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Abstract

Some pulmonary diseases and injuries are believed to correlate with lung viscoelasticity changes. 

Hence, a better understanding of lung viscoelastic models could provide new perspectives on the 

progression of lung pathology and trauma. In the presented study, stress relaxation measurements 

were performed to quantify relaxation behavior of pig lungs. Results have uncovered certain 

trends, including an initial steep decay followed by a slow asymptotic relaxation, which would 

be better described by a power law than exponential decay. The fractional standard linear solid 

(FSLS) and two integer order viscoelastic models – standard linear solid (SLS) and generalized 

Maxwell (GM) – were used to fit the stress relaxation curves; the FSLS was found to be a 

better fit. It is suggested that fractional order viscoelastic models, which have nonlocal, multi­

scale attributes and exhibit power law behavior, better capture the lung parenchyma viscoelastic 

behavior.

1 Introduction

Viscoelastic materials are those which behave between elastic solids and viscous fluids. 

Lung parenchyma, like many biological soft tissues, is highly viscoelastic. A wide 

range of pulmonary pathologies and injuries such as fibrosis, asthma and emphysema 

correlate with significant changes, locally or diffusely, in lung viscoelasticity [1–5]. Better 

understanding of lung viscoelastic properties could provide new perspectives on the relation 

between lung structure and function, and the progression of pathology and trauma from a 

biomechanical point of view. By developing an improved understanding of the viscoelastic 

behavior of biological tissue, more realistic analytical models of biological tissues would 
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be possible. These in turn may enable improved pulmonary diagnostic, therapeutic and 

educational modalities. Examples of these possibilities include: diagnostic systems based on 

breath sound analysis; diagnosis utilizing magnetic resonance and ultrasound elastography; 

therapeutic approaches such as lung cancer particle beam and other radiation therapy; and 

improved haptic and other simulation technologies to facilitate video assisted thoracoscopic 

surgery training.

Lung tissue was first noted to be viscoelastic by Bayliss and Robertson in 1939 and by 

Mount in 1955 [6–7]. Lung stress relaxation and hysteresis were studied by Marshall et 

al. [8]. Hildebrandt [9–10] and Bachofen [11] studied lung viscoelasticity in human and in 

isolated cat lung.

Hildebrandt [12] and Suki [13] found that for an isolated cat lung the ratio of pressure 

and volume followed temporal power law dependence. Suki et al. [13] used fractional 

viscoelasticity to model the lung tissue mechanics and hypothesized on its molecular basis. 

Magin [14] provides a review of fractional viscoelasticity modeling and describes its fractal 

origins making it a rational choice for biological and other materials with a complex multi­

scale structure.

Models using mechanical analogies of spring and dashpot components have been used 

to represent material viscoelastic properties. The parameters of these components can be 

estimated by least square fitting the measurements of the temporal or spectral response 

of the material Young’s or shear modulus to the predictions of the different models. The 

standard linear solid (SLS) is the simplest model that predicts stress relaxation and creep 

with a parallel combination of a Maxwell model (spring and dashpot in series) and a 

spring [15]. Its temporal response to a step strain is a decaying exponential function. The 

SLS model shows limitations in its ability to accurately capture dynamic phenomena over 

multiple time scales and/or with broad spectral content, particularly for biological tissues. 

One way to overcome such limitations is through the use of more complex models with 

a larger number of parameters to increase agreement with experimental behavior; but, this 

comes at the expense of obscuring the physical meaning of the viscoelastic model.

Recently, some models based on the fractional order derivative have been applied to 

biological tissue viscoelasticity [13,16–21]. The fractional order derivative leads to a 

component called a spring-pot of order α which behaves between pure elastic and viscous 

materials. Both temporal relaxation and frequency response of a spring-pot follow power 

law functions that seem to be naturally adapted to fit soft tissue viscoelasticity. Craiem 

et al. [22] performed uniaxial elongations on human arteries and found that a fractional 

SLS model predicted arterial stress relaxation better than the conventional SLS model. 

Fractional order viscoelastic models also have shown the potential to yield new disease 

and treatment specific parameters that more effectively predict underlying changes in 

tissue associated with developing pathology, such as liver cirrhosis and breast cancer. For 

example, a relatively simple power law relationship was fit to the complex shear modulus 

of human breast tissue and tumors measured by magnetic resonance elastography [21]. 

The results, when plotted as the fractional power exponent versus the fractional order 
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attenuation, separated benign from malignant tumors with an increased specificity and 

sensitivity compared to other models.

