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Although multiple sclerosis has traditionally been considered a white matter disease, extensive research
documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey
matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance
of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been asso-
ciated with clinical and cognitive disability.

Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as
potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this
emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple
Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey
matter.

Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging per-
spective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We
discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey mat-
ter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities
towards better methods, analysis, and interpretation of results.
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Introduction

Multiple sclerosis has traditionally been viewed as a white matter
disease, with focal lesions resulting in neuronal injury and tissue
destruction.™” However, detailed neuropathological examination
also reveals extensive pathology in cortical and deep grey matter
(DGM).> While the mechanisms of DGM injury vary across struc-
tures, the net effect of this pathology can be examined in vivo using
MRI. Volume loss/atrophy of the thalamus and other DGM struc-
tures has been well-documented in multiple sclerosis using MRI
and is clinically relevant.*® The precise mechanisms of DGM loss
remain to be fully elucidated and likely represent a complex inter-
play between the various aspects of pathology in multiple
sclerosis.

Conventional MRI can be used to measure DGM volume and
lesions. However, DGM lesions are best visualized at 7 T,*>'! are
more difficult to visualize at conventional field strengths, and
have even been considered a red flag for a diagnosis of multiple
sclerosis.”> Advanced techniques, such as functional MRI (fMRI),
diffusion tensor MRI, relaxometry and magnetic resonance (MR)
spectroscopy, can quantify additional changes in DGM struc-
tures.*'> With recent advances in imaging, there is an opportu-
nity to satisfy an unmet need to fully characterize DGM injury in
multiple sclerosis and develop measures for use in clinical care
and research. A better understanding of the mechanisms of DGM
injury will provide fundamental knowledge about the pathophysi-
ology of multiple sclerosis and may enable more efficient clinical
trial design for neuroprotective therapies.

Materials and methods

The North American Imaging in Multiple Sclerosis Cooperative
(NAIMS) initially met to discuss DGM injury in San Diego, California
in February 2018. Topics included: pathological mechanisms of
DGM injury in multiple sclerosis, measurement of DGM volume,

clinical relevance and regions of interest, and DGM metrics as clini-
cal trial outcomes. Consensus points were drafted after completion
of each topic presentations with input from all attendees.
Consensus opinions were presented to the group at the completion
of the meeting, and these were further refined by meeting present-
ers during teleconferences conducted after the meeting. Finally, all
authors approved the final version of the manuscript. The goals of
this paper are to summarize the proceedings, update and review
the current understanding of DGM imaging with a focus on lesions
and atrophy based on conventional MRI sequences, and provide
recommendations for future research.

Pathological mechanisms of deep grey
matter injury in multiple sclerosis

Focal DGM lesions have been well-documented in multiple scle-
rosis and differ quantitatively and qualitatively from white mat-
ter lesions.” Focal lesions occur in all DGM nuclei but are more
common in the caudate, thalamus, and hypothalamus (Table
1).’ DGM lesions are characterized by demyelination with vary-
ing degrees of inflammatory changes.'® Similar to white matter
lesions, DGM lesions can be classified into ‘active’, ‘chronic
active’, and ‘chronic inactive’.*®333% Active DGM lesions show
increased perivascular cuffs and lymphocytic infiltrates.™®
Chronic active lesions are characterized by a rim of activated
microglia/macrophages, and are common in DGM.'® When com-
pared to white matter lesions (more inflammation) and cortical
lesions (less inflammation), DGM lesions have an intermediate
inflammatory pattern.*®

The most extensively studied DGM structure in multiple sclero-
sis is the thalamus. Focal thalamic lesions can be identified in over
two-thirds of multiple sclerosis cases using microscopy and high-
field MRL'®' Pathologically, focal thalamic lesions exhibit
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Table 1 Histopathological and MRI findings in DGM and related grey matter regions in multiple sclerosis

