Gleason score 8–10, but did not identify any 

reliable candidate metabolites (18).

To identify metabolites associated with Gleason score in prostate tissue, we performed 

untargeted metabolomic profiling in prostate tumor and matched benign prostate tissue. 

We then examined metabolite levels in a large population of patients with prostate cancer 

to identify metabolite biomarkers of Gleason score, which could provide an additional 

less-invasive method to monitor men during active surveillance.

Materials and Methods

Cohort description

We utilized samples from the Dana-Farber Cancer Institute (DFCI)/Harvard Cancer Center 

SPORE Prostate Cancer Cohort. The cohort has been described previously (19). Briefly, 

the SPORE Prostate Cancer Cohort includes clinical information, blood and tissue samples 

from more than 6,000 patients with prostate cancer followed prospectively. Fresh-frozen 

RP specimens were selected from the DFCI Gelb Center biobank and database, as part 

of DFCI Protocols 01–045, 11–104, 17–000, and 09–171, approved by the DFCI/Harvard 

Cancer Center Institutional Review Board. Research was conducted in accordance with the 

U.S. Common Rule and written informed consent was obtained from each subject for use 

of clinical data and specimens for research purposes. For this study, we utilized fresh-frozen 

Penney et al. Page 3

Mol Cancer Res. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RP specimens and serum samples for metabolomics profiling. All serum samples were 

obtained from a blood sample taken after diagnosis but prior to RP. Patients’ fasting status 

prior to serum collection is unknown. We included tumor specimens from 124 patients, with 

matched normal prostate tissue from 105. We included serum from 94 patients (“Original” 

cohort), some of whom also had their tissue profiled (see numbers below). We additionally 

profiled serum from men (“Upgrading” cohort) who had Gleason score 6 at biopsy and 

remained Gleason score 6 at RP (N = 50), and from men with Gleason score 6 at biopsy 

who were upgraded to Gleason score 7 or higher at RP (N = 50). All Gleason scores 

described here for the “Upgrading” cohort are based on medical records. Comprehensive 

Gleason score rereview data (described below) was available for 141 of the total 194 patients 

included in the final serum analysis.

RP specimens and comprehensive pathology rereview

RP specimen were received fresh from the operating room, weighed without the seminal 

vesicles and all three dimensions [apical to basal (vertical), left to right (transverse), and 

anterior to posterior (sagittal)] recorded. Subsequently, the entire specimen was inked; apex 

to base slices (5–10 mm thick) were sliced transversely. Each slice was cut in quarters, 

and embedded in separate cassettes. Alternate transverse slices were formalin-fixed paraffin 

embedded (FFPE) and embedded in optimal cutting temperature (OCT) compound and 

stored in liquid nitrogen. Tissues were fixed for 24 hours in 4% neutral buffered formalin. A 

total of 5-μm-thick sections cut from FFPE and OCT blocks were stained with hematoxylin 

and eosin (H&E) and examined histologically. For all tissue analyses, Gleason score was 

assigned as the Gleason score of the tissue block utilized. One tumor focus per patient was 

chosen to best represent the Gleason score of the patient in the final report. To create a 

cleaner comparison of grade 3 versus grade 4/5, we compared Gleason score 6 with Gleason 

score ≥8.

All slides and tissue blocks (FFPE and frozen) for 141 of the 194 patients whose serum 

was included in this study were recovered. Study pathologists (H. El Fandy, F. Giunchi, R. 

Lis, H. Coulson, M. Loda) performed a comprehensive rereview of all recovered prostate 

tissue. The dimensions of the area of tumor for each tissue slice/quadrant were assessed, 

and the percentage of each Gleason grade in each area was noted (Supplementary Fig. S1). 

We determined the total tumor volume as described previously (20), with slice thickness 

estimated from the prostate measurements and total number of slices. We determined the 

percent of Gleason grade 3, 4, and 5 by multiplying the percent by the area for each region 

of tumor, and then summing across the slices and dividing by the total area. If these data 

suggested a different Gleason score than that from the pathology records, this new Gleason 

score was used for the serum analysis. For serum analyses, we compared patients with 

Gleason score 6 to those with Gleason score ≥7 as our goal was to detect the presence of any 

higher grade (≥4) tumor.

