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Abstract

Selective serotonin reuptake inhibitor (SSRI) drugs, targeting serotonin transport, are widely used. A puzzling
and biomedically important phenomenon concerns the persistent sexual dysfunction following SSRI use seen in
some patients. What could be the mechanism of a persistent physiological state brought on by a transient
exposure to serotonin transport blockers? In this study, we briefly review the clinical facts concerning this side
effect of serotonin reuptake inhibitors and suggest a possible mechanism. Bioelectric circuits (among neural or
non-neural cells) could persistently maintain alterations of bioelectric cell properties (resting potential), re-
sulting in long-term changes in electrophysiology and signaling. We present new data revealing this phe-
nomenon in planarian flatworms, in which brief SSRI exposures induce long-lasting changes in resting potential
profile. We also briefly review recent data linking neurotransmitter signaling to developmental bioelectrics.
Further study of tissue bioelectric memory could enable the design of ionoceutical interventions to counteract
side effects of SSRIs and similar drugs.
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Introduction: Long-Lasting Effects After Exposure
to Serotonin Transporter Inhibitors

Selective Serotonin Reuptake Inhibitor (SSRI)
drugs are widely used to treat depression and anxiety.

Introduced around 1990, between 10% and 15% of the pop-
ulation of most Western countries now take them.1 Close to
100% of takers of a SSRI have a degree of genital sensory
change within 30 min of taking. These effects consist pri-
marily of a reduced sensitivity, often termed ‘‘numbing’’ by
those affected but others have genital arousal (irritability).
The reduced sensitivity is accompanied by an immediate
delay of ejaculation in men and muting of orgasm in both men
and women. After a period of treatment, orgasm may stop and
there may be a loss of libido.2

The ‘‘numbing’’ effect produced by SSRIs has similarities
to the effect of rubbing lidocaine into the genital area, which
was a prior treatment for premature ejaculation, and SSRIs in
single doses are used for premature ejaculation now. The
effect is also described in terms of a loss of pleasurable
sensation. In some cases, there is an actual genital numbing
equivalent to that produced by lidocaine. These immediate
onset sexual effects ordinarily lift when treatment stops. In
2006, reports appeared of a condition now termed Post-SSRI

Sexual Dysfunction (PSSD), in which the genital numbing,
pleasureless or absent ejaculation/orgasm, and loss of libido
remain and may become more pronounced after treatment
stops.3,4 PSSD can persist for decades afterward.2,5

In 2001, persistent genital arousal disorder (PGAD), an
enduring disorder of irritable genital sensation, was de-
scribed.6 This condition is not linked to enhanced libido and
does not stem from psychological issues. At present PGAD
appears to affect women more than men. This condition
seems more likely to happen around the menopause and,
while closely related to discontinuation from SSRI medica-
tion, can also occur following trauma to the genital area.2

These genital effects do not occur on antidepressants that do
not inhibit serotonin reuptake; other antidepressants and
psychotropic drugs can cause erectile dysfunction but not the
syndromes of numbness, pleasureless orgasm, loss of libido,
or persistent arousal.

Two other syndromes have been described which appear
closely related to PSSD. One is postfinasteride syndrome
(PFS). First described in 2011, this occurs in young men
taking finasteride to stall hair loss.7 It also happens with other
5-alpha reductase inhibitors—dutasteride and saw palmetto.
Genital anesthesia, loss of libido, and sexual dysfunction
are features of this syndrome. Initial finasteride treatment
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can produce some sexual dysfunction, but this is less
common than with SSRIs. It is unclear if the sexual dys-
function that appears on treatment is continuous with PFS or
distinct from it.

A postretinoid sexual dysfunction (PRSD) has also been
described.8 This also includes genital anesthesia, sexual
dysfunction, and loss of libido. There can be some sexual
dysfunction on initial treatment in patients taking isotretinoin
for acne, but it is not clear what continuity there may be
between this and PRSD. These enduring post-treatment
syndromes may interface with tardive dyskinesia linked to
antipsychotic drugs in the 1960s. Antipsychotics can cause
dyskinesias on treatment, which ordinarily resolve when
treatment is stopped. Dyskinesias can also emerge on with-
drawal but clear up in time. Tardive dyskinesia is a syndrome
that involves dyskinetic movements centered on the jaw and
lower facial area, which can emerge on treatment but become
more marked when treatment stops. The syndrome can en-
dure for years or decades afterward.

