
Segregation of functional networks is
associated with cognitive resilience in
Alzheimer’s disease

Michael Ewers,1,2 Ying Luan,1 Lukas Frontzkowski,1 Julia Neitzel,1 Anna Rubinski,1

Martin Dichgans,1,2,3 Jason Hassenstab,4,5,6 Brian A. Gordon,4,5,6

Jasmeer P. Chhatwal,7 Johannes Levin,2,8 Peter Schofield,9,10

Tammie L. S. Benzinger,4,11 John C. Morris,4,5,12Alison Goate,13,14

Celeste M. Karch,4,12,15 Anne M. Fagan,4,5,15 Eric McDade,4,5 Ricardo Allegri,16

Sarah Berman,17 Helena Chui,18,19 Carlos Cruchaga,5,12,15,20 Marty Farlow,21

Neill Graff-Radford,22 Mathias Jucker,23,24,25 Jae-Hong Lee,26 Ralph N. Martins,27,28,29,30

Hiroshi Mori,31 Richard Perrin,4,15,32 Chengjie Xiong,4,33 Martin Rossor,34 Nick C. Fox,34

Antoinette O’Connor,34,35 Stephen Salloway,36 Adrian Danek,8 Katharina Buerger,1,2

Randall J. Bateman,4,5 Christian Habeck,37 Yaakov Stern37 and Nicolai Franzmeier1

for the Alzheimer’s Disease Neuroimaging Initiative and the Dominantly Inherited
Alzheimer Network

Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer’s disease, but the func-
tional brain mechanisms that support cognitive resilience remain elusive. Given previous findings in normal
ageing, we tested the hypothesis that higher segregation of the brain’s connectome into distinct functional net-
works represents a functional mechanism underlying cognitive resilience in Alzheimer’s disease.
Using resting-state functional MRI, we assessed both resting-state functional MRI global system segregation,
i.e. the balance of between-network to within-network connectivity, and the alternate index of modularity Q as
predictors of cognitive resilience. We performed all analyses in two independent samples for validation: (i) 108
individuals with autosomal dominantly inherited Alzheimer’s disease and 71 non-carrier controls; and (ii) 156
amyloid-PET-positive subjects across the spectrum of sporadic Alzheimer’s disease and 184 amyloid-negative
controls.
In the autosomal dominant Alzheimer’s disease sample, disease severity was assessed by estimated years from
symptom onset. In the sporadic Alzheimer’s sample, disease stage was assessed by temporal lobe tau-PET (i.e.
composite across Braak stage I and III regions). In both samples, we tested whether the effect of disease severity
on cognition was attenuated at higher levels of functional network segregation. For autosomal dominant
Alzheimer’s disease, we found higher functional MRI-assessed system segregation to be associated with an atte-
nuated effect of estimated years from symptom onset on global cognition (P = 0.007). Similarly, for patients with
sporadic Alzheimer’s disease, higher functional MRI-assessed system segregation was associated with less dec-
rement in global cognition (P = 0.001) and episodic memory (P = 0.004) per unit increase of temporal lobe tau-PET.
Confirmatory analyses using the alternate index of modularity Q revealed consistent results.
In conclusion, higher segregation of functional connections into distinct large-scale networks supports cognitive
resilience in Alzheimer’s disease.
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Introduction
Cognitive resilience is defined as the ability to maintain cognitive
abilities relatively well in the presence of age-related brain decline or
brain pathologies.1,2 In Alzheimer’s disease, the level of cognitive
impairment shows substantial variability even when accounting

for key pathologies including amyloid-b and pathological tau.3,4

Protective environmental factors such as education, midlife activities
and physical activity have been found to be associated with lower
cognitive impairment and dementia risk in Alzheimer’s disease,5–7

suggesting that cognitive resilience may modulate the impact of
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pathology on cognition. However, the functional brain properties
underlying cognitive resilience remain elusive. Answering that ques-
tion may help identify and target brain mechanisms that slow down
cognitive decline in the presence of Alzheimer’s disease pathology.
Enhancing cognitive resilience to delay the onset of dementia as
much as by 1 year would translate into an age-dependent decrease
in dementia prevalence of over 10%.8

Previous neuroimaging studies have reported several brain fea-
tures associated with cognitive resilience in Alzheimer’s disease,9

including higher functional connectivity of hubs in the cognitive
control and salience network10–14 or higher glucose metabolism and
brain activation of the anterior cingulate and temporal cortex.15–17

These findings provide valuable insight into particular brain regions
contributing to cognitive resilience in Alzheimer’s disease, but over-
all those regional findings are diverse and variable across studies.9

There is currently a lack of understanding of which differences in
the global functional brain topology support cognitive resilience.
From a clinical point of view, a single easily accessible measure of
global brain function linked to cognitive resilience would be attract-
ive as a mechanistic functional marker of cognitive resilience.18 Here
we propose resting-state functional MRI (rs-fMRI) assessed segrega-
tion between functional networks (called systems) as a putative
neural substrate of cognitive resilience. The brain is composed of in-
trinsically wired functional networks,19,20 where each network corre-
sponds to a set of tightly connected regions.20,21 Such a modular
functional organization of the brain in the form of clearly segregated
functional networks is a critical feature of the functional connec-
tome underlying cognitive performance.22–24 Multiple graph theoret-
ical indices have been proposed to quantify the segregation of
networks.25 Here, we focus on the statistic called system segregation
(SyS), which quantifies the extent to which major functional net-
works are segregated from each other (i.e. high within-network but
low between-network connectivity).26 An alternative index is the
modularity statistic Q, which quantifies extent to which the cluster-
ing of connections into networks deviates from that expected in a
randomly connected brain.22 We chose SyS as our primary predictor
because this metric is best suited to quantify the segregation be-
tween predefined major resting state networks and thus allows for a
clear reference to previously well-characterized functional net-
works.27 Results from rs-fMRI studies show higher SyS to be associ-
ated with higher global cognitive performance across the adult life
span.26,28 However, few studies have assessed SyS in relation to cog-
nitive resilience. The proxy measure of cognitive resilience including
higher socioeconomic status29,30 was previously found to be associ-
ated with higher SyS in normal ageing.31 In patients with brain in-
jury, higher SyS was associated with better post-recovery cognitive
performance,32 suggesting that SyS confers higher resilience against
the impact of brain pathology on cognitive function. Despite these
previous findings, to our knowledge no study has yet assessed SyS
as a substrate of cognitive resilience in Alzheimer’s disease. Here we
tested whether higher rs-fMRI-assessed SyS attenuates the associ-
ation between markers of Alzheimer’s disease severity and cognitive
decline in two different samples of individuals with genetic or bio-
marker evidence of Alzheimer’s disease. To enhance criterion valid-
ity of our analyses, we also tested the alternate modularity index Q
as a predictor of cognitive resilience.

