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ABSTRACT The rate of eradication of periprosthetic joint infection (PJI) caused by
methicillin-resistant Staphylococcus aureus (MRSA) is still not satisfactory with sys-
temic vancomycin administration after one-stage revision arthroplasty. This study
aimed to explore the effectiveness and safety of intraarticular (IA) injection of vanco-
mycin in the control of MRSA PJI after one-stage revision surgery in a rat model.
Two weeks of intraperitoneal (IP) and/or IA injection of vancomycin was used to con-
trol the infection after one-stage revision surgery. The MRSA PJI rats treated with IA
injection of vancomycin showed better outcomes in skin temperature, bacterial
counts, biofilm on the prosthesis, serum a1-acid glycoprotein levels, residual bone
volume, and inflammatory reaction in the joint tissue, compared with those treated
with IP vancomycin, while the rats treated with IP and IA administration showed the
best outcomes. However, only the IP and IA administration of vancomycin could
eradicate MRSA. Minimal changes in renal pathology were observed in the IP and IP
plus IA groups but not in the IA group, while no obvious changes were observed in
the liver or in levels of serum markers, including creatinine, alanine aminotransferase,
and aspartate aminotransferase. Therefore, IA use of vancomycin is effective and safe
in the MRSA PJI rat model and is better than systemic administration, while IA and
systemic vancomycin treatment could eradicate the infection with a 2-week treat-
ment course.
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Periprosthetic joint infection (PJI) is one of the catastrophic complications after artifi-
cial joint replacement and occurs in 1.2% to 2.2% of primary arthroplasty cases (1).

Staphylococcus aureus is one of the common pathogens (2), and approximately 47% of
S. aureus clinical isolates in the United States are methicillin resistant (3), with reported
rates as high as 50% to 74% in some regions (4, 5). Studies reported that, after revision
of methicillin-resistant S. aureus (MRSA) or methicillin-resistant Staphylococcus epider-
midis (MRSE) infection, the risk of failure or reinfection was higher (2), with recurrence
rates of infection of up to 28.6% (6–8).

One-stage revision arthroplasty is an important PJI treatment strategies; it has
advantages such as fewer operations, faster recovery, and lower surgical mortality rates
and has been praised highly by a growing number of scholars in recent years.
However, the infection control rates varied greatly, ranging between 75% and 95% (9).
The main reason for the difficulty of PJI eradication and recurrence is the formation of
bacterial biofilms; the tolerance of mature biofilms to most antimicrobial agents is
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often 103 times greater than that of their planktonic counterparts (10). In addition to
complete debridement during surgery, postoperative antibiotic management is crucial.
The levels of vancomycin in synovial fluid were about one-third of those in serum with
intravenous (IV) injection of vancomycin after revision arthroplasty (11), which gener-
ally could reach the MICs of S. aureus or S. epidermidis strains, even MRSA strains. In
addition, the minimum biofilm eradication concentration (MBEC) was several orders of
magnitude (about 100 to 1,000 times) above the MIC, which could be a better indicator
of the antibiofilm activity than the MIC of planktonic bacteria (12). Regrettably, the
MBEC at the site of the joint infection is not achievable with traditional IV injection
administration, and increased doses or concentrations of IV injections may result in se-
rious adverse effects. Therefore, intraarticular (IA) injection of vancomycin may be one
of the most effective ways to improve the success rate of one-stage revision
arthroplasty.

IA injection of vancomycin has been applied to control MRSA PJI following single-
stage revision arthroplasty. Although inspiring results were obtained, the grade of the
evidence was low, because the data were from retrospective studies or even case
reports and experience sharing. Thus, this study intends to explore the effectiveness
and safety of IA injection of vancomycin to control PJI caused by MRSA after one-stage
revision surgery in a rat model, to provide the experimental basis for the clinical devel-
opment of a postoperative antibiotic management plan.