Metabolomic profiling

For each individual in the study, tissue sections of 5 μm thickness were prepared for 

subsequent staining with H&E. Areas of tumor and normal reflecting the Gleason score 

reported at signout were identified and cored. Approximately 1 mg of tissue, and 100 
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μL of serum were sent to Metabolon, Inc. Metabolon prepared the frozen tissue cores 

and serum samples for analysis using their proprietary solvent extraction method. The 

extracted supernatant was split into equal parts for analysis on the GC-MS and LC/MS-MS 

platforms. In addition, internal standards were added to each sample for normalization 

and quality control purposes. Identification of known chemical entities is based on 

comparison with metabolomic library entries of purified standards. Approximately 1,500 

commercially available purified standard biochemicals had been acquired for both the LC 

and GC platforms for determination of their analytic characteristics. The combination of 

chromatographic properties and mass spectra gives an indication of a match to a specific 

compound or an isobaric entity. We previously published a detailed methodology (21).

Data preprocessing and normalization

Tissue and serum datasets were processed and normalized separately. Metabolites with more 

than 50% missing values were excluded from the analysis. After filtering, measurements 

were normalized to the run day median. Missing values were imputed using the k-nearest 

neighbors imputation algorithm (k = 5; ref. 22). Metabolomic measurements for samples 

that were profiled multiple times were averaged.

In tissue specimens, the number of metabolites detected by batch ranged from 307 to 390; 

222 common metabolites were measured in all three batches. After filtering out sparse 

metabolites, 214 were retained for tissue analyses. In serum specimens, the number of 

metabolites detected by batch ranged from 376 to 455; 246 common metabolites were 

detected in all batches. After filtering out sparse metabolites, 238 were retained for serum 

analyses.

Statistical analysis

For tumor versus normal comparisons, we used a subset of 105 paired samples. 

Comparisons were performed using nonparametric Wilcoxon signed-rank test. For the 

analysis of Gleason score within tissue and serum, levels of each metabolite were 

compared across Gleason score categories with nonparametric Mann–Whitney rank-sum 

test. Unsupervised clustering for heatmaps was performed using Canberra distance applied 

to the metabolite abundance ranks across specimens.

Metabolomic pathway and superpathway annotations were provided by Metabolon. 

Annotations were subset to the list of observed metabolites. Pathways with less than five 

metabolites available in our data were removed from the analyses. The enriched pathways 

were identified using Mann–Whitney test, as implemented in limma (23), including 

metabolites according to their P values in the corresponding comparisons, or using Fisher 

exact test by cross-tabulating metabolites by significance status and pathway membership.

P values for individual metabolite and pathway results were corrected for multiple testing 

using the Benjamini–Hochberg FDR method (24) and reported as adjusted P values.
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Machine learning

We considered three binary classification machine learning (ML) tasks: (i) distinguishing 

tumor tissue from normal tissue; (ii) distinguishing Gleason 6 tissue from Gleason ≥8 

tissue; and (iii) distinguishing Gleason 6 serum from Gleason ≥7 serum. For each prediction 

task, data were randomly partitioned into training and testing sets according to a 75%/25% 

split. Models were fitted and tuned on the training set (using 5-fold cross-validation) and 

evaluated on the held-out testing set to assess model performance on unseen data.

For each task, logistic regression was used as a baseline model. We also evaluated L1

regularized least absolute shrinkage and selection operator (LASSO) regression (25) and 

L2-regularized ridge regression (26). Because of the high dimensionality of the data, we also 

considered support vector classifiers (SVC; ref. 27) and random forest (RF) classifiers(28). 

Tree-based ML models such as RF have the additional benefit of implicitly handling 

interactions between variables, making them well suited for metabolomics analyses where 

there are complex relationships between predictors (in general, a tree of depth n will capture 

interactions of order n). For both SVC and RF, grid search with 5-fold cross-validation was 

used to tune hyperparameters.

