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Abstract

The high proportion of zeros in typical scRNA-seq datasets has led to widespread but inconsistent 

use of terminology such as “dropout” and “missing data”. Here, we argue that much of this 

terminology is unhelpful and confusing, and outline simple ideas to help reduce confusion. These 

include: (1) observed scRNA-seq counts reflect both true gene expression levels and measurement 

error, and carefully distinguishing these contributions helps clarify thinking; and (2) method 

development should start with a Poisson measurement model, rather than more complex models, 

because it is simple and generally consistent with existing data. We outline how several existing 

methods can be viewed within this framework and highlight how these methods differ in their 

assumptions about expression variation. We also illustrate how our perspective helps address 

questions of biological interest, such as whether mRNA expression levels are multimodal among 

cells.

Introduction

Single-cell RNA sequencing (scRNA-seq) has facilitated investigation of important 

biological questions that were previously difficult or impossible to study, such as the nature 

of heterogeneity within classical cell types, the dynamics of cellular processes, and the 

biological pathways underlying cellular differentiation. However, how to model scRNA-seq 

data has been the subject of considerable confusion and debate. In particular, the high 

proportion of zeros in typical data sets has garnered special attention, and has led to 

widespread but inconsistent use of terminology such as “dropout” and “missing data.” In this 
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paper, we argue that much of this terminology is confusing and unnecessary, and we outline 

simple ways of thinking and talking about scRNA-seq data that can help reduce confusion.

The first key idea is that observed scRNA-seq counts reflect two distinct factors: the 

variation in actual expression levels among cells, and the imperfect measurement process. 

Therefore, models for observed scRNA-seq counts, which we will call observation models, 

are obtained by specifying: (1) an expression model that describes how the true expression 

levels vary among cells/genes, and (2) a measurement model that describes how observed 

counts deviate from the true expression levels. Distinguishing between observation, 

expression, and measurement models is important both for avoiding confusion and for 

performing useful analyses. Indeed, the goal of most RNA-seq analyses is to draw inferences 

about true expression levels from observed counts, and this is impossible without explicit 

consideration of how the observed counts are related to the expression levels through a 

measurement process. Moreover, making measurement and expression models explicit can 

help clarify the underlying assumptions and aid interpretation of results such as parameter 

estimates.

The second key idea is that a Poisson model is a reasonable starting point for modeling 

scRNA-seq measurement. We summarize theoretical arguments for this model, and explain 

how it can capture the abundance of zeros in scRNA-seq data without special terminology or 

special treatment. This measurement model is a simplification (Box 1), but we argue that it 

is a useful simplification that will often suffice in practice.

Both ideas are simple, and neither is new. Modeling the measurement process has a long 

history1, as does the use of Poisson measurement models for RNA-seq2,3. However, many 

papers on scRNA-seq analysis do not incorporate these ideas, focusing exclusively on 

observation models and leaving measurement and expression models implicit (refs.4,5 are 

notable exceptions). This ambiguity is especially problematic when the models include 

components said to capture “zero-inflation” without clearly indicating whether these are 

part of the measurement model, the expression model, or both. Here, we show how many 

scRNA-seq observation models can be interpreted as combining a Poisson measurement 

model with different expression models, clarifying their underlying assumptions about 

expression variation.

These simple ideas can also help address questions of biological interest. For example, 

the question of whether gene expression patterns are multimodal among cells is about the 

expression model, not the observation model. We investigate this question empirically in 

diverse datasets, and find that data are often consistent with surprisingly simple expression 

models. Specifically, a Gamma distribution often suffices to capture variation in expression 

levels among cells.

A call to simplify terminology

One major source of confusion in scRNA-seq analysis is the widespread but inconsistent 

use of terminology, especially “dropout,” “missing data,” “imputation,” and “zero-inflation.” 

Choice of terminology has many important consequences: it affects the way that researchers 
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think, develop and apply methods, and interpret results. We therefore begin by reviewing 

these terms, and explain why in many cases we view them as unhelpful.