RESULTS
Establishment and evaluation of rat MRSA PJI model. On day 7 after bacteria

were inoculated, the surgical knee joint was swollen, and the maximal mediolateral
width of the knee was increased (Fig. 1E). Subcutaneous and IA abscess or ulcers (Fig.
1C) and suspicious osteolysis and prosthesis loosening (Fig. 1D) clearly indicated soft
tissue and bone infection. Bacteria from the prosthesis and ulcerated tissue were cul-
tured and further confirmed as MRSA by catalase testing, Gram staining, rapid aggluti-
nation testing of rabbit plasma coagulase, Staphylococcus identification kits, and cefox-
itin susceptibility test discs (Fig. 1F to J). Scanning electron microscopy (SEM) showed
that a large number of MRSA organisms grew on the prosthesis, accompanied by a
small amount of biofilm formation (Fig. 1K and L). Hematoxylin and eosin (H&E) stain-
ing of the synovial tissue also showed infection (Fig. 1M and N). The vancomycin MIC
of the strain used in this study (MRSA BAA-1026) was determined to be 2mg/ml.

Changes in general status and inflammatory markers. There were no significant
differences among the four treatment groups in body weight or body temperature
during the whole experiment (P. 0.05) (Fig. 3A and B). Skin temperatures of the surgi-
cal knee in the IA, intraperitoneal (IP), and IP plus IA groups were significantly lower
than that in the control group; there was no significant difference between the IA and
IP groups. The serum a1-acid glycoprotein (a1-AGP) level was lower in the IA group
than in the IP and control groups at day 21, while the IP plus IA group showed the low-
est skin temperature and serum a1-AGP level (P, 0.05) (Fig. 3C to E).

Radiological evaluation. On day 21, prostheses were still in the femoral metaphy-
sis, but all of them were accompanied by signs of bone destruction around the pros-
thesis, with that in the control group being the most serious (Fig. 4A). There were dif-
ferent degrees of alleviation in the IA, IP, and IP plus IA groups, of which that in the IP
plus IA group was the best (Fig. 4A and B). The bone volumes of the distal femur in the
control group and the IP group were less than that in the IP plus IA group, and the dif-
ference was significant; there was no significant difference among the control, IA, and
IP groups (Fig. 4C).

Histopathological evaluation. Animals were euthanized on day 21, and then a
macroscopic examination of the intraarticular bone and prosthesis was performed. The
femoral condylar cartilage was damaged to different degrees in each treatment group.
The control group had the most severe cartilage defects, accompanied by prosthesis
displacement, while the IP plus IA group had the best cartilage preservation and the
prosthesis was stably in place (Fig. 5A). As shown in Fig. 5B, a large number of
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inflammatory cells were observed in the control group, accompanied by abscess for-
mation. All vancomycin treatment groups (IP, IA, or IP plus IA) showed different
degrees of inflammation reduction; that in the IP plus IA group was the most obvious.
Osteomyelitis changes, such as intramedullary abscesses, necrotic bone formation, tra-
becular bone structure changes, and inflammatory cell aggregation, were observed in
the control animals (Fig. 5C), while all of these changes were attenuated after vanco-
mycin treatment, especially in the IA and IP plus IA groups (Fig. 5C). No obvious inflam-
matory bacterial infiltration was observed in the IP plus IA group, while the entrance of
the bone tunnel at the femoral trochlea was filled with fibrous connective tissue.

Microbiology. A MRSA biofilm, surrounded by a large number of host leukocytes,
was observed in the control group. No other microbial contamination was found in
any field of view. A small amount of MRSA was observed on the prosthesis in the IP
group, while only several MRSA residues were observed in the IA group. The bacteria
in the IP group were slightly more numerous than those in the IA group, while the IP
plus IA group showed no microbial growth, and the bacteria on the surface of the
prosthesis were completely eliminated (Fig. 6A). All tissues from the PJI knee in the
control group were cultured positively on Luria-Bertani (LB) agar plates, while all tis-
sues from the IP plus IA group were free of bacteria (Fig. 6B). The average numbers of
bacterial colonies in the control group (prosthesis, 8.57� 105 6 8.36� 105 CFU; bone,