The objective of the current study is to measure the stress relaxation on freshly excised and 

inflated pig lungs and fit the measurement with typical models: SLS, GM and FSLS. The 

degree of fitting, and advantages and disadvantages of each model will be evaluated. The 

stress-strain relationship and relaxation function due to a unit step strain are covered in Sec. 

2. The experimental procedures including: fresh and inflated pig lung preparation, the stress 

relaxation test, and mechanical indentation test are described in Sec. 3. Sec. 4 displays the 

experimental and fitting results followed by a discussion in Sec. 5.

2 Theory

According to Fung [15], the stress-strain relationship for the standard linear solid (SLS) 

model (shown in Fig. 1) is

dε(t)
dt = E1

η E0 + E1
η

E1
dσ(t)

dt + σ(t) − E0ε(t) (1)

where σ is the stress, ε is the strain, t is the time, E0 and E1 are the spring stiffness in the 

SLS model and η is the damping coefficient of the dashpot. Subject to a strain of a unit 

step function 1(t) and according to Fung [15], the relaxation function, which is the stress 

resulting from that strain, is

G(t) = E0 + E1e−t/τ 1(t) (2)

where τ = η/E1 and is called the relaxation time for constant strain.

According to Craiem [22], the fractional order derivative α of a function f(t) can be 

expressed by the following integral representation

Dαf(t) = dαf(t)
dt = 1

Γ(1 − α)
d
dt∫0

t f(τ)
(t − τ)α dτ (3)

where Dα denotes the α -th order derivative of f(t) with respect to time, and Г is the 

gamma function. By using fractional order derivatives, we can create a component called a 

spring-pot of order α that behaves between pure elastic and viscous materials. The stress 

strain relationship of a spring-pot is

σ(t) = EαDαε(t) (4)

where Eα is the viscoelastic coefficient. Substituting the dashpot in the SLS model with 

a spring-pot leads to the fractional SLS (FSLS) model shown in Fig. 2 and according to 

Craiem [22] the stress strain relationship is

Dαε(t) = E1
Eα E0 + E1

Eα
E1

Dασ(t) + σ(t) − E0ε(t) (5)
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Subject to a strain of a unit step function 1(t) and according to Craiem [22], the relaxation 

function of the FSLS model is

G(t) = E0 + EαFα − t/τσ
α 1(t) (6)

where τσ = (Eα / E1)1/α and Fα is the Mittag-Leffler function defined as

Fα(z) = ∑
k = 0

∞ zk

Γ(αk + 1) (7)

If the spring E1 is removed in the FSLS model this leads to the fractional Voigt (FV) model. 

According to Magin [14], its relaxation function due to unit step function shows the power 

law relaxation and it is

G(t) = E0 + Eα
t−α

Γ(1 − α) 1(t) (8)

It is observed that there is a singularity at t=0. So the FV model was not used for stress 

relaxation fitting in the current study due to this singularity even though it is widely used in 

fitting the dynamic modulus in the frequency domain.

The generalized Maxwell (GM) model with two Maxwell elements assembled in parallel is 

shown in Fig. 3. Its relaxation function is

G(t) = E0 + E1e−t/τ1 + E2e−t/τ2 1(t) (9)

where τ1 = η1 / E1, τ2 = η2 / E2. E0, E1 and E2 are the spring stiffness. η1 and η2 are the 

damping coefficients of the dashpots. τ1 and τ2 are the different relaxation times for constant 

strain.

In the current study, the ability of different models to describe stress relaxation of the 

pig lung is assessed. Model selection should be done with care. The selection criterion is 

that the model should accurately capture the lung stress relaxation with the fewest number 

of parameters, which can render an easier physical interpretation. It is reported that for 

most soft biological tissues subject to step function strain, the relaxation stress is finite 

and asymptotically reaches a steady state non-zero value [13,23,24]; so models with stress 

singularity at t=0 or those with zero stress for a large times should be excluded. Considering 

two-parameter models, it can be seen that the Voigt model has stress singularity at t=0 and 

the Maxwell model has an exponentially decaying stress to a zero value. For a spring-pot 

model, the stress has a singularity at t=0 and asymptotically approaches zero. Among 

the three-parameter integer order models shown in Fig. 4, the first two are called Zener 

models and the last two are called anti-Zener models by Mainardi et al. [25]. For Zener 

models, stress decays exponentially and for anti-Zener models, stress has a singularity at 

t=0 and exponentially decays to zero [25]. For the fractional Maxwell model (another three­
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parameter non-integer order model besides the fractional Voigt model), the stress decays to 

zero like the Maxwell model but with a power law instead of with an exponential law.