Materials and methods
Participants

Dominantly Inherited Alzheimer Network
We included 108 carriers of autosomal dominant Alzheimer’s dis-
ease (ADAD) disease-causing mutations in genes PSEN1, and
PSEN2 or APP, and 71 non-carrier siblings from Dominantly

Inherited Alzheimer Network (DIAN) data freeze 10.33 Beyond
DIAN inclusion criteria, the current study required availability of 3
T rs-fMRI, T1 structural MRI and cognitive assessments. No selec-
tion bias (i.e. demographic differences between the included par-
ticipants and excluded participants) was found (P4 0.05) for age,
gender or education. As a proxy of Alzheimer’s disease severity,
we applied the estimated years from symptom onset (EYO),
defined as the difference between a participants age at examin-
ation and the parental age of symptom onset for ADAD mutation
carriers, as described previously.10,34,35 We did not use biomarker
levels of pathological tau (as we did in ADNI, see below), since nei-
ther CSF biomarkers of tau nor tau PET were available in all sub-
jects in DIAN. Each participant provided written informed consent.
Local ethical approval was obtained at each DIAN site.

Alzheimer’s Disease Neuroimaging Initiative
For the evaluation of late-onset Alzheimer’s disease, we included
data from the 340 participants included in Alzheimer’s Disease
Neuroimaging Initiative (ADNI) phase 3, which were selected
based on availability of T1-weighted and rs-fMRI, 18F-AV1451 tau-
PET for the assessment of tau and 18F-AV45 amyloid-PET for the
assessment of amyloid deposition. All measures had to be
obtained at the same study visit. Using Freesurfer-derived global
amyloid-PET standardized uptake value ratio (SUVR) scores nor-
malized to the whole cerebellum (provided by the ADNI-PET Core),
all participants were characterized as amyloid-b-positive or -nega-
tive based on an established cut-off point (global AV45 SUVR 4
1.11).36 As a control group, we included 184 cognitively normal
[Mini-Mental State Examination (MMSE)424, clinical dementia
rating (CDR) = 0, non-depressed] amyloid-b-negative participants.
To cover the Alzheimer’s continuum, we included 89 cognitively
normal amyloid-b-positive participants, 59 mild cognitively
impaired amyloid-b-positive participants (MMSE424, CDR = 0.5,
objective memory-loss on the education adjusted Wechsler
Memory Scale II, preserved activities of daily living) and eight
amyloid-b-positive patients with dementia (MMSE526, CDR40.5,
fulfilment of NINCDS/ADRDA criteria for probable Alzheimer’s dis-
ease).37 Region of interest-specific AV1451 tau-PET data for
Freesurfer-based Desikan-Killiany regions of interest provided by
the ADNI PET-Core were downloaded from the online ADNI image
archive (https://ida.loni.usc.edu). As a proxy of disease severity in
sporadic Alzheimer’s disease, tau-PET uptake averaged across
Braak-stage regions of interest I and III was assessed according to
a previously described protocol.38 We specifically focused on these
early Braak-stage regions of interest to enhance sensitivity to tau
accumulation during the early stages of Alzheimer’s disease. We
excluded the hippocampus (i.e. Braak-stage-II region of interest)
because of known susceptibility of AV1451 PET PET measures in
the hippocampal region to spill-over effects of off-target AV1451
binding in the neighbouring choroid plexus.39 Ethical approval was
obtained by the ADNI investigators, all participants provided writ-
ten informed consent.

Neuropsychology

In DIAN, we used a pre-established z-score composite score of glo-
bal cognition, which was designed by the DIAN cognitive core
based on the tests’ low ceiling/floor effects, high face validity and
sensitivity to early Alzheimer’s disease, and is included as the pri-
mary end point in the DIAN clinical trial.40 For the assessment of
episodic memory, a memory composite was generated, which was
defined as the average z-score (i.e. normalized to the full DIAN
baseline sample of cognitively normal non-mutation carriers)
across all memory scores available in DIAN (i.e. Wechsler Memory
Scale-Revised, Story A logical memory immediate and delayed
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recall, immediate and delayed recall of a 16-item word list, and an
associative memory test). These tests were chosen due to their
sensitivity to cognitive changes in early stage ADAD subjects (at
CDR score = 0.05) as previously described.41 For ADNI participants,
we used the total score of the ADAS13 for global cognition and the
pre-established composite memory score ADNI-MEM,42 which is a
widely used composite scores of cognition in ADNI,43 and thus
offers high comparability between studies. As expected, measures
of global cognition and memory were correlated within each co-
hort (DIAN: r = 0.81, P50.001; ADNI: r = –0.85, P5 0.001).

MRI acquisition and preprocessing

In all samples, MRI data were obtained on 3 T scanner systems.
Structural MRI was obtained in both samples using a 3D T1-
weighted magnetization prepared rapid acquisition gradient echo
(MPRAGE) sequence (ADNI: 1 mm isotropic voxel-size, repetition
time = 2300 ms; DIAN 1.1 � 1.1 � 1.2 mm voxel-size, repetition
time = 2300 ms). In ADNI, 200 rs-fMRI volumes were obtained using
a T2*-weighted EPI sequence with 3.4 mm isotropic voxel reso-
lution with a repetition time/echo time/flip angle = 3000 ms/30 ms/
90�. In DIAN, 140 rs-fMRI volumes were collected also using aT2*-
weighted echo planar imaging (EPI) sequence with a TR/TE/flip
angle = 2230ms/30 ms/80�. All rs-fMRI images were preprocessed
and spatially normalized using the same SPM12-based (Wellcome
Trust Centre for Neuroimaging, University College London) pipe-
line using DARTEL as described previously.10,13,14 Rs-fMRI prepro-
cessing further included motion correction, detrending, band-pass
filtering (0.01–0.08 Hz), nuisance regression (i.e. six motion param-
eters, mean signal extracted from CSF and white matter masks),
motion scrubbing and spatial smoothing using an 8 mm full-width
at half-maximum Gaussian kernel. Motion scrubbing followed a
pre-established approach, where we computed frame-wise dis-
placement between adjacent fMRI volumes. Volumes that
exceeded a frame-wise displacement threshold 40.5 mm were
censored (i.e. replaced with zero-padded volumes) together with
one preceding and two subsequent volumes. No subjects were
included for which 430% of the resting-state scan had to be
removed during motion scrubbing. There were no differences in
the average percentage of censored volumes (ADNI: 6 ±11%; DIAN
7 ± 10%) between amyloid-b-positive versus amyloid-b-negative in
ADNI or between mutation carriers versus non-carriers in DIAN
(all P4 0.05). Note that all the above described image processing
steps were conducted independently in DIAN and ADNI, hence no
data were merged between the two cohorts during any stage of
data processing or analysis.