The term “dropout” has become commonly used in connection with the zeros in scRNA-seq 

data6–10. Historically, dropout referred to allelic dropout, a failure of PCR in which specific 

primers would fail to amplify sequences containing a specific allele, leading to genotyping 

errors for heterozygous individuals11,12. In scRNA-seq, the term “dropout” was introduced 

to describe a supposed failure that might cause a gene to appear highly expressed in one 

cell but not expressed in another6. Although the source was not specified, this usage seems 

to refer to some aspect of the measurement process. The term has since spread widely, but 

its meaning varies among papers and presentations (and sometimes even within papers and 

presentations!). For example, it is used to refer sometimes to observed zeros, sometimes to 

the unknown subset of zeros at genes that are expressed but undetected, and sometimes to 

the fact that not all molecules present in the original sample are observed (which affects 

all observations, not just the zeros). Such variation in usage naturally leads to confusion 

and disagreement about how these phenomena should be modeled. For this reason, we 

argue the term “dropout” should be avoided in the context of scRNA-seq data. Instead, zero 

observations should simply be referred to as zeros, and measurement models should focus 

on the fact that not all molecules in the original sample are observed, with zeros being just 

one byproduct.

The term “missing data” is also commonly used in connection with zeros in scRNA-seq9,13. 

This terminology is misleading because the zeros are not missing data as understood in 

statistics. To illustrate, consider a survey where a researcher counts the number of cars 

arriving at an intersection each minute. If no cars arrive in a particular minute, then the 

observation would be recorded as zero; however, this observation is not “missing.” In 

contrast, if the researcher takes a lunch break and does not record arrivals for an hour, 

then this would lead to sixty truly missing observations. The zeros in an scRNA-seq data 

experiment are more like the former than the latter: there is no analogue of a lunch break 

in the scRNA-seq measurement process. Of course, in RNA-seq data the observed zeros are 

noisy, and do not necessarily imply that there were zero molecules present in the original 

cell; however, the same is true of all observations.

Inappropriate use of the term “missing data” has led to inappropriate application of methods 

for dealing with missing data to scRNA-seq data. For example, in other applications it is 

common to “impute” (fill in) missing values, and so many scRNA-seq papers have described 

methods to “impute” zeros9,14–16. However, since zeros in scRNA-seq are not actually 

missing data, the meaning of these imputed values is unclear. Thus, the term “missing data”, 

and methods that “impute” (only) zeros, should be avoided. Instead, every observation in 

scRNA-seq should be treated as a noisy observation of an underlying true expression level, 

and inference should focus on clearly-defined tasks such as estimating these true expression 

levels.

Finally, the term “zero-inflated” is another common source of confusion and debate. In 

statistics, “zero-inflated” describes a model for count data that is obtained from a simpler 

model by increasing the proportion of zeros. For example, “zero-inflated Poisson” refers to 
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a distribution obtained by taking a Poisson distribution and then increasing the proportion 

of zeros. In scRNA-seq applications, the use of zero-inflated models is an understandable 

reaction to the high proportion of observed zeros. However, recent work suggests that zero­

inflated models may be unnecessary; indeed ref.17 entitles their piece “Droplet scRNA-seq 

data is not zero-inflated.” Here, we take a slightly different perspective: we argue that 

there is no convincing evidence supporting zero-inflated measurement models; however, 

zero-inflated observation models could be appropriate, depending on actual expression 

variation. This perspective makes clear that the need for zero-inflated models may vary 

among data sets and among genes.

These issues all stem from one major misconception in scRNA-seq: the idea that the 

measurement process involves some distinct zero-producing technical mechanism. Indeed, 

some published observation models include a component that randomly creates zero 

observations irrespective of the true expression level, for example ref.15. Such a mechanism 

would require a systematic effect that somehow misses all molecules from a particular gene 

in a particular cell, and there are no convincing theoretical arguments or empirical evidence 

supporting this idea. Thus, we argue that measurement models for scRNA-seq should begin 

from a simple assumption, that the measurement process operates independently on each 

molecule in the cell. This assumption is a simplification (Box 1), but is not strongly 

contradicted by existing data, and leads to simple observation models and explanations for 

the large proportion of zeros in scRNA-seq data.

Modeling scRNA-seq data

Observed scRNA-seq counts reflect both the true expression levels of each gene in each cell, 

and the measurement process. We first describe measurement and expression models, and 

how they combine to yield observation models. We focus on data generated using Unique 

Molecular Identifiers (UMIs), which substantially reduce unwanted variation, including 

differences in gene lengths and PCR amplification efficiencies18. It is possible that zero­

inflated observation models were initially motivated by a need to account for variation in 

read counts introduced by PCR. We ignore these sources of variation, so our arguments may 

not apply to data generated without UMIs.