Finally, we employed automated ML (AutoML) methods to leverage recent advances 

in hyperparameter search and selection (29), implemented in Auto-Sklearn (30). More 

specifically, these AutoML methods consist of two phases: Bayesian hyperparameter 

optimization followed by greedy ensemble construction. Bayesian hyperparameter 

optimization (31) iteratively samples the search space according to an acquisition 

function designed to balance exploration of unsampled search space and exploitation 

of the search space near the top-performing hyperparameters, allowing efficient search 

of high-dimensional parameter space in an automated and empirical manner. We use 

balanced accuracy as the model performance metric during AutoML optimization to 

mitigate any potential problems due to class imbalance. Under the Auto-Sklearn paradigm, 

hyperparameters that are searched include not only numerical model parameters, but also the 

choice of preprocessing procedures and the choice of models themselves.

Throughout the course of hyperparameter selection, individual models are automatically 

saved and then ensemble selection is performed in a greedy manner [i.e., starting with an 

empty ensemble and iteratively adding the model that provides the greatest performance 

boost on held-out validation data (32)]. The AutoML fitting process was constrained to 24 

hours of runtime, with a limit of 6 minutes per model.

Performance of ML models was recorded across several metrics: F1 score, AUC, accuracy, 

and balanced accuracy. Sensitivity and specificity were also computed to facilitate a possible 

clinical interpretation. To evaluate model robustness, we assessed model performance using 

10-fold cross-validation. Data were randomly partitioned into 10 folds, stratified so as to 

maintain an even class balance among folds. Through 10 iterations, each fold was used once 

as the held-out validation set to assess the performance of the model when fit using the other 

9 folds.
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Results

The numbers of participants with Gleason score for each sample type are provided in 

Table 1. While all samples were included in data processing, only the number of samples 

described in the Materials and Methods section and below were included in each analysis.

Comparisons of tumor and normal tissue metabolomics

Comparing tumor with normal tissue, of the 214 metabolites detected and tested, 135 had 

significantly (Padjusted < 0.05) different abundances (Fig. 1). The two largest unsupervised 

clusters were differentially enriched for tumor specimens (Fisher exact test, P < 10−4). The 

pathway analysis identified the fructose, mannose, galactose, starch, and sucrose metabolism 

pathway as differentially expressed (Padjusted = 0.03) while the amino acid superpathway 

was marginally significant (Padjusted = 0.06).

Comparisons of high and low Gleason score tumor and normal tissue metabolomics

We compared the metabolome of 33 high (≥8) and 53 low (6) Gleason score tumor 

tissue. There were no differentially abundant metabolites at 0.05 FDR. Six metabolites 

were significant at Padjusted <0.2, including previously reported metabolites, such as citrate, 

spermine, and alpha-ketoglutarate. Figure 2 shows a heatmap for 25 metabolites with 

unadjusted P < 0.05. In a clustering analysis, there was no statistically significant difference 

between the distributions of Gleason grade of tumors belonging to two clusters (Fisher exact 

test P = 0.35). At the pathway level, while no pathways reached statistical significance, 

the top ranked pathway was the polyamine metabolism subpathway (Padjusted = 0.09). 

In normal prostate tissue, six metabolites were nominally significant in the comparison 

between normal specimens obtained from the same block as tumors with high and low 

Gleason score (unadjusted P < 0.05; Supplementary Fig. S2). At the pathway level, the 

peptide superpathway reached adjusted P value of 0.01.

Metabolite comparisons in serum

To determine whether metabolites in serum were associated with the presence of Gleason 

grade 4 tumors, we assessed the association of metabolites with Gleason score 6 versus 

≥7 in the “Original” and “Upgrading” serum cohorts separately and in the two populations 

combined. Across both cohorts, 238 metabolites were measured. In the “Original” cohort 

(21 Gleason 6 and 58 Gleason ≥7 cases), 12 metabolites had unadjusted P < 0.05 (Fig. 3A); 

at a pathway level, the amino acid superpathway had Padjusted = 0.001. In the “Upgrading” 

cohort (53 Gleason 6 and 47 Gleason ≥7 cases), 11 metabolites had unadjusted P < 0.05 

(Fig. 3B); no pathways were enriched in this cohort. There was no intersection between the 

top metabolites identified in two cohorts.