Assessment of functional connectivity and
system segregation

Functional connectivity was estimated in a region of interest-
based manner, using 400 regions of interest from the Schaefer
fMRI atlas (Fig. 1) which covers the neocortex.44 The 400 regions
are grouped within seven large-scale functional networks (Fig. 1A)
in line with previous parcellations.45 Prior to all analyses, the
Schaefer fMRI atlas was masked with sample-specific grey matter
masks (i.e. voxels with at least 30% probability of belonging to grey
matter within the ADNI or BioFINDER sample). Interregional func-
tional connectivity was estimated for each subject based on the
fully preprocessed fMRI data. Specifically, we extracted the mean
fMRI time series for each of the 400 regions of interest by averaging
the signal across voxels falling within a given region. Mean region
of interest time series were then cross-correlated using Pearson-
Moment correlation, yielding a 400 � 400 functional connectivity
matrix that was subsequently Fisher z-transformed.

Autocorrelations were set to zero and only positive connections
were retained. System segregation was computed for each of the
seven networks from a previously established network parcella-
tion44 as the difference between mean within network functional
connectivity and mean functional connectivity of the network
nodes to the remaining six networks (i.e. between-network func-
tional connectivity), as:

SyS ¼ zw � zb

zw
(1)

where zw is the mean connectivity of all nodes within a given net-
work and zb is the mean connectivity of all nodes of a given net-
work to nodes outside of that network.26 Global SyS was computed
as the mean segregation across all seven networks and used for
subsequent analyses.

To ensure that our analyses were not driven by the selection of
a particular graph-metric, we additionally computed the modular-
ity coefficient Q,46 which is an alternative measure to quantify the
segregation of brain networks, using the following equation:

Q ¼ 1
2m

X
ij

Aij �
kikj

2m

� �
d ci; cjð Þ (2)

where Aij represents the connectivity between nodes i and j, ki and
kj are the sum of the connectivity weights attached to nodes i and
j, m is the sum of all connectivity weights in the graph, ci and cj are
the communities of the nodes and d is the Kronecker delta func-
tion. SyS and Q were highly correlated in both cohorts (DIAN:
r = 0.9, R2 = 0.81, P50.001; ADNI: r = 0.86, R2 = 0.74, P50.001), sup-
porting the notion that both metrics assess the same underlying
construct of brain network segregation.

Statistics

For DIAN, baseline demographic scores were compared between
mutation-carriers and non-carriers using t-tests for continuous
and v2 tests for nominal variables. For the ADNI sample, demo-
graphics were compared between diagnostic groups using
ANOVAs for continuous variables and v2 for nominal variables.

In DIAN, we first tested whether higher EYO was associated with
worse cognitive performance (i.e. global cognitive and memory com-
posite), using linear mixed models, controlling for age, gender, edu-
cation (fixed effects), family affiliation and random intercept

Figure 1 Functional brain parcellation. 400-ROI Brain parcellation that
was used to determine functional connectivity and system segregation
between brain networks.44
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(random effects). For our major hypothesis, we assessed next
whether higher SyS attenuated the association between advanced
EYO and cognitive performance in the ADAD mutation carriers. To
this end, we used linear mixed models to test the interaction be-
tween SyS and EYO on cognition (i.e. global cognitive and memory
composite), again controlling for age, gender, education, mean mo-
tion (i.e. framewise displacement) during the rs-fMRI scan (fixed
effects), family affiliation and random intercept (random effects).
For analyses in DIAN, we used a Bonferroni-corrected alpha thresh-
old of 0.025 (i.e. a = 0.05 adjusted for two tests, that is one test on glo-
bal cognition, the other on memory performance).

In the ADNI tau-PET sample, we used tau-PET in Braak-stage I
and III regions as markers of early core Alzheimer’s disease path-
ology. We preferred tau-PET over amyloid PET as a marker of dis-
ease progression, given tau-PET’s superior correlation with
neurodegeneration and cognitive decline in Alzheimer’s dis-
ease.47,48 We first tested whether a higher tau-PET SUVR (i.e. Braak
I + III composite) was associated with worse cognition (i.e. ADAS13
for global cognition and ADNI-MEM for memory performance),
using linear mixed models controlling for age, gender, education,
mean motion (i.e. framewise displacement) during the rs-fMRI
scan (fixed effects), study centre and random intercept (random
effects). Next, we again tested our major hypothesis whether
higher SyS attenuated the effect of Braak I + III tau-PET SUVR on
ADAS13/ADNI-MEM (i.e. SyS � Braak I + III tau-PET interaction)
using linear mixed models, and controlling for age, gender, educa-
tion, mean motion (i.e. framewise displacement) during the rs-
fMRI scan (fixed effects), study centre and random intercept (ran-
dom effects). As in DIAN, we used a Bonferroni-corrected alpha
threshold of 0.025, adjusting for two tests. To ensure that the
above described analyses were not driven by the selection of SyS
as a graph metric, we repeated the analyses using the modularity
coefficient Q (as implemented in the R toolbox phenoClust) as an
alternative measure of network segregation. All statistical analy-
ses were performed in R statistical software (version 3.6.1).

Data availability

The data that support the findings of this study are available from
the corresponding author for the purpose of replication upon
request.

Results
Baseline subject characteristics are displayed in Table 1. When
comparing SyS scores between Alzheimer’s disease groups and
controls, there was no difference in SyS between mutation-carriers
and the non-carrier group (F = 2.388, P = 0.124; Fig. 2A) of the DIAN
sample. In ADNI, however, we found decreased SyS in amyloid-b-
positive as compared to amyloid-b-negative participants (F = 8.904,
P = 0.003; Cohen’s d = –0.478; Fig. 2B).