We now introduce some notation. Consider using scRNA-seq to measure gene expression 

in n single cells. Thinking of each cell as a pool of mRNA molecules, let mij denote the 

true (but unknown and unobserved) number of molecules present in cell i from gene j (i = 

1, …, n; j = 1, …, p), and let mi+ denote the total number of molecules in cell i. We refer 

to mij as the absolute expression level of gene j in cell i and λij ≜ mij/mi+ as the relative 
expression level of gene j in cell i In words, the absolute expression level of a gene is the 

number of RNA molecules present from that gene, whereas the relative expression level is 

the proportion of RNA molecules from that gene. Here, we focus on relative expression 

levels since estimating absolute expression levels from scRNA-seq data is difficult, and use 

Λ = [λij] to denote the matrix of relative expression levels. Let X = [xij] denote the observed 

count matrix, where xij denotes the number of distinct molecules from gene j observed in 

cell i, and let xi+ denote the total number of molecules observed in cell i.
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In this notation, a measurement model is a model that connects the observed counts X to 

the expression levels Λ, by specifying the conditional distribution p(X | Λ). An expression 

model is a model for the expression levels p(Λ). Together, these two models determine the 

observation model, which is a model for the observed counts p(X).

Modeling scRNA-seq measurement.

We believe that methods should generally start with simple models, adding additional 

complications only when warranted. In this spirit, we suggest that methods for scRNA-seq 

should start with a simple Poisson measurement model:

xij ∣ xi + , λij Poisson xi + λij . (1)

Although simple, this measurement model is supported by theoretical arguments3,19 

(Supplementary Note 1), early empirical analyses of bulk RNA-seq data2, more recent 

analyses of control scRNA-seq data4,17,19, and our own empirical analyses.

Although the Poisson measurement model is essentially the same as that used for bulk 

RNA-seq data, it can nonetheless account for the fact that there are many more zeros in 

scRNA-seq data than bulk RNA-seq data. First, the total number of molecules observed 

xi+ is typically much smaller for single cells than for bulk samples, because single cells 

have less starting material and are typically sequenced to lower average depth. Second, it is 

more common that λij will be small (or even zero) for a single cell than for a bulk sample. 

This is because expression levels in bulk samples are averages of expression levels in many 

single cells, and averaging reduces the frequency of both small and large values. These two 

facts imply that the rate parameter xi+λij is often smaller in scRNA-seq data than in bulk 

RNA-seq data, explaining the higher proportion of zero observations.

The Poisson measurement model also captures aspects of scRNA-seq data that have 

previously been referred to using terms such as “dropout,” “missing data,” and “technical 

zeros.” It captures the fact that not every molecule that was present in every cell was 

observed; indeed, this fact is a fundamental assumption. It also captures the fact that xij may 

be observed to be zero even when mij (hence λij) is non-zero. However, it captures these 

features without introducing a distinct zero-generating mechanism. The zeros, like other 

observations, are simply imperfect measurements with no need for special terminology or 

special treatment.

Under the Poisson measurement model, observing xij = 0 is different from xij being missing. 

If xij were missing, then it would provide no information about the expression level λij. But, 

observing xij = 0 does provide such information, namely that λij is unlikely to be large. In 

other words, it correctly reflects that counts xij are noisy observations of the true expression 

levels; see also refs.20–22 for example.

Alternative measurement models.—Previous papers have considered zero-inflated 

measurement models for scRNA-seq data6,9. However, there are no convincing empirical 

analyses supporting such models; neither are there any convincing arguments for why 

such zero-inflation should be expected. Furthermore, two recent analyses of control data 

Sarkar and Stephens Page 5

Nat Genet. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sets, in which synthetic mRNA molecules are directly added (“spiked in”) to droplets 

at known concentrations, captured, and then sequenced found no evidence supporting a 

zero-inflated measurement model4,17. Our empirical analysis below further supports this 

position. Including an unnecessary zero-generating component in the measurement process 

has the cost of increasing model complexity, and introduces the danger that true expression 

variation may be wrongly attributed to the measurement process.