Histopathological findings MRI findings
Lesions Normal-appearing tissue
DGM Structure Focal Diffuse Activated Iron Neuronal Markers of Early DGM lesions Iron
lesions  inflammatory microglia’®*® deposition®®* loss'®'” oxidative volume MRI-visible?*?* accumulation® 2’
present'®® infiltrate'®*’ stress’® loss®?!
Thalamus!¢-2022 +4 4 + + + + + PR PR +
Caudate’®7:20:23 4+ + + + + + 4 + +
Putamen?®719:20.23 ++ + + + + + PR + +
Globus pallidus*®” ++ + + + + + NA NA +
Substantia nigra®’ + + NA NA NA NA NA NA NA
Amygdala®’ + + NA NA NA NA NA NA NA
Hypothalamus®’? " + + NA NA NA NA NA
Hippocampus®®3? 4+ NA + NA + NA + 4+ NA

NA = not available.
*Did not reach statistical significance.

neuronal loss,"”” demyelination, and axonal transection.*=® MRI
and histopathological studies have identified two thalamic lesion
types: perivascular lesions, which are typically ovoid in shape, and
subependymal lesions, which are thin bands of demyelination
that line the third ventricle'® (Fig. 1). The presence of ovoid, peri-
vascular, thalamic lesions shows conflicting results regarding cor-
relation to cortical lesions.'®* The appearance of subependymal
thalamic lesions resembles that of subpial cortical lesions, and
close proximity to the ventricle suggest a soluble or diffusible fac-
tor present in the CSF, perhaps with a role of inflammatory
cells.*”*® The exact reasons for the variability in lesion frequency
across DGM structures is unknown, but may relate to myelin con-
tent, contact with CSF spaces, and/or vascular distribution.

DGM volume loss occurs early in multiple sclerosis and precedes
measurable whole brain volume loss.®*****! The histopatholog-
ical changes observed in non-lesional DGM may help explain
this early susceptibility. Neuronal density in normal appearing
DGM is reduced by as much as 33%"’ compared to controls and
could be explained by several mechanisms. Retrograde and
anterograde degeneration due to the focal axonal transection
that occurs within white matter lesions are probably major
mechanisms of DGM neuronal loss.*>™*® Trans-synaptic degener-
ation, which has been well-documented with hippocampal
demyelination but has also been described in the visual system
(which runs through the thalamus),*”**® may also play a role.
Finally, deafferentation-induced neuronal loss, as described in
the cortex, may also occur in DGM.* The cascade of white mat-
ter pathology resulting in axonal, neuronal, and synaptic
changes suggests that early neurodegeneration in DGM may be a
secondary phenomenon; however, a primary mechanism cannot
be excluded (Fig. 2).

Iron accumulation is a proposed mechanism for DGM injury.
DGM contains high iron content, which increases with age in con-
trols.®® In multiple sclerosis DGM, iron accumulation has been
demonstrated better in vivo using iron-sensitive MRI sequences®’
than on pathology.’® Iron accumulation may lead to oxidative
stress, cellular damage, and neuronal injury.>? Iron release from
injured oligodendrocytes results in higher turnover to microglia,
which may be heightened in DGM structures and may drive more
chronic inflammatory responses.*® Susceptibility measures from
the thalamus are associated with disability®® and may differentiate

relapsing remitting multiple sclerosis from primary progressive
multiple sclerosis.®* Increased iron concentration may be the
result of atrophy in the setting of a fixed iron content.” In thala-
mus, some studies have shown increased T,*-weighted signal,
which may represent loss of iron?”-*® but may also be explained by
loss of myelin or inflammation. Overall, the exact role of iron in
thalamus is not clear and quantitative susceptibility mapping
(QSM) may help resolve these questions. QSM has already been
explored in DGM in multiple sclerosis.***”->

Larger and more detailed pathologic studies are needed to eluci-
date the exact cellular and subcellular substrates of DGM tissue
loss in multiple sclerosis. Single cell genomics to further character-
ize DGM cell types may shed further light on changes secondary to
afferent/efferent tracts with lesions or selective vulnerability of
various thalamic subregions.