Among the four-parameter integer-order models shown in Fig. 5, the first two will cause the 

stress to decay to zero at two exponential rates while for the last two models, the stress has 

a singularity at t=0. Based on models in Fig. 5, the four-parameter non-integer-order models 

can be constructed by replacing a spring or dashpot with a spring-pot. But at least one spring 

should remain in the model to prevent the stress from decaying to zero. For models in Fig. 

5 (c) and (d), replacing either dashpot will still cause the stress to have a singularity at t=0. 

For the Zener model in Fig. 4 (a), the relaxed Young’s modulus is E0E1/(E0+E1); the two 

parameters E0 and E1 can’t be estimated from an indentation test. For the SLS model, E0 is 

estimated from an indentation test and only two other parameters need to be estimated from 

the measured stress relaxation time history. So, only the SLS model was selected for new 

model construction. In order to avoid a singularity at t=0 for the stress, both springs in the 

SLS model need to be kept; so the dashpot was replaced by the spring-pot and this leads 

to the FSLS model. From the above it is found that FSLS model is the only four-parameter 

non-integer-order model which does not have a singularity for stress subject to step function 

strain and allows the stress to relax to a non-zero steady state value. It also suffices to 

describe the power law stress relaxation feature of the lung parenchyma within our time 

duration of interest by the FSLS model as shown in Sec. 4.

3 Materials and Methods

Freshly Excised Lung Preparation.

Stress relaxation experiments were carried out on the lung of two female Landrace and 

Yorkshire cross pigs (weight 30 to 35 kg). Immediately upon sacrifice the lungs were 

inflated with air to a positive pressure of 20 cm H2O. As the chest cavity was surgically 

opened and pleural pressure became atmospheric pressure, the transpulmonary pressure was 

maintained at 20 cm H2O. It was observed that all the lung lobes were uniformly inflated 

and no noticeable gas trapping was present. While maintaining 20 cm H2O pressure, a 

bilateral pulmonectomy was performed. The blood was gravity drained via the great vessels 

for 15 minutes, and the lung was placed on a vibration isolated test bench in a room 

maintained at 20°C. During this time the lung was periodically and lightly sprayed with 

water to keep the surface moist.

Stress Relaxation Tests on Excised and Inflated Lung.

A custom-built displacement-controlled instrument was used for the stress relaxation test. 

As shown in Fig. 6, it operates with a single downward lever stroke and the downward 

displacement is measured by the displacement sensor (LD320-5, Omega Engineering, 

Stamford, CT). A digital force gauge (DS2-1, Imada, Northbrook, IL) with a rod is mounted 

on the instrument. A steel cylindrical indenter with a 1.1 cm diameter is installed at the 

bottom end of the rod. The instrument was mounted vertically on a vibration isolation bench 

and downward displacements were applied normal to the lung surface. Stress relaxation tests 

were conducted in air at room temperature of 20°C for the lung. Displacement was applied 

to the lung by quickly pushing down the lever stroke of the instrument, which works like a 

Dai et al. Page 5

Med Eng Phys. Author manuscript; available in PMC 2021 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stamping press. The created displacement was approximately treated as step function input. 

Six points on the anterior surface of the left cranial lobe of each pig lung were selected as 

the test points and a peak displacement of about 3.25 mm was applied to each test point with 

a 120 s hold period at peak depth. The duration of the stress relaxation test for each lung 

was about 15 minutes. The force–time data and the peak displacement were recorded by a 

custom-written data acquisition program using Labview 2012 (National Instruments, Austin, 

TX). As the rise time is about 0.5s (shown in Results Section), it is short enough that the 

stress relaxation response due to the applied ramp indentation force can be approximated 

as response due to a step force. The viscoelastic parameters can be estimated by fitting the 

force–time data to the equation

F(t) = 2G(t)Rd (10)

Here, G(t) is the relaxation function with its viscoelastic parameters depending on the 

viscoelastic models in Sec. 2; R is the radius of the cylindrical indenter and d is the 

indentation depth. To evaluate the curve fitting quality, the root-mean-square error (RMSE) 

between the measured curve and the fitting curve is defined as

RMSE =
∑i = 1

n Gexp r(i) − Gfit(i)
2

n
(11)

Mechanical Indentation Tests on Excised and Inflated Lung.