This said, the Poisson measurement model (1) is necessarily a simplification. In particular, it 

ignores biases that may cause some molecules to be more likely to be observed than others 

(Box 1; Supplementary Note 1). When such biases are consistent across cells, inferences 

that involve comparisons among cells will be robust to ignoring them; however, some biases 

may vary from cell to cell, producing measurements that are overdispersed (more variable) 

relative to a Poisson distribution. Given the difficulty of precisely modeling all aspects of 

the measurement process, and given that available data do not strongly contradict a Poisson 

measurement model, our perspective is that methods development should start with the 

Poisson measurement model, and focus more attention on modeling expression variation (as 

described below). The main downside of this approach is that it risks overstating expression 

variation if measurement overdispersion is high. However, we view this as a risk worth 

paying for the benefits of simplicity.

Modeling gene expression.

We emphasize that our suggestion to use a Poisson model applies specifically to the 

measurement model, not the observation model. Indeed, many papers have demonstrated 

that a Poisson observation model does not capture all variation in observed RNA-seq data, 

and so it is common to use a more flexible observation model that can capture additional 

variation, such as NB or zero-inflated negative binomial (ZINB) observation models. These 

observation models are not inconsistent with a Poisson measurement model; indeed, in 

this section we explain how NB and ZINB observation models, as well as many other 

existing methods, naturally arise by combining the Poisson measurement model with certain 

expression models.

To make this idea precise, first consider modeling expression at a single gene j. An 

expression model for a single gene involves specifying a distribution gj for the expression 

levels λ1j, …, λnj,

λij gj( ⋅ ) . (2)

One simple choice is to assume that gj is a Gamma distribution; combining this with 

(1) yields the NB observation model23. Similarly, combining a point-Gamma expression 

model, wherein some proportion of the expression levels are exactly zero, while the other 

(non-zero) levels follow a Gamma distribution, with (1) yields the ZINB observation model. 

It is also possible to use non-parametric expression models4,24. A list of single-gene 

expression models, and some published methods implementing statistical inference for the 

corresponding observation models, are given in Table 1 (see Supplementary Note 2 for 

details).
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Similar ideas apply to expression models for multiple genes, although things inevitably 

become more complex. A multi-gene expression model simultaneously describes 

correlations among expression levels at different genes across cells, and different cells across 

genes. A common and powerful approach to describe these correlations is to use low rank 

models, which intuitively assume that the correlations can be captured by a relatively small 

number of patterns, much smaller than the number of cells or genes. More precisely, these 

models can be written

λij = μijuij
μij = ℎ−1 LF′ ij
uij p uij ,

(3)

where h denotes a link function, or transformation, and the loadings matrix L and the factors 
matrix F are low rank. This form has an appealing biological interpretation: the matrix 

LF′ represents the structure of expression variation among cells/genes and uij represents 

stochastic deviations from this structure. Thus, one might think of LF′ as representing 

different cell types/states and uij as stochastic expression noise25. A list of multi-gene 

expression models, and some published methods implementing statistical inference for the 

corresponding observation models, are given in Table 2 (see Supplementary Note 3 for 

details).

Interestingly, methods that combine expression models of the form (3) with the Poisson 

measurement model (1) may be robust to misspecification of the measurement model. 

Specifically, if measurements are overdispersed relative to Poisson, then the model fit will 

tend to include this additional variation in p(uij) (provided this distribution is sufficiently 

flexible), while leaving estimates of the structured variation LF′ unchanged. Intuitively, 

overdispersered measurement error affects the variance of the observations, but not the 

mean. Therefore, while estimates of the stochastic noise may be sensitive to assumptions 

on the measurement process, estimates of the structured expression variation will be more 

robust.

Summary.

To summarize, many existing observation models for scRNA-seq data can be derived by 

combining the Poisson measurement model (1) with expression models of the form (2) or 

(3). This framework clarifies several sources of confusion in scRNA-seq analysis. First, it 

emphasizes that which observation models are most appropriate for scRNA-seq data may 

vary among data sets and among genes, because expression variation will vary among data 

sets and genes. For example, if data are collected on a set of homogeneous cells, then 

most genes might show relatively little expression variation may be adequately described 

by simple expression models. In contrast, if the data contain many cell types, then more 

complex expression models could be required. We study this question empirically below.

Second, this framework provides a different interpretation of a finding, for example, that a 

ZINB observation model fit observations at some gene in some data set better than an NB 

model: it would imply that the expression levels at the gene are better modeled by a point­

Gamma distribution than by a simple Gamma distribution. Importantly, this is a conclusion 
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about the true expression levels, not a conclusion about the measurement process. This 

interpretation contrasts with the usual way that the ZINB observation model is interpreted, in 

which zero-inflation captures some supposed technical mechanism (see Supplementary Note 

4 for details).