System segregation attenuates cognitive deficits in
familial Alzheimer’s disease

As a proxy of ADAD disease severity, we used EYO, which is
associated with performance on measures of both global cogni-
tion (b = –0.657, Cohen’s d = –1.834, P50.001) and memory
(b = –0.590, Cohen’s d = –1.376, P5 0.001) as shown by linear
mixed effects models controlling for age, gender, education
(fixed effects) and family affiliation and random intercept (ran-
dom effects). To test our major hypothesis, we determined the
interaction effect between system segregation and EYO on ei-
ther global cognition or memory, controlling for gender, educa-
tion, mean motion during the rs-fMRI scan (i.e. framewise
displacement; fixed effects), family affiliation and random inter-
cept (random effects). As hypothesized, we found a SyS segrega-
tion by EYO interaction on global cognition (b = 0.209, P = 0.007,
Cohen’s d = 0.57; Fig. 3A), such that ADAD mutation-carriers
with higher SyS had better global cognitive performance at a
given level of EYO compared to ADAD mutation-carriers with
lower SyS. The interaction effect remained significant after
accounting for multiple testing. Testing the same interaction ef-
fect for memory performance, however, yielded non-significant
results (b = 0.026, P = 0.799, Cohen’s d = –0.055; Fig. 3B). Using the

modularity coefficient Q instead of SyS yielded consistent inter-
action effects with EYO on global cognition (b = 0.209, P = 0.004,
Cohen’s d = 0.650; Supplementary Fig. 1A) but not memory per-
formance (b = 0.033, P = 0.727; Supplementary Fig. 1B). Together,
the analyses in the DIAN cohort suggest that higher segregation
of brain networks is associated with attenuated global cognitive
decreases in ADAD.

Table 1 Sample characteristics in each group

ADNI CN Ab–
(n = 184)

CN Ab +
(n = 89)

MCI Ab +
(n = 59)

Alzheimer’s
disease dementia

(n = 8)

P-value

Age 72.3 (6.8) 75.8 (6.6) 76.3 (7.5) 73.5 (11.5) 50.001
Gender, female/male 112/72 56/33 25/34 3/5 0.033
Education 16.9 (2.3) 16.4 (2.5) 15.8 (2.7) 16.3 (2.3) 0.010
ADAS13 12.2 (4.6) 13.6 (5.6) 22.8 (10.5) 31.7 (8.6) 50.001

DIAN Non-carrier
(n = 71)

Mutation-carrier
(n = 108)

Age 38.1 (10.3) 38.0 (10.5) 0.953
EYO –9.8 (11.0) –8.6 (11.2) 0.470
Gender, female/male 44/27 68/40 0.990
Education 15.2 (3.1) 14.2 (3.3) 0.033
Global cognitive composite 0.19 (0.2) –0.15 (0.5) 50.001

The classification of amyloid-b-positive (Ab + ) or amyloid-b-negative (Ab–) status was based on a previously established cut-off point (global AV45 SUVR 4 1.11).36 For continu-

ous measures, the mean (SD) are displayed. CN = cognitively normal; MCI = mild cognitive impairment.
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System segregation is associated with cognitive
resilience in sporadic Alzheimer’s disease

We aimed to assess whether beneficial effects of SyS on cognition
are also evident in the more common sporadic form of
Alzheimer’s disease. To this end, we tested in 156 amyloid-b-posi-
tive ADNI participants whether higher SyS was associated with
attenuated effects of primary Alzheimer’s disease pathology on
cognition. As a measure of primary Alzheimer’s disease pathology
that is strongly linked to cognition, we used a composite tau-PET
SUVR score, summarizing tau-PET levels within Braak stage-spe-
cific regions of interest I and III. The tau-PET composite of Braak-
stage regions of interest I and III was significantly higher in the
amyloid-b-positive group than in the amyloid-b-negative group
(F = 51.69, P50.001, Cohen’s d = 0.809, ANCOVA controlled for age
gender and education), and higher tau-PET composite scores were
strongly associated with worse global cognition (i.e. ADAS13 total
score, b = 0.26, Cohen’s d = 0.613, P50.001) and memory (i.e. ADNI-
MEM, b = –0.372, Cohen’s d = –0.622, P50.001) in the amyloid-b-
positive group [linear mixed models controlling for age, gender,
education (fixed effects), study centre and random intercept (ran-
dom effects)]. Analogous to our analyses in DIAN, we then tested
the interaction between SyS and the tau-PET composite on global
cognition (i.e. ADAS13 total score) memory (i.e. ADNI-MEM), con-
trolling for age, gender, education, diagnosis and mean framewise
displacement (fixed effects) as well as study centre and random
intercept (random effects). We found significant SyS by tau-PET
composite interactions on both global cognition (b = –0.268
P5 0.001, Cohen’s d = –0.569; Fig. 3C) and memory performance
(b = 0.220, P = 0.004, Cohen’s d = 0.488; Fig. 3D). Both interaction
effects remained significant after accounting for multiple testing.
As shown in Fig 3C and D, higher SyS was associated with less se-
vere global cognitive and memory impairment as a function of
tau-PET. Tau-PET was not associated with lower SyS in ADNI amyl-
oid-b-positive subjects. Repeating the above described analyses
with the modularity coefficient Q (i.e. tau-PET by modularity inter-
action), yielded consistent results for global cognition (b = –0.175,
P = 0.021, Cohen’s d = –0.393; Supplementary Fig. 1C) and memory

(b = 0.180, P = 0.015, Cohen’s d = 0.413; Supplementary Fig. 1D). The
modularity index Q was not associated with tau PET (P4 0.05).
When exploratorily repeating the analyses in the amyloid-b-nega-
tive group, no significant tau-PET composite by SyS or tau-PET
composite by modularity interaction effects were found (all
P4 0.05; Supplementary Fig. 2), suggesting that effects were
restricted to the amyloid-b-positive group. We caution, however,
that the current study was not intended to test associations be-
tween tau and cognition in normal ageing, thus the analyses in the
amyloid-b-negative group are exploratory and should not be
regarded as evidence that SyS does not attenuate age-related cog-
nitive changes. Together, our findings support the hypothesis that
higher segregation of brain networks supports higher cognitive
performance in the face of Alzheimer’s disease pathology.

Discussion
We found that higher rs-fMRI-assessed SyS was associated with
attenuated cognitive deficits in ADAD and sporadic Alzheimer’s
disease, such that higher SyS predicted a lower impact of disease
progression markers (including EYO and tau PET) on cognitive per-
formance. All findings were replicated with the modularity coeffi-
cient Q, i.e. an alternative graph metric for segregation between
brain networks. Although our findings do not imply that the segre-
gation of brain networks has a causative effect, these results
strongly support a protective role of SyS on cognitive changes dur-
ing the course of Alzheimer’s disease.