These legacy effects of antidepressants and antipsychotics
have some interface with withdrawal syndromes linked to
these drugs. Withdrawal to opioids and alcohol is viewed as
limited to a few weeks, having features not found during
administration of the drug and as ordinarily responding to
reinstitution of treatment. Antidepressant and antipsychotic
withdrawal, however, is linked to dysthymia, which may
appear continuous with the original problem but can be
demonstrated in healthy volunteers given these drugs, as well
as to other sensory and autonomic disturbances. These states
can last for months or longer, opening up a possible link
between enduring sexual syndromes and other legacy effects
of antidepressants and antipsychotics.9 There are variations
among antidepressants and antipsychotics in their likelihood
of causing withdrawal problems and likelihood of causing
tardive syndromes, but the basis for these differences is not
understood.

PSSD happens in all ages, both sexes, and all ethnic
groups. It can begin after a few doses of treatment or only
become apparent after years of exposure. There are two is-
sues to account for. One is the original sensory changes.
These almost certainly extend beyond the genital area, but are
more salient there perhaps because of the functional conse-
quences. SSRIs also produce a more general dampening of
reactivity—commonly termed emotional numbing. This may
be linked to the pronounced sensory features that characterize
the SSRI withdrawal syndrome, which can include sponta-
neous orgasms and can result in PGAD.

In this study, we hypothesize about a possible mechanism
of this effect and provide data in a physiologically-amenable
model system consistent with this possibility.

Possible Mechanisms: A Hypothesis

At present, there is no agreement as to how the sensory
changes on SSRIs come about. Lidocaine, which also pro-
duces genital numbing, appears to do so through an action on
late sodium currents,10 and serotonin reuptake inhibitors also
have effects on late sodium currents.11 It is also the case that
antidepressants with effects on sodium currents are used to
treat neuropathic pain.

Aiming at finding a treatment, PSSD sufferers have tried a
wide range of agents active on various dopamine and sero-

tonin receptors along with phosphodiesterase inhibitors and
other drugs, but these have no therapeutic effect for PSSD,
PFS, or PRSD. PFS sufferers have focused on evidence for
androgen insensitivity. It is also the case that SSRIs reduce
testicular volume and sperm counts, but these effects appear
to happen in the absence of PSSD. At present, no endocrine
manipulations appear to make a difference in PFS, PSSD, or
PGAD.

The treatment approaches adopted to date have been
largely targeted at reversing the acute sexual effects rather
than reversing the mechanism that leads to enduring effects.
This is similar to research efforts on tardive dyskinesia
which for four decades have focused on the dopamine sys-
tem without finding an answer. A second issue therefore is
one of pinpointing a mechanism that might underpin en-
during effects like these. It does appear that with time
(several years) a degree of spontaneous recovery happens in
some cases. In other cases, there are brief remissions (days),
often triggered by stopping a brief course of another drug
such as an antibiotic. There are grounds to think therefore
that these enduring effects do not stem from permanent
damage.

Is this problem best seen as a physiological (bioelectric) or
a pharmacological matter? Is the site at which the original
sensory changes are affected central or peripheral? Do they
arise in a central nucleus, at the dorsal root ganglion level, or
do from local treatment effects on C-fibers? In this study, we
explore one possible mechanism: ion channel- and pump-
driven circuits that maintain tissue bioelectric state as a kind
of persistent physiological memory.