Spearman correlations between total tumor volumes and abundances of metabolites detected 

in serum ranged between −0.23 and 0.14. Correlations between the percent of Gleason 

pattern 4 and the abundance of metabolites ranged between −0.26 and 0.14.
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Correlation of metabolites across tissue and serum

A subset of 94 patients had both tumor tissue and serum specimens with 119 common 

metabolites measured. While most of the metabolites had poor Pearson correlation between 

tumor tissue and serum (median correlation 0.08), two metabolites, pyroglutamine and 

1,5-anhydroglucitol, had correlations of 0.73 and 0.72, respectively. Similar distribution 

of correlation coefficients was observed in 79 pairs of normal tissue and serum from the 

same patients (Supplementary Fig. S3). Pyroglutamine, a metabolite belonging to glutamate 

metabolism pathway, was associated with Gleason score (unadjusted P = 0.04) in one serum 

cohort. However, this metabolite was not associated with Gleason score in tissue. A potential 

explanation to this discrepancy between tissue and serum could be that the tissue block used 

for metabolomic profiling might not necessarily have contained tumor of the highest grade 

and might not solely contribute to the serum metabolome levels.

Development of classifiers using ML approach

To build classification models, we took a ML approach that did not rely on our findings 

from the previous sections. Performance metrics for each ML model are reported in 

Supplementary Table S1. Top performance across all tasks and models was achieved by 

AutoML for the tumor/normal classification on tissue data, with a cross-validation AUC of 

0.82 ± 0.08 and a test-set AUC of 0.79 (Fig. 4). In contrast, models classifying high versus 

low Gleason score did not yield well-performing models, with a maximum cross-validation 

mean AUC of 0.67 for tissue and 0.56 for serum (Supplementary Table S1). These findings 

are consistent with those from univariate analyses, in that they indicate a lack of strong 

signal differentiating low-grade from high-grade cancer.

To further explore the ML results in search of a signature, we performed a permutation

based feature importance analysis to identify which metabolites were learned by the model 

to discriminate between tumor and normal tissue (Supplementary Fig. S4). The top five 

most important metabolites were 3-phosphoglycerate, N-acetylputrescine, ATP, glutathione 

(GSH), and nicotinamide (Fig. 4).

Discussion

Patients with low Gleason score prostate tumors are often treated with surgery or radiation, 

though current recommendations suggest many low-grade patients should be followed using 

active surveillance, monitoring for disease progression with repeated PSA measurements 

and prostate biopsies. These, however, can fail to identify higher grade tumors in a 

substantial percentage of cases. Here, we investigated tissue metabolomics to identify 

metabolites associated with Gleason score, as well as a serum-based metabolite analysis 

of Gleason score to guide development of a less-invasive assay to address the heterogeneity 

and multifocality of prostate cancer.

In this large comprehensive metabolomics study, we identified several previously reported 

and novel metabolites associated with Gleason score in tissue. This suggests that the tissue 

metabolomics data are of high quality and with larger sample sizes individual metabolites 

or pathways may have reached statistical significance. However, the identification of a 
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metabolite with differential median abundance between groups does not guarantee that they 

are useful for discrimination between these groups, for example, due to high variances and 

large overlap in groupwise distributions of these metabolites. Many samples with similar 

ranges of metabolite levels could belong to different groups, making the classification 

success rate poor. We therefore performed a ML analysis, and demonstrate that this 

method may complement traditional pathway and metabolite set enrichment analysis. We 

trained several models to accurately and robustly discriminate tumor and normal tissue 

from metabolite profiles alone, with AutoML achieving the top performance. Notably, 

this method required no user interaction or manual tuning/composition of models. This 

demonstrates the utility of AutoML to efficiently search the high-dimensional space of 

models and hyperparameters and discover well-performing model configurations. Because 

ML models are fundamentally directed toward prediction, these approaches are naturally 

suited for the translation into the clinical setting where any implemented models must 

be able to reliably assess previously untested patients. We observe (i) an ample degree 

of biological plausibility of the top metabolites comparing tumor and normal tissue 

identified by feature importance analysis of the final AutoML ensemble, and (ii) notable 

overlap between these metabolites identified by AutoML and those identified in univariate 

comparisons.