FIG 1 Establishment and evaluation of the PJI model after knee prosthesis implantation in rats. (A) Artificial prosthesis implanted in the knee joint. (B)
Lateral X-ray after surgery. (C) Subcutaneous macroscopic examination of the knee joint on postsurgical day 7. The white arrow indicates subcutaneous
and IA abscess or ulcer. (D) Lateral X-ray of the knee on postsurgical day 7. The red arrow indicates prosthesis loosening and suspicious osteolysis around
the prosthesis. (E) Changes of the surgical knee width on postsurgical days 1, 4, and 7. (F) Microbial catalase testing (many bubbles appear after the
microorganisms contact hydrogen peroxide). (G) Microbial Gram staining (Gram-positive bacteria appear purple blue, indicating positive results). (H) Rapid
agglutination testing of fresh rabbit plasma (plasma coagulates in a gelatinous form). (I) Staphylococcus identification kit testing (the corresponding
indicator reagent tube changes color, indicating that the microorganism is Staphylococcus aureus). (J) Cefoxitin susceptibility disc diffusion testing in LB
agar plates with cultured microorganisms (the antibiotic susceptibility test discs [cefoxitin and norfloxacin] have no inhibition zone, indicating that the
bacteria are resistant to cefoxitin and norfloxacin; the red arrows indicate cefoxitin sensitivity test discs, and the blue arrows indicate norfloxacin sensitivity
test discs). (K and L) Prosthesis taken from the knee for SEM observations at low magnification (�60) (K) and high magnification (�5,000) (L). The red
arrows indicate S. aureus, and the blue triangles indicate red blood cells. (M and N) H&E staining of the surgical knee synovium, at low magnification (�40)
(M) and high magnification (�400) (N). The red arrows indicate abscess areas. **, P, 0.01. Significance was evaluated using a two-way ANOVA for the
comparison of rat knee widths between different treatment groups.
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9.78� 105 6 11.79� 105 CFU; soft tissue, 3.78� 105 6 2.86� 105 CFU; whole animals,
2.21� 106 6 1.50� 106 CFU) were significantly greater than those in the IA group
(prosthesis, 18 6 30 CFU; bone, 68 6 94 CFU; soft tissue, 37 6 53 CFU; whole ani-
mals, 1246 140 CFU), the IP group (prosthesis, 2,5756 2,220 CFU; bone, 2,8156 2,569
CFU; soft tissue, 4,6906 3,433 CFU; whole animals, 10,0806 5,499 CFU), and the IP
plus IA group (no bacterial colonies in any tissue culture) (Fig. 6C to F). The average
numbers of colonies for each specimen in the IP group were significantly greater than
those in the IA group or the IP plus IA group; only in the IP plus IA group were no bac-
teria detected (P, 0.05) (Fig. 6C to F).

Drug safety assessments.Macroscopically, the incisions in each group were healed
without wound rupture or exudation (Fig. 7A). No obvious pathological changes, such
as degeneration and necrosis, were observed in the livers of any of the animals (Fig.
7B). The serum alanine aminotransferase (ALT) results showed that the mean values for
the control, IA, IP, and IP plus IA groups were 19.136 8.01 U/liter, 16.766 9.06 U/liter,
21.286 7.73 U/liter, and 22.056 8.45 U/liter, respectively, all within the normal range;
there was no significant difference between the four treatment groups and the normal
serum ALT result (15.966 8.65 U/liter) (P . 0.05) (Fig. 7D). Aspartate aminotransferase
(AST) results showed that the mean values for the control, IA, IP, and IP plus IA groups
were 18.856 8.48 U/liter, 17.906 9.95 U/liter, 19.486 9.26 U/liter, and 20.046 10.19
U/liter, all within the normal range (Fig. 7E). No obvious pathological changes, such as
degeneration and necrosis of the kidneys, were observed in the control and IA groups.
However, inflammatory cell infiltration and mild cortical tubular dilation in a few areas
of renal pathology were observed in the IP and IP plus IA groups, of grade 1 (Fig. 7C).
The results of serum creatinine (Cr) measurements showed that the mean values for
the control, IA, IP, and IP plus IA groups were 70.276 15.05mmol/liter, 67.62 6

10.95mmol/liter, 74.876 12.14mmol/liter, and 75.496 11.42mmol/liter, all within the
normal range; there was no significant difference between the four treatment groups
and normal serum Cr levels (65.706 13.80mmol/liter) (P. 0.05) (Fig. 7F). The serum

FIG 2 Graph illustrating the treatment scheme for the animals in this experiment.
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levels of vancomycin in all treatment groups were less than 15mg/ml at 0.5, 2, and 4h af-
ter vancomycin injection on day 21, and the values for both the IA and IP groups were
below the limit of detection at 4 h after injection. In addition, serum vancomycin concen-
trations in all groups were below the limit of detection before injection (Table 1).