Developmental bioelectricity is a field which studies how
cells, neural and non-neural, propagate, store, and process
information through the propagation of electrical states—
specifically resting potential or Vmem.12–14 Recent work in
this field has revealed the importance of bioelectric networks
not only in embryogenesis but also in adult regeneration,
stem cell biology, cancer, and immune system function.13–27

Importantly, recent computational models predicted that
some bioelectric circuits exhibit a kind of memory, in which
induced changes of Vmem are actively maintained.28–31

Research in model systems, such as regenerative planarian
flatworms (an important model for human neurophysiology
and pharmacology32–37), has revealed a remarkable long-
term memory that can be induced by alterations to endoge-
nous ion flows. Planaria whose bioelectric circuits are briefly
modulated by small molecule drugs experience an alteration
in bioelectric patterns within their tissues that are apparently
permanent and persistently affect their cell- and tissue-level
functions long after the original drugs are withdrawn.38–40

This occurs over many months and is (as far as is known)
permanent, despite the rapid turnover of all of their somatic
cells within a few weeks.

Importantly, however, the ion channel and gap junction
networks that implement bioelectric control circuits are
ubiquitous, being present and function across taxa, from
bacterial biofilms to mammals.41–52 Effects on cell migra-
tion,53 proliferation,54 migration/pathfinding,55,56 and stem
cell differentiation57 have been observed after modulation of
neurotransmitter pathways. Even the microbiome, with many
known roles in regulating mood and functioning of many
organ systems, has been affected by neurotransmitter signal-
ing.58,59 Taken together, these data suggest the possibility that
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persistent behavioral and physiological states, affecting the
brain and numerous other organs, could be explained by long-
lasting modulation of the bioelectricity-neurotransmitter
axis through transient modulation by drugs. Thus, we hy-
pothesized that SSRI application may alter Vmem in vivo, re-
sulting in persistent changes to bioelectric circuit parameters
in cells. This could be due to effects on the electrogenic se-
rotonin transporter SERT or perhaps upon one or more of
several ion channels.60–64 Because the basic bioelectric cir-
cuitry is highly conserved, animal models can serve as an
important context within which to understand clinically rel-
evant persistent physiological states induced by transient drug
exposure. Thus, we examined the possibility of SSRI-induced
long-term changes, which could provide a mechanism for the
post-SSRI syndrome in human patients, in a tractable model
system: planaria.

Experimental Test: Short-Term SSRI Soak Alters
Long-Term Bioelectric Properties of Planarian Tissue

We experimentally examined the possibility of long-term
effects of transient SSRI treatment on bioelectric state in
intact planarian flatworms. We utilized the SSRI fluoxetine,
because it has previously been shown in the literature to
impact planarian regeneration.65 The serotonin neurotrans-
mitter system in planaria has been characterized in numerous
studies: an ortholog of the gene encoding the enzyme tryp-

tophan hydroxylase which catalyzes the rate-limiting step
in serotonin synthesis has been identified in Dugesia
japonica,66 planarian serotonin receptors have been charac-
terized,67,68 and multiples studies have found that SSRI
treatment impacts planaria in numerous ways, including lo-
comotion, light/dark preference (photophobic tendencies),
DNA damage, and regenerative polarity.65,69–71

To assess the impact of transient fluoxetine treatment on
bioelectric states, intact wild-type D. japonica were soaked in
a 2 lM fluoxetine solution for 3 days, at which point the
solution was washed out and the samples were placed in
Poland Spring water for 1 week at 13�C to prevent fissioning
(termed ‘‘1wk washout’’ group). Results are shown in Fig-
ure 1. Membrane polarization was then imaged using the
voltage-sensitive dye bis-[1,3-dibarbituric acid]-trimethine
oxonol [DiBAC4(3)].39,40,72 The 1wk washout group was
compared directly to samples, which had been soaking in
fluoxetine for 3 days (‘‘fluoxetine soak’’ group) before im-
aging, and an age-matched H2O (‘‘control’’) group, which
was never treated. Both the 1wk washout treated group and
the 3d fluoxetine soak group were significantly depolarized
relative to the controls (****p < 0.00001, Student’s t-test,
n = 14), while there were no differences in relative polariza-
tion between the 1wk washout group and the fluoxetine soak
group ( p = 0.16, Student’s t-test, n = 14). This indicates that
the depolarizing effect of fluoxetine is persistent far after the
drug treatment has ended.