SyS was associated with an altered effect of core Alzheimer’s
disease progression markers on cognition, providing the first evi-
dence that higher SyS is not only associated with higher cognition
in normal ageing as shown previously,26,28 but also with higher
cognitive resilience in Alzheimer’s disease. We found the same
pattern of results when using the alternate index of modularity Q.
Although computationally different, both indices are conceptually
closely related by quantifying the extent to which functional con-
nections segregate into densely connected networks.27 Thus,
across different graph theoretical indices, we found that higher

Figure 2 Group differences in SyS. Group differences in system segregation between controls and patients with autosomal dominant (DIAN) and
sporadic (ADNI) Alzheimer’s disease.
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segregation of networks is associated with enhanced cognitive re-
silience. We validated our findings across different cohorts includ-
ing ADAD and sporadic Alzheimer’s disease. ADAD provides a
unique opportunity to study cognitive resilience-related mecha-
nisms in Alzheimer’s disease, where the confounding influence of
age-related pathologies such as hypertensive cerebrovascular dis-
ease are unlikely due to early disease onset.49 However, although
pathological brain alterations in ADAD are largely comparable to
those in sporadic late-onset Alzheimer’s disease,34,49,50 there are
important differences. Compared to sporadic Alzheimer’s disease,
ADAD is associated with greater subcortical deposition of amyloid-
b and higher occurrence of atypical ‘cotton wool’ amyloid pla-
ques.51 Therefore, the validation of our findings on the protective
effects of SyS in sporadic Alzheimer’s disease is important.
Together, these results provide evidence for a protective role of
SyS in Alzheimer’s disease regardless of disease aetiology.

In the current study, SyS was slightly reduced in participants
with biomarker evidence of sporadic Alzheimer’s disease but not
ADAD, however the overlap in SyS was large in ADNI between the
Alzheimer’s disease and non-Alzheimer’s disease groups. One
possible explanation for the inconsistency between ADNI and
DIAN is that not all ADAD individuals yet showed elevated levels
of Alzheimer’s disease pathology, which may have reduced our
power to detect the small Alzheimer’s disease-related reduction in
SyS. Our results of SyS decreases in sporadic, amyloid-b-positive
participants are consistent with previous reports of reduced segre-
gation of functional networks in elderly participants with elevated
biomarker levels of amyloid-b.52 The reduction of SyS in partici-
pants with elevated levels of amyloid-b raises the possibility that
individuals with higher SyS had simply less severe Alzheimer’s
disease pathology and thus lower cognitive impairment. However,

we consider this explanation unlikely. Note that we tested the
interaction effect of SyS by tau-PET on cognition, where in individ-
uals with higher SyS, the decrease in cognition per unit increase in
tau pathology was attenuated. Therefore, the critical test for cogni-
tive resilience was whether SyS was associated with an attenuated
effect of tau PET on cognitive impairment rather than the level of
tau pathology per se. Moreover, within the group of amyloid-PET
positive participants, SyS was not related to amyloid PET levels or
tau PET, where SyS was still associated with an attenuated effect
of tau PET on cognitive decline. Thus, the association between SyS
and cognitive resilience cannot be simply attributed to lower levels
of core Alzheimer’s disease pathology in individuals with higher
SyS.

The specific functional mechanisms that link SyS to higher cog-
nitive performance are not fully understood. A recent theoretical
framework suggested that SyS could be regulated by multiple con-
trol mechanisms such as hub connectivity in cognitive control net-
works.18,53 Higher system segregation is under the tight control of
hubs, i.e. highly connected regions that are thought to be central
to brain function.54 In cognitively normal individuals, higher con-
nectivity between hubs and major networks in the brain are asso-
ciated with higher segregation of functional networks, which, in
turn, are associated with higher cognitive performance across dif-
ferent cognitive domains.53 We and others have previously shown
that both higher resting-state and task-related functional connect-
ivity of a global hub in the cognitive control network is associated
with higher cognitive resilience.10,11,13,14,55,56 In addition, function-
al connectivity and activity of the anterior cingulate, another hub
in the brain linked with higher modularity and higher general cog-
nitive function,57,58 has been repeatedly associated with higher
cognitive resilience in ageing and Alzheimer’s disease.17,59

Figure 3 System segregation moderates the association between Alzheimer’s disease severity and cognition. Interaction effect of system segregation
by disease progression markers on cognitive performance in autosomal dominant (A and B) and sporadic Alzheimer’s disease (C and D). Note that
interaction effects were determined using continuous values of system segregation, while median splits are for illustrational purposes only. Note
that higher scores on the ADAS13 (C) indicates worse cognition, whereas higher scores on the composite measures (A, B and D) indicate better
cognition.
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Together, these findings suggest that higher SyS may be a down-
stream final pathway of functional topology of the brain that sup-
ports cognitive resilience in Alzheimer’s disease. It is important to
consider that our current results are based on rs-fMRI which may
act as a baseline reference of functional brain organization from
which task-specific network changes occur.27,60 Interactions and
connectivity between brain networks have been shown to dynam-
ically change during task-demands.61 In fact, it has been shown
that brain network segregation decreases when individuals face
novel and difficult tasks, but that network segregation restores
during learning of the task. This suggests that mastering a task is
associated with increasing system segregation.62 Thus, it will be a
critical next step to assess whether higher resting-state SyS is
associated with task-specific network reorganization and cognitive
performance. A further open question is whether the interindivid-
ual differences in SyS are persistent throughout life and which fac-
tors may have caused such differences. Note that we used the
term cognitive resilience rather than cognitive reserve in the cur-
rent study to remain agnostic to varies sources of influence that
may have determined or shaped SyS. Life span studies are need to
address genetic,63 life style64 and age-specific factors7 that influ-
ence SyS.

Limitations

One limitation is that we assessed SyS based on a priori defined
large-scale resting-state networks rather than networks/modules
defined at the individual level. Network boundaries may change
during ageing and disease, and thus the measure of SyS and
modularity Q based on predefined networks may be altered due to
ill-defined networks. However, large-scale resting state networks
have been shown to be highly reproducible in ageing and
Alzheimer’s disease. A major advantage of choosing canonical
resting state networks as the basic units is the increased interpret-
ability of the findings, given the extensive cognitive characteriza-
tion of such networks.20 An alternate computation of the
modularity index Q is based on a data-driven determination of net-
works,65 including the search for the optimal clustering of func-
tional connections. However, the modularity optimization search
is a non-deterministic polynomial hard problem,66 where the opti-
mization depends on multiple parameters without any hard crite-
ria of choosing the best model.67 Therefore, from a clinical point of
view, it is more attractive to resort to a priori well-established and
cognitively characterized functional networks as the basic units of
network analysis.