DISCUSSION

Although the high bacterial load (106 CFU) of MRSA used in this experiment does
not exactly mimic clinical conditions in elective surgery, this bacterial load was based
on previous animal studies that indicated a reliable acute infection site contamination
model (13, 14). We considered that lower concentrations of bacteria could fail to de-
velop high infection rates in surgically treated rats because of high-level immunity
against bacteria in rats (15–17). Therefore, the use of high bacterial concentrations was
necessary to have good reproducibility in the rat model.

Vancomycin is currently the preferred IV antibiotic after PJI revision arthroplasty, espe-
cially for MRSA or MRSE, because it inhibits bacterial cell wall synthesis (18). Previous

FIG 3 Changes in general conditions of the body after PJI rat model establishment, one-stage revision, and corresponding drug treatment in each group.
(A) Body weight change curves (n= 12). (B) Body temperature change curves (n= 12). (C) Changes in serum a1-AGP levels during the whole experiment (for
the tests on days 0, 7, and 14, n=6; for the test on day 21, n= 12). (D) Local right knee skin temperature change curves (n= 12). (E) Typical infrared
thermal imaging after PJI rat model establishment, revision, and vancomycin treatment of rats in each group (n= 6). Control (no antibiotics), IP injection of
vancomycin (88mg/kg, q12h), IA injection of vancomycin (44mg/kg, qd), and IP plus IA injection of vancomycin (combined IP treatment at 88mg/kg, q12h,
and IA treatment at 44mg/kg, qd) were assessed. The time indicated by the blue triangles is the knee arthroplasty operation and IA inoculation of MRSA in
rats, while the time indicated by the red circles is the operation for debridement and implantation of a new elongated revision prosthesis (one-stage
revision) in rats. *, P, 0.05; **, P, 0.01. Significance was evaluated using a two-way ANOVA for the comparison of general animal status (weight, body
temperature, and local skin temperature of the knee) in different treatment groups.
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clinical studies suggested that both IA injection and systemic vancomycin treatment
could achieve therapeutic synovial concentrations, but the peak concentrations in syno-
vial fluid with IA use of vancomycin were many orders of magnitude higher than those
with systemic vancomycin treatment and were accompanied by therapeutic serum and
synovial fluid levels of vancomycin for about 24h (11, 19). Regrettably, although our
results indicated that IA injection of vancomycin alone was better than IP injection, it
could not eliminate the bacteria in 2 weeks. In addition, the International Consensus
Meeting suggested that cost and resistance rates are lower when the duration of antibiot-
ics is decreased (20). Thus, IA injection combined with systemic vancomycin treatment
might be ideal for treatment, which was confirmed in our current study showing that all
bacteria were eliminated in the IA plus IP group. Our data indicated that IA injection com-
bined with systemic vancomycin treatment might be an effective and quick way to elimi-
nate MRSA PJI following one-stage revision arthroplasty.

Our current experiment evaluated one strain of MRSA. Due to the low treatment
success rate and high recurrence after MRSA infection, MRSA PJI was even considered
by some surgeons to be a contraindication for one-stage revision. The data in the

FIG 4 Radiological evaluation of the knee joint in rats with PJI after debridement and treatment with vancomycin. (A) X-ray of each group on postrevision
day 14. (B) Three-dimensional CT scans and bone reconstruction of the distal femur on day 21 (postrevision day 14). (C) Bone volume analysis of the distal
femur. Control (no antibiotics), IP injection of vancomycin (88mg/kg, q12h), IA injection of vancomycin (44mg/kg, qd), and IP plus IA injection of
vancomycin (combined IP treatment at 88mg/kg, q12h, and IA treatment at 44mg/kg, qd) were assessed. *, P, 0.05; **, P, 0.01 (n= 6). The red arrows
indicate the position of the prosthesis and the destruction of the distal femur in each group. Significance was evaluated using an unpaired one-tailed
Mann-Whitney test for the comparison of residual bone volumes in different treatment groups.
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present study suggested that, in the MRSA PJI rat model after knee prosthesis implan-
tation, IA injection of vancomycin could significantly reduce the levels of infecting bac-
teria and was more effective than IP injection. IP plus IA injection of vancomycin for 2
weeks could eliminate the bacteria in all tissues. In this study, no adverse reactions,
such as sinus tract and secondary infections through the injection channel, caused by
IA injection were observed; these data corroborate prior clinical IA delivery of vanco-
mycin (11, 19, 21–24). There were no significant changes in liver pathology and serum
biochemical markers. However, mild pathological changes in the kidney were observed
in both the IP and IP plus IA groups, which were possibly considered early