FIG. 1. Fluoxetine exposure results in
long-term physiological changes in planaria.
(A) Planarian flatworms were exposed to
the drug Fluoxetine, washed extensively,
and then kept for 1 week in plain water.
They were then imaged using a fluorescent
voltage reporter dye (see Materials and
Methods section) and compared to controls
(exposed to vehicle only) or animals after
3 days of continuous fluoxetine exposure.
(B) Quantification of the fluorescence signal
revealed that even after 7 days in plain
water, a brief exposure to Fluoxetine depo-
larizes the animal as much as does 3 days of
continuous exposure, revealing a persistent
voltage memory induced by SSRI treatment.
SSRI, selective serotonin reuptake inhibitor.
***indicates significance to p < 0.01.
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Conclusion

SSRIs’ main target is the serotonin transporter, SERT. The
well-known role of neurotransmitters in brain function has
been suggested73 to be an evolutionary extension of a more
ancient and ubiquitous role in developmental (preneural)
morphogenetic systems.74–76 A number of neurotransmitter
pathways have been identified as functioning in vertebrate
development, for example, in the embryogenesis of the face,77

eye,78 and heart,79–87 as well as invertebrate regeneration65 and
development.88,89 SERT, and serotonin signaling more
broadly, has been identified as being part of bioelectric circuits
in prior work. For example, voltage differences in early em-
bryos drive the consistent left-right asymmetry of maternal
serotonin molecules, which in turn control lateralized gene
expression and visceral organ situs.90–93 Likewise, bioelectric
controls of serotonin movement through gap junctions mediate
the effect of ion channel drugs on ectopic innervation from
transplanted organs94–96 and conversion of cells to a metastatic
phenotype.95,97–99 However, prior work placed SERT down-
stream of voltage changes, and it was not known that SSRIs
could also function upstream to alter Vmem of non-neural cells
(relevant effects on neurons have been observed howev-
er100,101). In this study, we show this in planaria; moreover, the
changes are persistent long after the SSRI is withdrawn.

Bioelectric circuits can maintain long-term and stable
changes of state after relatively brief alterations of Vmem, and
we have previously suggested bioelectric state to be a target
of SSRIs and other psychoactive drugs in the context of de-
velopmental defects.102 Such alterations can plausibly affect
neural (and non-neural) responses such as could be important
for human sexual function, either directly on somatic cells or
through indirect effects acting through the microbiome, im-
mune system, or brain.12,103–105 Bioelectric memory has not
yet been demonstrated in human patient tissues, representing
an important area for subsequent work, which could be ad-
dressed in vivo and in human organoid systems in vitro.106

Paralleling the development of ion channel modulator drug
cocktails, guided by computational models of bioelectric
circuits to induce desired pro-regenerative states, it’s possible
that the negative effects of SSRI exposure could someday be
mitigated by rationally designed cocktails of already human-
approved drugs acting as ionoceuticals.107,108

Materials and Methods

Planaria husbandry

A clonal colony of D. japonica maintained in Poland
Spring water at 13�C was used for the experiments in this
study. All samples were starved for >7 days and continued to
be starved throughout all experiments to control for meta-
bolic variance in individual planaria. Colony care was per-
formed as described in Oviedo et al.109

DiBAC membrane voltage assay

DiBAC4(3) (Invitrogen, Carlsbad, CA) was utilized to
visualize membrane potential in samples. Whole intact
samples were treated with a 2 lM fluoxetine solution for
3 days, at which point they were rinsed thrice to remove
residual solution and placed in water. One week after the
fluoxetine treatment, these samples were imaged along with
planaria that had been soaked for 3 days in fluoxetine, as well

as H2O controls. Samples were soaked in DiBAC, which had
been dissolved in the appropriate solution for the treatment,
for half an hour before imaging. Planaria were immobilized
using a 2% low-melting point agarose and mounted on mi-
croscopy slides using a cold plate. Groups of fluoxetine 1wk
washout, fluoxetine in drug, and H2O control samples were
mounted in a single slide, ventral side up. Analysis of relative
membrane potential was done using the measure function in
ImageJ software.
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