Finally, this framework provides a rigorous approach to infer, for example, the mean or 

variance of true gene expression levels, as well as the true expression levels themselves, 

from the observed counts. However, these estimates are generally neither simple functions 

of the observed counts, nor functions of simple transformations (e.g., log) of the observed 

counts. We illustrate this procedure for a single-gene point-Gamma expression model (ZINB 

observation model) in Box 2.

Empirical examples

Single gene models.

There is considerable debate about whether scRNA-seq data are adequately modeled by an 

NB observation model, or if it is necessary to use a ZINB observation model. Some papers 

have concluded that observed scRNA-seq data exhibit multi-modal expression variation, 

suggesting that an even more complex observation model may be necessary26–28. Under 

the framework outlined above, these questions translate into questions about the expression 

model: is a Gamma expression model adequate, or is it necessary to use a more complex, 

even multi-modal, expression model?

Since expression variation may vary among genes and data sets, we analyzed data sets from 

a range of settings including homogeneous collections of sorted cells, a priori homogeneous 

cell lines, and heterogeneous tissues. We also created in silico mixtures of sorted cells as 

positive controls for highly heterogeneous expression patterns (Table 3).

For each gene in each data set, we compared several expression models: a Gamma 

distribution, a point-Gamma distribution, a non-parametric unimodal distribution, and a fully 

non-parametric distribution (Figure 1a; Supplementary Note 2). Because these comparisons 

involve non-parametric families, obtaining p-values is not straightforward and perhaps 

inappropriate, since specifying any of these models as a “null” expression model is also 

questionable. Therefore, we instead compared the support for each model by comparing the 

likelihood of the data under each model. As a simple heuristic, we considered a likelihood 

ratio of 100 or more as strong evidence for one model over another.

We first assessed whether genes show evidence against a Gamma expression model due to 

excess zeros, by comparing a Gamma expression model with a point-Gamma model. In all 

biological data sets we examined, only a fraction of genes (0.6–9%) showed strong evidence 

in favor of the point-Gamma model (Figure 1b). The genes showing strong evidence in favor 

of the point-Gamma expression model included known marker genes in synthetic mixtures 

of sorted B cells and T cells (Figure 1c), providing a positive control that this approach can 

find such patterns.
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Next, we assessed whether genes show evidence for other types of departures from a 

Gamma expression model, by comparing it to a non-parametric unimodal expression model. 

In this comparison, many more genes (20–69%) showed strong evidence in favor of the non­

parametric unimodal expression model (Figure 1d). These results suggest that expression 

variation at many genes might not be captured even by a ZINB observation model. As 

an example, in PBMCs the gene PPBP exhibits not only many observed zeros, but also 

many small non-zero observations (for example, ones and twos) and a long tail of large 

observations (Figure 1e). Neither the Gamma nor point-Gamma distribution have sufficient 

flexibility to simultaneously describe both of these features, explaining the better fit of the 

non-parametric unimodal model.

Finally, we assessed whether the data show evidence of multimodal expression variation, by 

comparing a unimodal expression model against a fully non-parametric expression model. In 

this comparison, few genes (0.4–3%) showed strong evidence for the fully non-parametric 

expression model (Figure 1f), suggesting that multimodal expression variation may be rarer 

than previously suggested28. As a positive control, RPS4Y1 is a Y chromosome–linked 

gene showing overwhelming evidence for the non-parametric expression model over the 

unimodal model (likelihood ratio > 1065), due to distinct distributions of gene expression in 

iPSCs derived from male and female donors (Figure 1g). One possible reason that cells from 

female donors are estimated to have non-zero expression of RPS4Y1 is that the relevant part 

of the coding sequence is identical between RPS4Y1 and its homolog RPS4X, and some 

reads erroneously mapped.

We emphasize that lack of multimodal expression variation does not imply lack of 

heterogeneity. To illustrate, SKP1 is a gene at which expression in iPSCs is linked to 

the genotype of a nearby SNP, meaning both the mean and mode of expression levels 

vary across donors depending on genotype (Supplementary Figure 1). However, when 

the data are pooled across all samples, they show only modest evidence for multimodal 

expression variation (likelihood ratio 3.1 for the fully non-parametric expression model 

over the unimodal model). This is partly due to the substantial heterogeneity within each 

genotype class, which bridges the heterogeneity between genotype classes.