Another caveat is the question of how stable and reproducible
SyS is across time. Functional MRI connectivity estimation can be
biased by physiological noise (e.g. respiratory and cardiac signals;
vascular changes) and motion artefacts that may limit reliable es-
timation of SyS or Q.68,69 To correct for motion artefacts we com-
bined motion correction, motion regression and motion scrubbing,
referring to the censoring of high-motion volumes from fMRI data,
which has been shown to minimize the influence of motion on
connectivity estimation.68 In addition, we included subject-specific
average motion estimates as covariates in second level statistical
models to additionally correct the assessment of SyS by tau-PET
(ADNI) or SyS by EYO (DIAN) interaction models for motion during
the fMRI scan. While the currently employed motion correction
pipeline has been motivated by previous work,68 we would like to
acknowledge that other motion-correction methods have been
also proposed, including data interpolation, principal component-
based denoising etc., and there is currently no ‘best’ motion-cor-
rection pipeline.70 For physiological noise (e.g. respiratory, cardiac
signals and vascular confounds), there were no consistent meas-
ures available across the cohorts, hence we encourage future

studies to validate our findings using fMRI data with concurrent
physiological recordings or vascular health measures. Regarding
test-retest reliability of the currently used fMRI measures, there is
a dearth of data for SyS. However, previous studies on the modu-
larity index Q show moderate test-retest variability, which was su-
perior to the reliability of first order interregional connectivity
measures,71 e.g. commonly used pair-wise region of interest-to-re-
gion of interest correlations. Importantly, the size of inter-individ-
ual differences in modularity exceed that of temporal fluctuations
of modularity within an individual,72 supporting the view that
fMRI assessed modularity may serve as a fingerprint of cognitive
resilience in participants.

Conclusions
We demonstrated for the first time that individuals with higher
SyS exhibited attenuated cognitive impairment at a given level of
Alzheimer’s disease pathology. Higher modular organization of
the brain may thus play an important role in maintaining relative-
ly well cognitive abilities in the face of Alzheimer’s disease path-
ology. The rs-fMRI-based assessment of SyS provides thus both
mechanistic insight into functional brain differences that support
cognitive resilience as well as a promising approach to develop a
marker to predict progression of cognitive decline in Alzheimer’s
disease.

Acknowledgements
We would like to thank all the researchers in the DIAN (www.dian-
info.org/personnel.htm) and ADNI study. We acknowledge the al-
truism of the DIAN and ADNI participants and their families.

Funding
The study was funded by LMUexcellent, the Bavaria-Quebec
Foundation (to M.E.), Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) grant for major research instru-
mentation (DFG, INST 409/193-1 FUGG, to M.D.), and the National
Institute for Health Research University College London Hospitals
Biomedical Research Centre and the MRC Dementias Platform UK
(MR/L023784/1 and MR/009076/1 to M.R.). Data collection and shar-
ing for this project was supported by The Dominantly Inherited
Alzheimer’s Network (DIAN, U19AG032438) funded by the National
Institute on Aging (NIA). Data collection and sharing for this pro-
ject was funded by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (National Institutes of Health Grant U01
AG024904) and DOD ADNI (Department of Defense award number
W81XWH-12–2-0012). ADNI is funded by the National Institute on
Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the fol-
lowing: AbbVie, Alzheimer’sAssociation; Alzheimer’s Drug
Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen;
Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.;
Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F.
Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd ; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson &
Johnson Pharmaceutical Research & Development LLC.; Lumosity;
Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx
Research; Neurotrack Technologies; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
Pharmaceutical Company; and Transition Therapeutics. The
Canadian Institutes of Health Research is providing funds to sup-
port ADNI clinical sites in Canada. Private sector contributions are
facilitated by the Foundation for the National Institutes of Health

Functional networks and cognitive resilience in AD BRAIN 2021: 144; 2176–2185 | 2183

http://www.dian-info.org/personnel.htm
http://www.dian-info.org/personnel.htm


(www.fnih.org). The grantee organization is the Northern
California Institute for Research and Education, and the study is
coordinated by the Alzheimer’s Therapeutic Research Institute at
the University of Southern California. ADNI data are disseminated
by the Laboratory for Neuro Imaging at the University of Southern
California.

Competing interests
The authors report no competing interests.

Supplementary material
Supplementary material is available at Brain online.

References
1. Stern Y, Arenaza-Urquijo EM, Bartres-Faz D, et al. Whitepaper:

Defining and investigating cognitive reserve, brain reserve,
and brain maintenance. Alzheimers Dement. 2020;16(9):
1305–1311.

2. Cabeza R, Albert M, Belleville S, et al. Maintenance, reserve and
compensation: The cognitive neuroscience of healthy ageing.
Nat Rev Neurosci. 2018;19(11):701–710.

3. Franzmeier N, Koutsouleris N, Benzinger T, et al.; Dominantly
Inherited Alzheimer Network (DIAN). Predicting sporadic
Alzheimer’s disease progression via inherited Alzheimer’s dis-
ease-informed machine-learning. Alzheimers Dement. 2020;
16(3):501–511.

4. Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysio-
logical processes in Alzheimer’s disease: An updated hypothet-
ical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):
207–216.

5. Wang HX, MacDonald SW, Dekhtyar S, Fratiglioni L. Association
of lifelong exposure to cognitive reserve-enhancing factors
with dementia risk: A community-based cohort study. PLoS
Med. 2017;14(3):e1002251.

6. Dekhtyar S, Marseglia A, Xu W, Darin-Mattsson A, Wang HX,
Fratiglioni L. Genetic risk of dementia mitigated by cognitive re-
serve: A cohort study. Ann Neurol. 2019;86(1):68–78.

7. Chan D, Shafto M, Kievit R, et al.; Cam-CAN. Lifestyle activities
in mid-life contribute to cognitive reserve in late-life, independ-
ent of education, occupation, and late-life activities. Neurobiol
Aging. 2018;70:180–183.

8. Zissimopoulos J, Crimmins E, St Clair P. The value of delaying
Alzheimer’s disease onset. Forum Health Econ Policy. 2014;18(1):
25–39.

9. Ewers M. Reserve in Alzheimer’s disease: Update on the con-
cept, functional mechanisms and sex differences. Curr Opin
Psychiatry. 2020;33(2):178–184.