Measurement of deep grey matter injury

Recent advances in pulse sequences, increased magnetic field
strength, and post-processing algorithms have improved the accu-
racy of MRI-based DGM volume measurements.> Several MRI con-
trasts can be used to identify DGM structures (Table 2), including
T;-weighted imaging,®® T,-weighted imaging,®? diffusion-weighted
imaging,”® magnetization transfer imaging,”*’® R,"* relaxation, and
T,*-weighted imaging/QSM.'"***® Gadolinium accumulation may
preferentially affect DGM structures’*’> and may affect analysis of
pixel intensities on T,/T,-weighted images and values of T,*, Ry,
quantitative susceptibility mapping.

DGM segmentation methods can be either atlas-based, algo-
rithm-based, learning-based, or hybrid.”® Atlas-based approaches
generated using histology or MRI have been the most widely used
and include the creation of anatomical labels, which are non-lin-
early warped to new data.”” Atlases from several MR contrasts
with specific sensitivity to different DGM structures are available.
Atlas-based packages using probabilistic algorithms for segmen-
tation of DGM structures are widely used and include FMRIB’s
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Figure 1 Demonstration of thalamic demyelinating lesion types. (A) Thalamic lesions are represented in coronal (left) and axial (right) planes.
Lesions can either border the lateral and third ventricles (termed subependymal lesions, in orange) or have an ovoid appearance around blood
vessels (termed perivascular, in purple). (B) Thalamic lesions (perivascular labelled with an asterisk and subependymal with a red open arrow-
head) on T,-weighted coronal 3 T MRI from a post-mortem multiple sclerosis case, and matching histological images from the same case (C-F),
highlighting that subependymal lesions are more difficult to visualize. Myelin proteolipid protein immunohistochemistry demonstrates demyeli-
nation in perivascular and subependymal lesions (low magnification in C; higher magnification of subependymal lesion in D). Activated micro-
glia/macrophages (MHC class II) immunohistochemistry demonstrating a chronic-active perivascular lesion and a rim at the border of the
subependymal lesion (low magnification in E, higher magnification in F). Panel A is reprinted with permission, Cleveland Clinic Center for Medical

Art & Photography ©2020. All Rights Reserved.

Integrated Registration and Segmentation Tool (FIRST),’®
FreeSurfer,”® and statistical parametric mapping (SPM).2° These
are primarily based on T;-weighted images, but can be improved
by multiple contrasts and MR modalities used simultaneously.>®
Segmentation of lesional multiple sclerosis tissue is an important
step to avoid misclassification of gray matter.®” Integrated proba-
bilistic methods with simultaneous lesion masking are
available.??

Several comparisons of FSL-FIRST, SPM, and FreeSurfer have
been conducted. FSL-FIRST shows the highest correlations with
cognitive measures.®> A recent systematic review compared sev-
eral automated segmentation techniques’® in multiple sclerosis
and showed that learning-based approaches achieved the highest
DGM segmentation accuracy. Multi-atlas approaches and use of
additional MRI contrasts (QSM, T, R,") improved results. These

techniques can be used in learning-based approaches for training
datasets to establish improved measures of ground truth.