We had previously reported that metabolic profiling could be accomplished in FFPE tissue 

(21). In this study, several metabolites were preserved but this depended largely on the 

metabolite class. We therefore compared the conservation of metabolites that differentiated 

tumor from normal and high from low Gleason score. Of the 135 metabolites significant 

for tumor versus normal, 96 were detectable in FFPE. For the 25 nominally significant 

metabolites from the tumor tissue Gleason score analysis, 16 were detectable in FFPE 

(Supplementary Table S2). This will render this type of analysis potentially amenable to 

FFPE tissue.

The top important metabolite, 3-phosphoglycerate, is involved in the glycolysis pathway and 

is the substrate of the PGAM1 enzyme which is upregulated in many cancers and thought 

to be involved in promotion of tumor growth (33–36). Serine, also observed as significantly 

different in tumor and normal tissue, is required for the synthesis of nucleotides, proteins, 

lipids, and one-carbon metabolism, all of which are important for cancer cell proliferation 

(37) and can be de novo synthesized from 3-phosphoglycerate in the serine biosynthetic 

pathway. An additional important metabolite is N-acetylputrescine, which was previously 

found to differentiate prostate cancer status in a study investigating metabolomic profiles in 

urine samples from 104 subjects (33). Furthermore, the nonacetylated compound putrescine 

is a precursor of spermidine and spermine. GSH and nicotinamide were also among the top 

five important metabolites and are both involved in the cellular response to oxidative stress: 

GSH as the primary cellular antioxidant, found to play a key role in carcino-genesis and 

modulation of cellular response to antineoplastic agents (34–39). This is more abundant in 

low than in high-grade tumors. Nicotinamide as a critical component of NAD, also found 

to be more abundant in high-grade tumors, which is used to transfer electrons in redox 

reactions. These findings are consistent with changes in oxidative stress pathways being 

linked with cancer (40). Triptophan, increased in tumor compared with normal prostate 

tissue, is metabolized to kynurenine, which is an immune suppressor, as well as to NAD. 
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Both were found to be increased in high-grade Gleason. Interestingly, indoleamine-2, 3

dioxygenase, the enzyme that catalyzes triptophan to kynurenine, was found to be increased 

in xenografts of AT-2 rat prostate cancer cells (41). Dysregulation of the tryptophan/

kynurinine is common in both bladder and renal and likely plays a role in tumor immune 

evasion (42, 43). Finally, we observe multiple fatty acids among the top 20 important 

metabolites, consistent with previous findings of altered fatty acid metabolism in cancer 

cells (44–46). These findings suggest that the ML methodology is a valid complement of the 

pathway analysis and is discriminating well on the basis of sensible features.

The novelty of our study lies in the overall design that included tumor and normal prostate 

tissue as well as serum metabolomics data. These data provide a metabolite profile of 

localized prostate cancer encompassing all Gleason grades. Our comprehensive pathology 

rereview ensured that we had the most accurate Gleason scoring, and we were able to assess 

and perform the analysis with the volume and percentage of high-grade disease. This is 

likely the correct measure to use when attempting to identify serum metabolites correlated 

with the presence of Gleason grade 4 and higher disease. We identified several metabolites 

and a prediction model for tumor versus normal prostate tissue, demonstrating that our data 

are of high quality. We attempted to develop prediction models using cutting-edge AI/ML 

methods. Our sample size was also large when compared with other metabolite studies, and 

the use of two sample sets for the serum analysis allowed us to attempt to confirm our 

findings.