10. Franzmeier N, Duzel E, Jessen F, et al. Left frontal hub connect-
ivity delays cognitive impairment in autosomal-dominant and
sporadic Alzheimer’s disease. Brain. 2018;141(4):1186–1200.

11. Neitzel J, Franzmeier N, Rubinski A, Ewers M; for the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Left front-
al connectivity attenuates the adverse effect of entorhinal tau
pathology on memory. Neurology. 2019;93(4):e347–e357.

12. Benson G, Hildebrandt A, Lange C, et al. Functional connectivity
in cognitive control networks mitigates the impact of white
matter lesions in the elderly. Alzheimers Res Ther. 2018;10(1):109.

13. Franzmeier N, Duering M, Weiner M, Dichgans M, Ewers M;
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Left front-
al cortex connectivity underlies cognitive reserve in prodromal
Alzheimer disease. Neurology. 142017;88(11):1054–1061.

14. Franzmeier N, Gottler J, Grimmer T, et al. Resting-state connect-
ivity of the left frontal cortex to the default mode and dorsal
attention network supports reserve in mild cognitive impair-
ment. Front Aging Neurosci. 2017;9:264.

15. Stern Y, Gazes Y, Razlighi Q, Steffener J, Habeck C. A task-invari-
ant cognitive reserve network. Neuroimage. 2018;178:36–45.

16. van Loenhoud AC, Habeck C, van der Flier WM, Ossenkoppele R,
Stern Y. Identifying a task-invariant cognitive reserve network
using task potency. Neuroimage. 2020;210:116593.

17. Arenaza-Urquijo EM, Przybelski SA, Lesnick TL, et al. The meta-
bolic brain signature of cognitive resilience in the 80 + : beyond
Alzheimer pathologies. Brain. 2019;142(4):1134–1147.

18. Medaglia JD, Pasqualetti F, Hamilton RH, Thompson-Schill SL,
Bassett DS. Brain and cognitive reserve: Translation via net-
work control theory. Neurosci Biobehav Rev. 2017;75:53–64.

19. Crossley NA, Mechelli A, Vertes PE, et al. Cognitive relevance of
the community structure of the human brain functional
coactivation network. Proc Natl Acad Sci U S A. 2013;110(28):
11583–11588.

20. Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain’s
functional architecture during activation and rest. Proc Natl
Acad Sci U S A. 2009;106(31):13040–13045.

21. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic
and task-evoked network architectures of the human brain.
Neuron. 2014;83(1):238–251.

22. Sporns O, Betzel RF. Modular brain networks. Annu Rev Psychol.
2016;67:613–640.

23. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A
resilient, low-frequency, small-world human brain functional
network with highly connected association cortical hubs.
J Neurosci. 2006;26(1):63–72.

24. Bullmore E, Sporns O. The economy of brain network organiza-
tion. Nat Rev Neurosci. 2012;13(5):336–349.

25. Sporns O. Graph theory methods: Applications in brain net-
works. Dialogues Clin Neurosci. 2018;20(2):111–121.

26. Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased
segregation of brain systems across the healthy adult lifespan.
Proc Natl Acad Sci U S A. 2014;111(46):E4997–E5006.

27. Wig GS. Segregated systems of human brain networks. Trends
Cogn Sci. 2017;21(12):981–996.

28. Varangis E, Habeck CG, Razlighi QR, Stern Y. The effect of aging
on resting state connectivity of predefined networks in the
brain. Front Aging Neurosci. 2019;11:234.

29. Chapko D, McCormack R, Black C, Staff R, Murray A. Life-course
determinants of cognitive reserve (CR) in cognitive aging and
dementia - a systematic literature review. Aging Ment Health.
2018;22(8):915–926.

30. Marden JR, Tchetgen Tchetgen EJ, Kawachi I, Glymour MM.
Contribution of socioeconomic status at 3 life-course periods to
late-life memory function and decline: Early and late predictors
of dementia risk. Am J Epidemiol. 2017;186(7):805–814.

31. Chan MY, Na J, Agres PF, Savalia NK, Park DC, Wig GS.
Socioeconomic status moderates age-related differences in the
brain’s functional network organization and anatomy across
the adult lifespan. Proc Natl Acad Sci U S A. 2018;115(22):
E5144–E5153.

32. Arnemann KL, Chen AJ, Novakovic-Agopian T, Gratton C,
Nomura EM, D’Esposito M. Functional brain network modular-
ity predicts response to cognitive training after brain injury.
Neurology. 2015;84(15):1568–1574.

33. Moulder KL, Snider BJ, Mills SL, et al. Dominantly inherited
alzheimer network: Facilitating research and clinical trials.
Alzheimers Res Ther. 2013;5(5):48.

34. Bateman RJ, Xiong C, Benzinger TL, et al.; Dominantly Inherited
Alzheimer Network. Clinical and biomarker changes in

2184 | BRAIN 2021: 144; 2176–2185 M. Ewers et al.

http://www.fnih.org
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab112#supplementary-data


dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;
367(9):795–804.

35. Suarez-Calvet M, Araque Caballero MA, Kleinberger G, et al.;
Dominantly Inherited Alzheimer Network. Early changes in CSF
sTREM2 in dominantly inherited Alzheimer’s disease occur
after amyloid deposition and neuronal injury. Sci Transl Med.
2016;8(369):369ra178.

36. Landau SM, Mintun MA, Joshi AD, et al.; Alzheimer’s Disease
Neuroimaging Initiative. Amyloid deposition, hypometabolism,
and longitudinal cognitive decline. Ann Neurol. 2012;72(4):
578–586.

37. Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer’s disease
neuroimaging initiative (ADNI): Clinical characterization.
Comparative Study, Multicenter Study, Research Support,
N.I.H., Extramural. Neurology. 2010;74(3):201–209.

38. Scholl M, Lockhart SN, Schonhaut DR, et al. PET imaging of tau
deposition in the aging human brain. Neuron. 2016;89(5):
971–982.

39. Ikonomovic MD, Abrahamson EE, Price JC, Mathis CA, Klunk
WE. [F-18]AV-1451 positron emission tomography retention in
choroid plexus: More than “off-target” binding. Ann Neurol.
2016;80(2):307–308.

40. Bateman RJ, Benzinger TL, Berry S, et al.; DIAN-TU Pharma
Consortium for the Dominantly Inherited Alzheimer Network.
The DIAN-TU next generation Alzheimer’s prevention trial:
Adaptive design and disease progression model. Alzheimers
Dement. 2017;13(1):8–19.