After completing the stress relaxation test, a mechanical indentation test was performed 

at the above selected six points of each pig lung using the same cylindrical indenter to 

determine the lung relaxed Young’s modulus at 20 cm H2O. In this test the indentation 

was gradually increased while measuring the force after each displacement change. The 

increment in displacement (d) was 0.25 mm and it was produced and measured by a 

micrometer (460A, Newport, Irvine, CA) fixed with the digital force gauge. The maximum 

displacement was kept to 1.25 mm to ensure small deformation; which is smaller than the 

cylindrical indenter radius (5.5 mm) and so the strains at the indentation area were small 

such that an approximation of linearity was considered reasonable. The indentation force F 

was measured by a digital force gauge (DS2-1, Imada, Northbrook, IL). The experimental 

setup of the indentation test is shown in Fig. 7. The duration of the indentation test for each 

lung was about 20 minutes. As the lung surface dimension is much larger than the indenter 

radius, the indentation can be approximated as a cylindrical indenter acting on a viscoelastic 

half-space. The applied force F is related to the displacement by [26]

F = 2ERd (12)

where

1
E =

1 − v1
2

E0
+

1 − v2
2

E2
(13)
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Here, E0, E2 are the Young’s modulus and v1, v2 are Poisson ratio associated with the lung 

and the steel indenter, respectively. The force initially decays with time when the lung is 

indented; so, it was recorded when it reached an asymptotic value and the relaxed Young’s 

modulus of the lung E0 is used in Eq. (13). In Eq. (12), R is the radius of the cylindrical 

indenter. The steel indenter is much stiffer than the lung tissue; so E2 ≫ E0. Thus, the 

applied force and displacement relation can be expressed as

F = 2E0Rd (14)

Thus, with Eq. (14) the lung relaxed Young modulus E0 can be estimated by least square 

fitting the measured force-displacement points.

4 Results

The force and indentation depth of point 1, pigs 1 and 2 of the indentation test are plotted in 

Fig. 8. The relaxed Young’s modulus of each point was estimated by least square fitting of 

the measurement data and it is 2.55 kPa and 3.02 kPa respectively. Comparing the average 

from six points of each pig lung, the second pig lung was stiffer than the first one by 17%.

The force-time data of point 1, pig 1 is plotted in Fig. 9 together with a FSLS model fitting 

curve. Detailed comparisons of fitting by different models will be shown later. As the stress 

relaxation response is approximated by the response of a step function, the time instant when 

the relaxation force reaches maximum is denoted as t=0 and the force-time data between 

t=0 and 120s was used for least square curve fitting. At these six points where the stress 

relaxation test was carried out, the average lung thickness is 86.7 mm for pig 1 and 88.2 

mm for pig 2. The force-displacement curve still forms a good linear relationship during the 

indentation test when the displacement incrementally increased up to 3.5 mm. This suggests 

that the linearity assumption is valid in the current study.

The estimated viscoelastic parameters for each point are listed in Table 1. The relaxed 

Young’s modulus E0 was estimated from the mechanical indentation test and the other 

viscoelastic parameters were estimated from curve fitting the stress relaxation data. It is 

seen that for all the test points, the FSLS model yields the smallest RMSE among the three 

models. Visual comparison of fitting by the three models of point 1, pig 1 is shown in Fig. 

10. Here G(t)/E0, the instantaneous Young’s modulus normalized to the relaxed modulus, is 

plotted. We call this quantity Young’s modulus ratio and it clearly shows the rate at which 

the dynamic Young’s modulus decays with respect to time. After 120 s from the peak stress, 

the stress in the lung parenchyma is still 1.2 times the relaxed stress. The SLS model is 

inferior to the FSLS and GM model while the FSLS model fits better than the GM model 

even though it has one less fitting parameter. In particular, the FSLS model captures the 

initial stress relaxation process better than the GM model with a predicted peak Young’s 

modulus ratio of 2.175 compared to the measured value of 2.154 while the GM model 

predicts a Young’s modulus ratio of 1.778. This superior fitting capability of the FSLS 

model was consistent for all the other eleven test points.
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From Table 1, it is seen that the variation among the six test points on a pig lung is about 

10% of the corresponding mean value. The estimated Young’s modulus ratio with respect 

to time for each pig lung is plotted in Fig. 11. The average Young’s modulus ratio of pig 