In summary, although some genes show departures from a simple Gamma model of 

expression variation, in most cases the data are consistent with unimodal expression 

variation, and relatively few genes show strong evidence for zero-inflated (point-Gamma) 

or multimodal expression variation.

Alternative measurement models.—Our analysis above assumed a Poisson 

measurement model because it is both simple and has strong theoretical foundations. Here, 

we discuss the empirical support for the Poisson measurement model, as well as alternatives.

Our results on biological data sets above provide substantial evidence that the scRNA­

seq measurement process is not zero-inflated. If the measurement process involved a 

distinct zero-generating component, then the observed data should have shown many genes 

supporting a point-Gamma expression model over a Gamma expression model; however, 

we did not find this. Indeed, only a fraction of genes (2–16%) show even suggestive 
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evidence supporting a point-Gamma expression model (likelihood ratio > 10; Supplementary 

Figure 2). Therefore, we conclude that current data do not support the use of zero-inflated 

measurement models.

However, our results do not imply that the measurement model is necessarily Poisson. There 

are plausible reasons the measurement process could be overdispersed relative to Poisson; 

however, empirically assessing the extent of measurement overdispersion is difficult. In 

principle, one could analyze control data containing a known number of molecules of 

various synthetic genes. However, detecting subtle overdispersion would require very precise 

control of the number of molecules of each gene, which is difficult4. Without additional 

assumptions, it is not possible to say what extent overdispersion observed in control 

data is due to uncontrolled expression variation in the control genes versus measurement 

overdispersion.

To make progress on this question, we made an additional assumption that the measurement 

overdispersion is equal across genes. Under this assumption, it is possible to estimate 

the measurement dispersion by fitting an NB observation model with separate dispersion 

parameters to reflect measurement dispersion and uncontrolled expression variation 

(Supplementary Note 5).

We used this approach to bound the measurement dispersion in five control data sets (Table 

3) that have been previously pre-processed and analyzed4,17. In all five data sets we found 

that the profile log likelihood for measurement dispersion dropped off quickly beyond some 

point, bounding the level that is consistent with the data (Supplementary Figure 3). Although 

the bounds vary among protocols, they suggest that measurement dispersion is no larger than 

5 × 10−3 (likelihood ratio < 0.1 against the MLE). This level of measurement dispersion is 

small: for example, for a gene with mean 10 observed molecules, it increases the variance 

of the observations by 5% relative to a Poisson (and for genes with smaller mean, the 

increase in variance is smaller). Although this analysis does not rule out that measurement 

overdispersion could vary among genes, and could be large for some genes, we did not find 

empirical evidence for this.

Multi-gene models.

In multi-gene models, a common goal is to estimate the underlying low rank structure 

LF′, which could describe differences in the cell type/state of different samples, for 

example. Assessing the effectiveness of different methods for providing such biological 

insights is important, but also difficult to do objectively. For example, comparing clustering 

performance29–31 requires gold-standard labeled data which are arguably unavailable. 

Therefore, as a proxy we instead attempted to assess multi-gene models in their ability to 

accurately estimate the underlying expression matrix, Λ = LF′. Surprisingly, we found that 

expression models making linear versus non-linear assumptions had largely similar accuracy 

on this problem (Supplementary Figure 4, Supplementary Note 3). The results suggest 

that practical issues (such as convergence behavior and computational cost), or subjective 

measures (such as ease of interpretation), may determine which methods are most useful in 

practice. Assessing expression models on these other metrics will be an important direction 

for future work.
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Conclusion

Here, we described how models for observed scRNA-seq counts can be helpfully separated 

into two parts: measurement models that describe variation introduced by the measurement 

process, and expression models that describe variation in true expression levels. We argued 

that a simple Poisson model is a reasonable starting point for the measurement model, 

and that many existing methods can be interpreted as combining a Poisson measurement 

model with different expression models. We explained how these simple ideas help clarify 

confusion about the source and interpretation of zeros in scRNA-seq data, and give rigorous 

procedures to interrogate variation in gene expression among cells.

How should one use these ideas in scRNA-seq analysis? We emphasize that clearly 

distinguishing between measurement, expression, and observation models can help reduce 

confusion and misinterpretation. In particular, both methods developers and data analysts 

should make explicit the assumptions made about measurement error and about expression 

variation when analyzing scRNA-seq data. One important area for future work will be 

developing fast and accurate diagnostics to assess whether these assumptions are violated by 

observed data, and whether analysis results are sensitive to these assumptions.