41. Storandt M, Balota DA, Aschenbrenner AJ, Morris JC. Clinical
and psychological characteristics of the initial cohort of the
Dominantly Inherited Alzheimer Network (DIAN). Neuropsychol.
2014;28(1):19–29.

42. Crane PK, Carle A, Gibbons LE, et al.; Alzheimer’s Disease
Neuroimaging Initiative. Development and assessment of a
composite score for memory in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Brain Imaging Behav. 2012;6(4):
502–516.

43. Weiner MW, Veitch DP, Aisen PS, et al.; Alzheimer’s Disease
Neuroimaging Initiative. Recent publications from the
Alzheimer’s Disease Neuroimaging Initiative: Reviewing pro-
gress toward improved AD clinical trials. Alzheimers Dement.
2017;13(4):e1–e85.

44. Schaefer A, Kong R, Gordon EM, et al. Local-global parcellation
of the human cerebral cortex from intrinsic functional connect-
ivity MRI. Cereb Cortex. 2017;28(9):3095–3020.

45. Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the
human cerebral cortex estimated by intrinsic functional con-
nectivity. J Neurophysiol. 2011;106(3):1125–1165.

46. Newman ME. Analysis of weighted networks. Phys Rev E Stat
Nonlin Soft Matter Phys. 2004;70(5 Pt 2):056131.

47. La Joie R, Visani AV, Baker SL, et al. Prospective longitudinal atro-
phy in Alzheimer’s disease correlates with the intensity and topog-
raphy of baseline tau-PET. Sci Transl Med. 2020;12(524):eaau5732.

48. Brier MR, Gordon B, Friedrichsen K, et al. Tau and Abeta imag-
ing, CSF measures, and cognition in Alzheimer’s disease. Sci
Transl Med. 2016;8(338):338ra66.

49. Bateman RJ, Aisen PS, De Strooper B, et al. Autosomal-domin-
ant Alzheimer’s disease: A review and proposal for the preven-
tion of Alzheimer’s disease. Alzheimers Res Ther. 2011;3(1):1.

50. Gordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroi-
maging biomarker change in individuals from families with
autosomal dominant Alzheimer’s disease: A longitudinal study.
Lancet Neurol. 2018;17(3):241–250.

51. Day GS, Musiek ES, Roe CM, et al. Phenotypic similarities be-
tween late-onset autosomal dominant and sporadic Alzheimer

disease: A single-family case-control study. JAMA Neurol. 12016;
73(9):1125–1132.

52. Brier MR, Thomas JB, Fagan AM, et al. Functional connectivity
and graph theory in preclinical Alzheimer’s disease. Neurobiol
Aging. 2014;35(4):757–768.

53. Bertolero MA, Yeo BTT, Bassett DS, D’Esposito M. A mechanistic
model of connector hubs, modularity and cognition. Nat Hum
Behav. 2018;2(10):765–777.

54. Ito T, Kulkarni KR, Schultz DH, et al. Cognitive task information
is transferred between brain regions via resting-state network
topology. Nat Commun. 2017;8(1):1027.

55. Franzmeier N, Hartmann J, Taylor ANW, et al. The left frontal
cortex supports reserve in aging by enhancing functional net-
work efficiency. Alzheimers Res Ther. 2018;10(1):28.

56. Franzmeier N, Hartmann JC, Taylor ANW, et al. Left frontal hub
connectivity during memory performance supports reserve in
aging and mild cognitive impairment. J Alzheimers Dis. 2017;
59(4):1381–1392.

57. Hilger K, Ekman M, Fiebach CJ, Basten U. Intelligence is associ-
ated with the modular structure of intrinsic brain networks. Sci
Rep. 2017;7(1):16088.

58. Tang W, Jbabdi S, Zhu Z, et al. A connectional hub in the rostral
anterior cingulate cortex links areas of emotion and cognitive
control. Elife. 2019;8:e43761.

59. Arenaza-Urquijo EM, Landeau B, La Joie R, et al. Relationships
between years of education and gray matter volume, metabol-
ism and functional connectivity in healthy elders. Neuroimage.
2013;83:450–457.

60. Cole MW, Ito T, Bassett DS, Schultz DH. Activity flow over rest-
ing-state networks shapes cognitive task activations. Nat
Neurosci. 2016;19(12):1718–1726.

61. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver
TS. Multi-task connectivity reveals flexible hubs for adaptive
task control. Nat Neurosci. 2013;16(9):1348–1355.

62. Finc K, Bonna K, He X, et al. Dynamic reconfiguration of func-
tional brain networks during working memory training. Nat
Commun. 2020;11(1):2435.

63. Dumitrescu L, Mahoney ER, Mukherjee S, et al.; The Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Genetic variants and
functional pathways associated with resilience to Alzheimer’s
disease. Brain. 2020;143(8):2561–2575.

64. Livingston G, Huntley J, Sommerlad A, et al. Dementia preven-
tion, intervention, and care: 2020 report of the Lancet
Commission. Lancet. 2020;396(1024810248):413–446.

65. Newman ME. Modularity and community structure in net-
works. Proc Natl Acad Sci U S A. 2006;103(23):8577–8582.

66. Brandes U, Delling D, Gaertler M, et al. On modularity cluster-
ing. IEEE Trans Knowl Data Eng. 2008;20(2):172–188.

67. Betzel RF, Bassett DS. Multi-scale brain networks. Neuroimage.
2017;160:73–83.

68. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL,
Petersen SE. Methods to detect, characterize, and remove mo-
tion artifact in resting state fMRI. Neuroimage. 2014;84:320–341.

69. Geerligs L, Tsvetanov KA, Cam C, Henson RN. Challenges in meas-
uring individual differences in functional connectivity using fMRI:
The case of healthy aging. Hum Brain Mapp. 2017;38(8):4125–4156.

70. Caballero-Gaudes C, Reynolds RC. Methods for cleaning the
BOLD fMRI signal. Neuroimage. 2017;154:128–149.

71. Braun U, Plichta MM, Esslinger C, et al. Test-retest reliability of rest-
ing-state connectivity network characteristics using fMRI and
graph theoretical measures. Neuroimage. 2012;59(2):1404–1412.

72. Stevens AA, Tappon SC, Garg A, Fair DA. Functional brain
network modularity captures inter- and intra-individual
variation in working memory capacity. PLoS One. 2012;7(1):e30468.

Functional networks and cognitive resilience in AD BRAIN 2021: 144; 2176–2185 | 2185


	tblfn1