FIG 5 Macroscopic examination and histopathological assessment of the surrounding knee joint after one-
stage revision and treatment with vancomycin in rats with PJI. (A) Macroscopic examination of intraarticular
bone and the prosthesis. (B) Pathological H&E staining of joint capsules in each group on day 21. (C)
Pathological H&E staining of the knee joint (femur and tibia) in each group on day 21. Control (no antibiotics),
IP injection of vancomycin (88mg/kg, q12h), IA injection of vancomycin (44mg/kg, qd), and IP and IA injection
of vancomycin (combined IP treatment at 88mg/kg, q12h, and IA treatment at 44mg/kg, qd) were assessed.
The blue boxes in panels A show the position of the prosthesis and the destruction of the cartilage around
the prosthesis, the blue boxes in panels B show the area where inflammation is concentrated, and the blue
boxes in panels C represent the entrance of the bone tunnel at the femoral trochlea.
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nephrotoxicity caused by systemic vancomycin treatment. This phenomenon was con-
sistent with previous experimental studies on the renal toxicity of vancomycin
reported in the literature (25–30). Clinical cases of nephrotoxicity with therapeutic van-
comycin levels have been reported, with nephrotoxicity incidence rates ranging from
0% to 17% (31–33), but this dose was routine and relatively safe in clinical application.
Further observation and summary in future clinical applications are needed.

FIG 6 Microorganisms in joint tissues of rats in each group after one-stage revision and treatment with vancomycin. (A) On day 21, the microbes on the
surface of the prosthesis in each group were observed by SEM, at low magnification (�60) (upper) and high magnification (�5,000) (lower). (B) Before and
after homogenization (70 HZ, 10 min) of the knee joint bone and all soft tissues around the knee (upper), images of LB agar plates of microbial cultures
(37°C, 24 h) of the prosthesis, bone, and soft tissue in each group of animals (lower) were obtained. (C) Analysis of microbial culture counts for knee joint
bones of animals in each group. (D) Analysis of microbial culture counts for all soft tissues around the knee joints of animals in each group. (E) Analysis of
microbial culture counts for the prostheses of animals in each group. (F) Analysis of microbial culture counts for the whole animals in each group. Control
(no antibiotics), IP injection of vancomycin (88mg/kg, q12h), IA injection of vancomycin (44mg/kg, qd), and IP and IA injection of vancomycin (combined
IP treatment at 88mg/kg, q12h, and IA treatment at 44mg/kg, qd) were assessed. *, P, 0.05; **, P, 0.01 (n= 6). The red arrows indicate MRSA, the yellow
circles indicate leukocytes, and the blue triangles indicate red blood cells. Significance was evaluated using an unpaired one-tailed Mann-Whitney test for
the comparison of bacterial counts between different treatment groups.
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FIG 7 Photographs of wound healing, pathological H&E staining of the liver and kidney, and liver and kidney biochemical indicator test results for rats
with PJI in each group after corresponding treatment. (A) Incision healing of rats. (B) Pathological H&E staining of the liver. (C) Pathological H&E staining