Interestingly, our empirical results suggest that simple expression models should suffice 

for common analysis tasks such as differential expression, dimension reduction, and 

clustering. Although we found that many genes showed support for a non-parametric 

unimodal expression model over the Gamma model, the Gamma model is considerably 

easier to fit and therefore may be preferred. Previous results have suggested that the impact 

of underestimating expression variation on estimates of mean gene expression could be 

minimal24. Nonetheless, care may be necessary when dealing with long-tailed expression 

distributions, such as those exhibited by PPBP (Figure 1e).

Our empirical analyses of measurement error have two notable limitations. First, samples 

in spike-in experiments do not undergo the entire experimental protocol that biological 

samples do (dissociation, lysis, etc.), limiting their use to assess appropriate measurement 

models. This limitation is also shared by much prior work in this area17,18,32–34. Second, our 

approach to bound measurement dispersion made the strong assumption that measurement 

dispersion was equal across cells and genes. Therefore, the results may understate the 

potential for higher overdispersion at some genes. Despite these limitations, our empirical 

results clearly indicate that the use of zero-inflated measurement models is not supported.

There are commonly used methods that our framework does not encompass: for example, 

methods that first transform the count data (e.g. yij = log(xij/xi+ + ϵ)) and then apply 

Gaussian methods such as principal components analysis35, factor analysis36, or latent 

variable models37,38 to the transformed data Y. However, even for these methods, the 

key idea that observations reflect both expression variation and measurement error may 

still be useful to keep in mind. One potential way to formalize this is via Taylor series 

approximations39,40, for example E[yij] ≈ log(λij + ϵ), which suggest that Gaussian low rank 

models of the form E[Y] = LF′ can be interpreted as assuming that [log(λij + ϵ)] is low 

Sarkar and Stephens Page 11

Nat Genet. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rank. A key problem moving forward will be to make such connections rigorous and assess 

their accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Assumptions and limitations of the Poisson measurement model

The Poisson measurement model (1) is based on the following assumptions 

(Supplementary Note 1): (i) in each cell, each molecule is equally likely to be observed, 

(ii) each molecule is observed independent of whether or not each other molecule 

is observed, and (iii) only a small proportion of all molecules present are observed. 

Assumptions (ii) and (iii) are plausible because the measurement process operates at the 

molecular level, and only 10–20% of molecules present are estimated to be observed in 

typical scRNA-seq experiments8,61. However, assumption (i) may plausibly be violated. 

There are many reasons a given mRNA molecule may fail to be observed: it can be lost 

to diffusion during sample collection and preparation, damaged by cell dissociation or 

lysis, or fail to be amplified or sequenced, for example. Different mRNA molecules will 

have different chances of surviving these processes, due to differences in RNA stability, 

location in the cell (e.g., nucleus vs cytoplasm), or sequence content, for example. Such 

factors could make the observed molecules a biased sample of all molecules.

Biased sampling of molecules can be incorporated into the Poisson measurement 

model by including bias terms (Supplementary Note 1). If the biases are systematic 

and associated with specific technical covariates (for example, batch) then one could 

estimate their effects within the Poisson model. However, some biases may vary from 

cell to cell in unknown ways (e.g., due to differences in the conditions under which 

each cell is processed). Such random biases effectively add additional noise to the 

measurement process, and could be dealt with by replacing the Poisson measurement 

model (1) with a negative binomial (NB) measurement model that allows overdispersion 

(additional variance) compared with Poisson. However, the NB measurement model 

raises additional difficulties, not least the question of how much overdispersion to 

allow for. Our perspective, for which we present empirical evidence, is that for many 

datasets the measurement overdispersion compared with Poisson will be small, especially 

compared with the variation in actual expression levels among cells, and so the Poisson 

measurement model (1) will often suffice.