1 and 2 are 1.18 and 1.17, respectively; this difference is much smaller than the difference 

in relaxed Young’s modulus between the pig lungs. As seen from Fig. 11, no significant 

difference of stress relaxation rate was found between the two lungs. For the FSLS model, 

the estimated fractional order value α is robust with a standard deviation of 0.01. Test points 

on pig 2 are found to have a larger relaxed Young’s modulus than points on pig 1 from the 

indentation test, thus leading to larger estimated viscoelastic parameters except for α in the 

FSLS model and E1 in GM model. Note that α represents the intrinsic power law decay rate 

of the stress relaxation process. Results suggest that for a certain type of biological tissue, 

the stress relaxation rate at the macroscopic scale may not depend on the relaxed Young’s 

modulus of the tissue.

5 Discussion

In the current study the stress relaxation of two pig lungs was measured and fit by the 

standard linear solid (SLS) model, generalized Maxwell (GM) model and the fractional 

standard linear solid (FSLS) model. Among the 3 models, the FSLS model best captures 

the stress relaxation features including: the initial steep decay and slow asymptotic decay 

to stability as seen in Fig. 10. This suggests that the sress relaxtion follows a power law 

decay more so than an exponential decay [15]. The estimated α value of 0.37 reveals a more 

pronounced elastic than viscous behavior of the pig lung tissue. Similar fractional order 

values in lung tissue was reported [13]. In the current study the stress relaxation function 

followed a power law given by G(t) = at−β+b with an approximate β value of 0.07 based on 

experimental measurements. It was reported in Bates [27] that degassed strips of dog lung 

parenchyma were subject to 10% step changes of resting length from three different initial 

resting lengths and an approximate β value of 0.045 was obtained. Inflated lung parenchyma 

was tested here; but, the β value still has the same order of magnitude as that in Bates 

et al. The FSLS model includes a combination of power law functions represented by the 

Mittag-Leffler summation of Eq. (7).

In the current stress relaxation test, the force-time data included a loading ramp and a 120 

second relaxation stage. Only relaxation stages were used to fit viscoelastic parameters; the 

time duration of the loading ramp was about 0.5 second; so, it was negligible compared to 

the 120 seconds relaxation time. In fact, biological tissues proved to be relatively insensitive 

to strain rates [28], which supports our assumptions. As the relaxation process continues 

beyond 120 seconds, the Young’s modulus ratio will continue to drop and ultimately reaches 

the steady state with a value of one. In future studies, stress relaxation with much longer 

time history could be recorded and whether a single fractional order model could capture 

relaxation over multiple time scales could be studied.

The lung parenchyma is very different from most other soft tissues in the human body. 

The relaxed Young’s modulus changes significantly at different transpulmonary pressures. 

Also, the lung parenchyma undergoes large deformation during the breathing cycle. These 

two characteristics add complexity to documenting the lung viscoelasticity. In the current 
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study, measurements were conducted only at one transpulmonary pressure due to time 

constraints and the number of points tested. Future studies conducted at different airway 

pressures could reveal the pressure influence on stress relaxation behavior. During the 

breathing cycle lung volume changes significantly as well as the transpulmonary pressure 

(the difference between the alveolar and intraplural pressure). For example, the average total 

lung capacity (the volume in the lungs at maximal inflation) of an adult human male is 

about 6 liters while the average tidal volume (the normal volume of air displaced between 

normal inhalation and exhalation) is about 0.5 liters. This dynamic process is associated 

with changes in transpulmonary pressure and lung parenchyma large deformation. The lung 

inflation pressure used in the current study (20 cm of water) was chosen to be comparable to 

normal values under spontaneous breathing [29]. Under these conditions, no lung collapse or 

over inflation was noticed, while some lung collapse was seen at pressures below 25%−50% 

of the pressure used in this study. To the best knowledge of the authors, indentation and 

stress relaxation tests have been only conducted under a static transpulmonary pressure and 

small lung parenchyma deformation. Studies of lung dynamic viscoelasticity during the 

breathing cycle will provide a more comprehensive understanding of breathing mechanics 

and ultimately may help in understanding lung pathology and its diagnosis.

Conclusion

In the current study, lung viscoelasticity was characterized by measuring lung stress 

relaxation behavior. The fractional standard linear solid (FSLS) and two integer order 

models – the standard linear solid (SLS) and generalized Maxwell (GM) models – were 

used to fit the stress relaxation curves. The relaxed Young’s modulus of the pig lung was 

independently measured by an indentation test. It was found that the FSLS model was the 

best fit among three models although it has one less fitting parameter than the GM model. 