(Continued on next page)
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However, our approach does have limitations. Firstly, there is some disagreement
between the International Consensus Group (ICG) and the Infectious Diseases Society
of America (IDSA) about the optimal duration of antibiotic treatment after one-stage
revision arthroplasty. The ICG strongly recommends 2 to 6weeks. The IDSA recom-
mends that the duration of antimicrobial therapy be no more than 6weeks, including
2 to 6weeks of IV antibiotic treatment (20). Although we chose 2weeks as the research
endpoint referring to the minimum duration of IV therapy (34), it may be too early to
eradicate the bacteria with a single treatment such as IV or IA injection. Because local
administration may not cause any systemic adverse effects, the duration could be
extended to 3weeks or even longer, which might lead to better outcomes. Secondly,
although available clinical studies and our current experiments have not been reported
iatrogenic infections caused by IA injection or infusion of vancomycin, the potential
adverse effect exists because of the invasive treatment approach. Thirdly, our experi-
ment mainly discussed the differences in the efficacy of different injection approaches
for vancomycin, without adjuvant oral antibiotics such as rifampin or levofloxacin. We
plan to address this limitation by subsequently comparing oral rifampin plus systemic
vancomycin treatment with oral rifampin plus IA vancomycin treatment. Fourthly, in
our study, the serum Cr and vancomycin concentrations were in the normal range.
Although renal pathology showed mild changes, it is not a routine way to observe
nephrotoxicity. There was no denying that IA injection combined with systemic vanco-
mycin treatment was effective and safe in the treatment of PJI; further experimental
studies are required in the future. Fifthly, since synovial fluid from the knee cavity in
rats was too sparse to be obtained, we could not measure the concentration and phar-
macodynamics of vancomycin in the synovial fluid. We plan to address this limitation
in subsequent additional preclinical studies with larger animals. Lastly, the data in our
experiment were based on an uncemented prosthesis. Another type of prosthesis, with
antibiotic-cemented fixation, is also used; however, antibiotics in the cement should
be limited to 1 to 2 g per 40 g cement powder or the mechanical properties of the
cement would be significantly affected (35). In addition, recent in vitro studies sug-
gested that less than 5% of total antibiotics were eventually released if more than 1 g
of antibiotics was added to 40 g cement powder (36, 37). Further studies are needed
to explore the efficacy of different injection approaches for vancomycin by using an
antibiotic-cemented prosthesis.

In conclusion, in the current MRSA PJI rat model, IA injection of vancomycin is effec-
tive and safe in controlling the infection, while systemic vancomycin treatment

FIG 7 Legend (Continued)
of the kidney. (D) Serum ALT levels. (E) Serum AST levels. (F) Serum Cr levels. Normal indicates normal serum biochemical values before surgery. Control
(no antibiotics), IP injection of vancomycin (88mg/kg, q12h), IA injection of vancomycin (44mg/kg, qd), and IP and IA injection of vancomycin (combined
IP treatment at 88mg/kg, q12h, and IA treatment at 44mg/kg, qd) were assessed. *, P, 0.05; **, P, 0.01 (n= 12). The blue boxes in panels A show the
incision healing in each treatment group, the blue boxes in panels B show the liver lobular structure of the areas of interest, and the blue boxes in panels
C represent the renal cortical region of the areas of interest. Significance was evaluated using a two-way ANOVA for the comparison of serum ALT, AST,
and Cr levels in different treatment groups.

TABLE 1 Serum vancomycin levels in each treatment group

Groupa

Vancomycin level (mg/ml)b

Preinjection 0.5 h 2 h 4 h
Control 0 0 0 0
IA c 5.646 0.82 3.556 0.26 c

IP c 9.396 1.35 4.046 0.35 c

IP plus IA c 14.316 1.35 9.756 1.07 1.596 0.40
aControl (no antibiotics), IP injection of vancomycin (88mg/kg, q12h), IA injection of vancomycin (44mg/kg, qd),
and IP and IA injection of vancomycin (combined IP treatment at 88mg/kg, q12h, and IA treatment at 44mg/kg,
qd) were assessed (n=6).

bSerum vancomycin levels were detected before the last injection and 0.5, 2, and 4 h after vancomycin injection in
each treatment group on day 21.

cBelow the limit of detection (1mg/ml).
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combined with IA injection of vancomycin can completely eradicate the infection. Our
experimental data support the potential application of IA injection of vancomycin in
MRSA PJI. More related research is needed to further evaluate the safety and effective-
ness of IA injection of vancomycin.

MATERIALS ANDMETHODS
Animals and main reagents.Wistar rats of specific-pathogen-free grade (male, weighing 239 6 5 g)

were obtained from the Center for Disease Control and Prevention (Hubei, China). The protocol for all
animal experiments was approved by the Committee on the Ethics of Animal Experiments of the School
of Medicine, Wuhan University. All animal experimental procedures were performed following the
Guidelines for the Care and Use of Laboratory Animals of the Chinese Animal Welfare Committee.
Clinical-grade vancomycin hydrochloride for injection was obtained from Lilly (Japan). Rat serum a1-AGP
enzyme-linked immunosorbent assay (ELISA) kits, serum Cr kits, and serum ALT and AST kits were pur-
chased from Cusabio (China).