Interestingly, as technologies improve to measure more molecules per cell – potentially 

violating assumption (iii) – the variance of the measurement process will be reduced 

relative to a Poisson (Supplementary Note 1). This could conceivably counteract, or even 

overshadow, some of the overdispersion mentioned above.
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Box 2

Inference in the ZINB observation model

In our framework, the Zero-inflated Negative Binomial (ZINB) model for observations 

x1j,…, xnj is written

xij ∣ xi + , λij Poisson xi + λij
λij gj( ⋅ ) = πjδ0( ⋅ ) + 1 − πj  Gamma ϕj−1, μj−1ϕj−1 .

where gj is a point-Gamma distribution, which is a mixture of a point mass on zero 

(denoted δ0) and a Gamma distribution (parametrized by shape and rate). Here, we 

consider two analysis tasks: (1) estimating gj (i.e., estimating πj, μj, ϕj), and (2) 

estimating λij. Task (1) can be accomplished by maximizing the marginal likelihood, 

which has an analytic form but requires numerical optimization. From an estimate ĝj, 

one can already estimate many useful quantities such as the mean and variance of gene 

expression54

E λij ∣ gj = 1 − πj μj
V λij ∣ gj = 1 − πj μj2ϕj + πj 1 − πj μj2 .

Task (2) can be accomplished by estimating the conditional distribution of λij given the 

observed data and ĝj

λij ∣ xij, xi + , gj πjδ0( ⋅ ) + 1 − πj  Gamma xij + ϕj
−1, xi + + ϕj

−1μj−1 .

If one interprets gj as a prior, then this procedure is empirical Bayes, and the mean of 

the conditional distribution above is the posterior mean estimate of λij given the observed 

data

E λij ∣ xij, xi + , gj = 1 − πj
xij + ϕj

−1

xi + + ϕj
−1μj−1 .
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Figure 1. Comparing single-gene expression models on scRNA-seq data.
(a) Example fits of different expression models, corresponding to different observation 

models, to observed data at a single gene. (b) Fraction of genes in biological data sets 

with strong evidence for a point-Gamma expression model over a Gamma model, and (c) 

examples of four genes showing strong evidence in an in silico mixture of T cells and B 

cells. (d) Fraction of genes with strong evidence in favor of a unimodal expression model 

over a Gamma model, and (e) an example of a gene showing strong evidence (PPBP in 

PBMCs). (f) Fraction of genes with strong evidence in favor of a fully non-parametric 

expression model over a unimodal non-parametric model, and (g) an example of a gene 

showing strong evidence (RPS4Y1 in iPSCs).
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Table 1.
Single gene models for scRNA-seq data.

Different expression models, when combined with the Poisson measurement model, yield different observation 

models. Method indicates previously published methods and software packages that use the corresponding 

observation model to analyze data.

Expression model Observation model Method

Point mass (no variation) Poisson Analytic

Gamma Negative Binomial MASS41, edgeR42, DESeq243, BASICS44, SAVER20

Point-Gamma Zero-inflated Negative Binomial PSCL45

Unimodal (non-parametric) Unimodal ashr24,46

Point-exponential family Flexible DESCEND4

Fully non-parametric47 Flexible ashr
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Table 2.
Multi-gene models for scRNA-seq data.

Multi-gene models partition variation in true expression into structured and stochastic components. The link 

function describes a transformation, and the noise distribution indicates an assumption about the stochastic 

component (p(uij) in (3)). Method indicates previously published methods and software packages that use the 

corresponding observation model to analyze data.

Link function Noise distribution Method

Identity None NMF48, scHPF49

Identity Gamma NBMF50

log None GLM-PCA19

log Gamma scNBMF51, GLM-PCA19

log Point-Gamma ZINB-WaVE52

Neural network Point-Gamma scVI29, DCA21
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Table 3.
Data sets analyzed.

Number of samples passing the previously reported QC filters and number of genes with non-zero 

observations in at least 1% of samples, or passing the previously reported QC filters54.

Dataset Protocol Number of samples Number of genes Source

(Sorted) T cells GemCode 10,209 6,530 53 

(Sorted) B cells GemCode 10,085 6,417 53 

iPSC Fluidigm C1 5,597 9,957 54 

T cell/B cell mix
a GemCode 20,294 6,647 53 

Cytotoxic T/Naive T mix
a GemCode 20,688 6,246 53 

Brain DroNc-Seq 14,963 11,744 55 

Kidney 10X Chromium v2 11,233 15,496 56 

PBMC 10X Chromium v3 11,769 12,144 b 

Retina 10X Chromium v2 21,285 10,047 57 

Control 1 10X Chromium v2 2,000 88 58 

Control 2 10X Chromium v2 2,000 88 58 

Control Drop-Seq 84 81 59 

Control GemCode 1,015 91 53 

Control InDrops 953 103 60 

(a)
Mixture data sets are generated in silico by concatenating the data and then applying QC filters.

(b)
Data downloaded from https://10xgenomics.com/data.
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