The superiority of the fractional order viscoelastic model is likely due to its ability to predict 

a power law stress decay seen in the experiments.
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Highlights

• Lung parenchyma viscoelasticity was studied via stress relaxation.

• Stress relaxation studies were conducted on freshly exercised inflated pig 

lungs.

• Fractional order and integer order viscoelastic models were compared.

• Fractional standard linear solid was the best among four-parameter models.
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Fig. 1. 
Schematic diagram of SLS model.
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Fig. 2. 
Schematic diagram of FSLS model.
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Fig. 3. 
Schematic diagram of Generalized Maxwell model.
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Fig. 4. 
Schematic diagram of the Zener models (a), (b) and of the anti-Zener models (c), (d), where: 

(a) spring in series with Voigt, (b) spring in parallel with Maxwell, (c) dashpot in series with 

Voigt, (d) dashpot in parallel with Maxwell.
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Fig. 5. 
Schematic diagram of four-parameter integer-order models.

Dai et al. Page 17

Med Eng Phys. Author manuscript; available in PMC 2021 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Schematic diagram of experimental setup of stress relaxation test.

Dai et al. Page 18

Med Eng Phys. Author manuscript; available in PMC 2021 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Mechanical indentation test setup.
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Fig. 8. 
Force and indentation depth plot of the indentation test, ○ ○ ○ pig 1 measurement, ── 
pig 1 fitting, □ □ □ pig 2 measurement, ─ ─ pig 2 fitting.
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Fig. 9. 
Force-time data of point 1, pig 1 in the stress relaxation test.
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Fig. 10. 
Comparison of model fitting of point 1, pig 1.
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Fig. 11. 
Young’s modulus ratio (a) pig 1 (b) pig 2.
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Table 1

Estimated Parameters of Each Viscoelastic Model

SLS FSLS GM

Pig 
#

Data 
#

E 0 E 1 η RMSE α E 1 E α RMSE E 1 η 1 E 2 η 2 RMSE

(kPa) (kPa) (kPa·s) (×10−2) (kPa) (kPa·sα) (×10−2) (kPa) (kPa·s) (kPa) (kPa·s) (×10−2)

1 1 2.55 1.16 135.64 4.88 0.36 3.00 4.67 0.64 1.06 4.96 0.93 174.38 0.97

2 2.57 0.90 98.35 4.11 0.36 2.55 3.44 0.55 0.92 3.90 0.71 125.44 0.95

3 2.54 1.13 122.61 5.06 0.37 3.03 4.58 0.60 1.10 5.12 0.89 157.28 1.12

4 2.61 1.15 126.94 4.98 0.37 3.10 4.61 0.62 1.13 4.96 0.92 161.12 0.93

5 2.58 1.02 108.24 4.56 0.37 2.77 4.06 0.66 1.02 4.56 0.80 138.22 1.02

6 2.6 1.07 109.14 4.85 0.38 2.95 4.36 0.63 1.11 4.87 0.83 138.05 1.07

Mean 2.58 1.07 116.82 0.37 2.90 4.29 1.06 4.73 0.85 149.08

SD 0.03 0.09 12.67 0.01 0.19 0.43 0.07 0.41 0.08 16.59

2 1 3.02 0.93 97.31 3.63 0.37 2.59 3.66 0.57 0.96 4.11 0.73 123.41 0.83

2 2.97 1.00 108.98 3.81 0.37 2.69 3.97 0.53 0.97 4.39 0.79 139.18 0.87

3 3.07 1.22 143.21 4.36 0.36 3.22 4.86 0.63 1.14 5.29 0.98 185.03 0.96

4 3.04 1.22 150.75 4.10 0.35 3.03 4.96 0.66 1.04 5.14 0.98 195.62 1.02

5 2.99 1.14 134.10 4.03 0.36 2.87 4.74 0.57 1.02 4.89 0.92 172.30 0.85

6 3.00 1.18 148.17 4.34 0.33 3.22 4.39 0.63 1.08 4.77 0.96 191.48 1.07

Mean 3.02 1.11 130.42 0.36 2.94 4.43 1.04 4.77 0.89 167.84

SD 0.03 0.11 20.26 0.01 0.24 0.48 0.06 0.41 0.10 27.21
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