Bacterial preparation. A MRSA strain (ATCC BAA-1026) was streaked on LB agar plates and incu-
bated overnight at 37°C for about 20 to 24 h. Individual colonies were cultured in LB broth overnight at
37°C with shaking (about 20 to 24 h, at 220 rpm). A 1:50 dilution of the overnight culture was subcul-
tured for 2 h at 37°C with shaking. Bacteria were washed in phosphate-buffered saline (PBS), reconsti-
tuted to an inoculum of 1.58� 108 CFU in 10ml of PBS, as determined by absorbance at 600 nm, and
confirmed by overnight culture on LB agar plates after dilution. Vancomycin was added to 96-well plate
with serial dilutions, and the initial BAA-2016 in each well was adjusted to a concentration of 105 CFU/ml
and incubated at 37°C for 24 h. The vancomycin MIC was defined as the lowest concentration that inhib-
ited visible growth.

Study design. On the basis of previously described murine PJI models (38–42), we chose orthope-
dic-grade titanium alloy screws to mimic clinical knee arthroplasty and prosthesis implantation in the
femoral bone marrow. Forty-eight male Wistar rats were randomly divided into four groups after revision
surgery, as follows: (i) control (no antibiotics), (ii) IP injection of vancomycin (88mg/kg, every 12 h
[q12h]; equivalent to 1 g in a 70-kg human, q12h), (iii) IA injection of vancomycin (44mg/kg, once a day
[qd]; equivalent to 0.5 g in a 70-kg human, qd), or (iv) IP plus IA injection of vancomycin (combining IP
treatment at 44mg/kg, q12h, and IA treatment at 44mg/kg, qd). Doses for the weight-based IP and IA
administration of vancomycin were based on routine therapeutic antibiotic doses used for orthopedic
infections in humans (19, 43–46) and corresponded to doses of vancomycin used in prior rat models (25,
26, 47).

Surgical procedures and postoperative management. All operations were performed within a
sterile surgical field, using aseptic techniques and sterile instruments and materials. The rats were anes-
thetized using 2.5% inhalational isoflurane delivered via nose cone and were given preoperative analge-
sics consisting of subcutaneous buprenorphine (0.1mg/kg) and parecoxib (2mg/kg). The maximal
medial-lateral width of the knee joint was measured manually with a digital caliper after the knee hair
was shaved. After sterile draping of the surgical site, a 2-cm midline longitudinal skin incision was made
over the right knee. After knee joint exposure, a 1.2-mm drill bit was used to access the femoral canal
just anterior to the Blumensaat line, and the prosthesis (diameter, 1.4mm; length, 5mm) was manually
placed through retrograde insertion with a screwdriver, with the 1-mm screw cap protruding into the
joint (Fig. 1A). The patella was relocated, the capsule was sutured, and the joint was injected with 50ml
of 1.58� 108 CFU/ml BAA-1026 using a 29-gauge needle. Postoperative radiographs were obtained to
verify the placement of the prosthesis (Fig. 1B). Pain was controlled with buprenorphine (0.1mg/kg) af-
ter surgery. The surgical knee was swollen, compared with the preoperative state, on day 7 (Fig. 1E), the
subcutaneous and intraarticular tissues of the knee were purulent and ulcerated (Fig. 1C), and X-rays
indicated that the prosthesis was loosened (Fig. 1D). The prosthesis was removed aseptically by surgery,
and microbiological cultures and related identification tests (catalase testing, Gram staining, rapid agglu-
tination test of rabbit plasma coagulase, Staphylococcus identification kits, and cefoxitin susceptibility
test discs) were carried out to confirm that the MRSA PJI model was successfully established (Fig. 1F to
J). After complete debridement, a new elongated revision prosthesis (diameter, 1.5mm; length, 10mm)
was implanted. Animals were treated in groups for 14 consecutive days from the first day after revision
surgery (on day 8). All animals were euthanized on day 21 for blood collection and tissue harvesting in
accordance with the Institutional Animal Care and Use Committee-approved protocol (Fig. 2).