Despite these many strengths, we observed few metabolites associated with Gleason score 

in serum and none were significant across our two serum study populations. This could be 

due to the low enrichment of higher grade cases (4+3 and above) in the “Upgrading” cohort. 

All other cell types from the prostate could also be contributing to the secretion and might 

have different profiles. Therefore, this might provide an additional explanation as to why we 

found only a mild correlation between tumor and serum profiles. Furthermore, association 

with grade and therefore disease aggressiveness could be masked.

In addition, we were unable to develop a strong prediction model for Gleason score in 

serum despite the strengths of the AutoML method. This may be due to several limitations 

of metabolomics studies performed in an existing patient population. We did not have 

fasting status or other potentially important information about the participants at the time 

of blood collection. These factors likely have a large impact on metabolite levels in serum

—likely much larger than the impact of Gleason score 4 disease—and therefore could 

make it difficult to detect signal when we are unable to adjust for these factors. We also 

noted large differences across batches, with several metabolites detected in one batch but 

then not found in the next. This suggests that there is batch-to-batch variation, and while 

we did normalize metabolites across batches this variation could have created some of 

the differences observed between the “Original” and “Upgrading” cohort as these were 

assayed at different time points. Metabolomics data also have large dynamic ranges with 

high variability between patients leading to lower power and making differential analyses 

and construction of reproducible predictive models challenging. It is also possible that 

associations of some metabolic profiles with phenotypes could be nonlinear calling for more 

sophisticated and flexible ML approaches as implemented in AutoML framework. These 
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challenges likely contribute to the difficulties we experienced in developing a predictive 

model of Gleason score in the serum samples.

It is additionally possible that metabolomics in serum may be associated more with tumor 

genomic alterations or with other tumor characteristics, such as proliferation, than with 

differentiation. While we have seen associations of genomic alterations with metabolites 

in tumor tissue (9), we have not examined these associations in serum. Future studies of 

metabolomics of Gleason score in serum should consider the limitations we describe above 

to design a study best able to determine whether there are serum metabolites associated with 

the presence of high-grade prostate tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Implications:

Metabolic profiling can distinguish benign and neoplastic tissues. A novel unsupervised 

machine learning method can be utilized to achieve this distinction.

Penney et al. Page 14

Mol Cancer Res. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Heatmap of top differential (unadjusted P < 0.05) metabolites between paired tumor and 

normal prostate tissue specimens.
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Figure 2. 
Heatmap of top differential (unadjusted P < 0.05) metabolites in tumor tissue between 

Gleason score 6 and Gleason score ≥8 tumors.
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Figure 3. 
Heatmap of top differential (unadjusted P < 0.05) metabolites in serum between Gleason 

score 6 and Gleason score ≥7 tumors. A, Original cohort. B, Upgrading cohort.
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Figure 4. 
Model performances for tumor/normal tissue classification. A, ROC curves for all models, 

evaluated on a held-out test set. B, Heatmap of the top 20 metabolites as identified by 

permutation feature importance analysis of AutoML model. Predicted classes at the optimal 

cutoff (as determined by maximizing the sum of sensitivity and specificity; black circle 

in A) are shown above. Corresponding heatmaps at two other cut points (gray circles in 

A) are shown in Supplementary Materials. C, Feature importance of the top 20 important 

metabolites in the top-performing AutoML model. Feature importance is calculated as the 

difference in binary cross-entropy loss of model predictions when the feature is randomly 

permuted. D, Results of 10-fold cross-validation to assess stability of models across several 

performance metrics.
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Table 1.

Sample sizes and Gleason scores for each subcohort. Gleason grades are based on rereviewed values, where 

available, and abstracted from medical records for the remaining cases.

6 3+4 4+3 8+ NA

Tumor tissue 53 15 16 33 7

Normal tissue
a 43 12 15 31 5

Serum samples (original) 21 38 24 11 0

Serum samples (upgrading) 53 38 8 1 0

a
Gleason score is given for the block from which the adjacent normal tissue was sampled.
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