General status and serological marker analyses. General status, including body weight, body tem-
perature, and local temperature of the knee joint, were measured during the whole experimental study
process. The body weights of the rats were recorded before surgery and on days 1, 4, 7, 11, 14, and 21.
An electronic thermometer for animals and an infrared thermometer were used to measure the temper-
ature of the anus and rectum of the rats. The body temperature was recorded before surgery and on
days 1, 4, 7, 11, 14, and 21. An infrared thermometer and an infrared thermal imager (FLIR, USA) were
used to measure the local skin temperature of the surgical knee of rats. The local knee temperature data
and images were recorded before surgery and on days 1, 4, 7, 14, and 21. Because a1-AGP is a character-
istic serum marker of acute infection in rats that was reported to be better than C-reactive protein (CRP),
blood leukocytes, and interleukins (39, 48–50), we choose it as the marker for the prognosis of infection,
revision, and drug treatment. We measured serum a1-AGP levels before surgery and on days 1, 7, 14,
and 21. The serum Cr, ALT, and AST levels were measured before surgery and on day 21. Because syno-
vial fluid from the rat knee cavity was too sparse to be obtained, we could not measure the
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concentration and pharmacodynamics of vancomycin in the synovial fluid. We measured the serum con-
centrations of vancomycin by high-performance liquid chromatography-mass spectrometry (Thermo
Fisher Scientific, USA) (preinjection and 0.5, 2, and 4 h after vancomycin injection on day 21).

X-ray imaging. Anteroposterior and lateral X-ray images of the right hind limbs were taken after an-
esthesia on day 21 to confirm prosthesis positioning and bone destruction (Bruker, Germany).

Micro-computed tomographic imaging and data analysis. To evaluate infective bone reaction in
bone resorption and osteomyelitis, micro-computed tomographic analysis was performed on the surgi-
cal bone with a SkyScan 1276 system (Bruker, Germany). Scan images were reconstructed and bone pa-
rameters surrounding the prosthesis were assessed using CT Viewer (Materialise, Belgium). We analyzed
the three-dimensional reconstructed images with CTAn v1.15.4 software (Bruker). After scan calibration,
we created one-box volumes of interest (size, 1,327.446 mm3 [x, 13.55 mm; y, 13.55 mm; z, 9.03 mm) for
the femoral metaphysis. The bone volume (in cubic millimeters) within the volume of interest was quan-
titatively measured and reported as the residual bone volume.

SEM. Prostheses were carefully removed, and their surfaces were examined with SEM (Zeiss,
Germany) by a single, experienced observer who was blinded to the treatment. S. aureus was identified
as spherical structures with the following features: no surface deformities, organized in pairs or clusters,
and approximately 0.8mm to 1mm in diameter (41).

Histopathology. Histological analyses (knee joint bone and capsule) were carried out to assess the
tissue morphology, with particular attention to signs of inflammation, bone necrosis, and osteomyelitis,
as well as to verify the presence or absence of degeneration and necrosis of liver and kidney tissues.
Samples were processed, and paraffin-embedded sections (4mm) were stained with H&E. The field of in-
terest was selected for observation. The histological extent of renal injury was assessed using a six-tier
grading system, as follows: grade 0, normal; grade 1, cloudy swelling of the proximal tubular epithelium
without necrosis; grade 2, ,25% necrosis of the cortical area; grade 3, 25 to 50% necrosis of the cortical
area; grade 4, 50 to 75% necrosis of the cortical area; grade 5,.75% necrosis of the cortical area (51).

Microbiology and data analyses. After euthanasia on day 21, the surgical skin incision was reop-
ened under sterile conditions. Sterile surgical instruments were used to harvest wound tissue, including
all of the muscles and soft tissue around the knee joint, the knee joint (including the distal femur, pa-
tella, and proximal tibia), and the prosthesis. The tissues were combined with the same amount (10ml)
of sterile PBS and homogenized with a fast tissue grinder. Then, 100ml of supernatant was inoculated
onto LB agar plates and grown for 24 to 48 h at 37°C. The retrieved prosthesis was placed in 5ml of ster-
ile PBS containing 0.3% Tween 20 and was sonicated to stimulate the release of bacterial biofilm from
the prosthesis. A 100-ml aliquot of prosthesis supernatant was plated in the same manner as the other
tissue supernatants (14, 52, 53). Bacterial colonies were quantified using the plate count method.

Statistical analysis. Data were analyzed using the SPSS program (version 22.0; SPSS Inc., Chicago, IL,
USA) and are presented as the mean and standard error of the mean. Data were compared by two-way
analysis of variance (ANOVA) or unpaired one-tailed Mann-Whitney test. P values of ,0.05 were consid-
ered significant.
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