Segmentation of thalamic subregions has been achieved using
ultra-high field MRI in combination with multicontrast atlases.
Data thus far suggest that certain subregions may show greater
volume loss, including the antero-ventral, pulvinar, and habenular
regions.®’ Using probabilistic connectivity at 3 T, differences in
thalamic subregions have been demonstrated between multiple
sclerosis and neuromyelitis optica,®* with subregion 5 (premotor
connection) mean diffusivity being the best discriminator.
Selective vulnerability of thalamic subregions may relate to lesion
location, susceptibility of specific pathways, and neuronal factors.
Lesions in projecting/receiving tracts may be preferentially
affected,*® as well as neurons located closer to the ventricular
surface.®
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Figure 2 Mechanisms of thalamic neuronal degeneration pathology in multiple sclerosis. The figure shows representations of afferent/efferent
neuronal cell bodies and axons in the thalamus and outflow/inflow tracts. Under ‘Anterograde Degeneration’, a focal white matter lesion in a tha-
lamic afferent with secondary anterograde degeneration in the axon is depicted. Under ‘Retrograde Degeneration’, a focal white matter lesion in a
thalamic efferent is depicted. Under ‘Trans-synaptic Degeneration’, secondary injury in the neuron as a result of degeneration of the axon with
which it forms a synapse is demonstrated. Under ‘Primary Neurodegeneration’, neuronal injury independent of a direct connection to an axon is
illustrated. Under ‘Deafferentation Induced Apoptosis’ we illustrate loss of neurons resulting as a consequence of axonal transection. Reprinted
with permission, Cleveland Clinic Center for Medical Art & Photography ©2020. All Rights Reserved.

Machine learning approaches

Machine learning may offer several distinct advantages over
current analysis and processing techniques. Machine learning
and deep learning can incorporate several MRI contrasts and

measures to more efficiently explore tissue composition, struc-
ture, and function. When presented with labelled training data,
machine learning algorithms can identify complex patterns
from large datasets with a high number of variables, make gen-
eralizations from these learned patterns, rank the importance of
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Table 2 MRI contrasts in DGM

Acquisition comments

Utility

Contrast

High resolution images can be obtained with relatively short acquisition time;

Anatomical identification of boundaries and segmentation for volumetric

Ty-weighted 50"

substantial experience in multicentre applications; thalamus may be diffi-

cult to segment due to high myelin content
Quick acquisition; substantial experience in multicentre applications

assessments; potentially useful for lesion identification

Identification of focal demyelinating lesions

T,-weighted®? or T,-FLAIR

Intrinsic changes in T, signal, some sensitivity to iron

Requires multiple acquisitions hence multicentre applications have been lim-

Quantitative measure, can differentiate different DGM structures and

T, relaxation®*®*

ited, but newer single-sequences approaches (e.g. MP2RAGE) may alleviate

these drawbacks
Time consuming, with limited success in multicentre applications

subregions

Quantitative measure, has some sensitivity to iron content in DGM, short com-

T, relaxation®*®°

ponent is particularly sensitive to myelin
Sensitive to iron and myelin content and blood vessels in DGM, also ideal to

T %11,56,66,67

High resolution can be attained with relatively quick acquisition times; multi-

2

centre application is relatively straightforward; less useful at 1.5 T
Feasible, and may also allow identification of few DGM lesions but sensitivity

identify boundaries of iron-containing deep grey matter structures

Sensitive to detection of DGM lesions

Double inversion recovery®®

unknown
Feasible, but post-processing required; less useful at 1.5 T

Sensitive to iron, myelin and blood vessels; can differentiate diamagnetic and

Quantitative susceptibility

paramagnetic changes
Useful sensitive to microstructural

mapping®®
Diffusion weighted imaging”®

Typically lower resolution than other sequences; acquisition times are long for

more complex biophysical models, which are not routinely available on com-

mercial scanners; limited success in multicentre studies
Feasible clinical acquisition times; needs careful normalization for multicentre

Sensitive to deep grey matter demyelination and useful for thalamic

Magnetization transfer

application

segmentation

imaging71'72
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variables, and then use this information to make predictions on
new data.

From an image-processing standpoint, deep learning may
improve the accuracy of image segmentation in multiple sclero-
sis,2®” and importantly, can reduce image heterogeneity across
studies. Deep learning methods can normalize image intensity,
resolution, and contrast across time points and across subjects.®®
Supervised machine learning methods using random forest clas-
sification of volume, thickness, surface area of cortical grey mat-
ter regions, and volumes of DGM nuclei, distinguished relapsing
remitting multiple sclerosis from neuromyelitis optica with an
accuracy of 74%.%° Further development of supervised machine
learning and unsupervised deep learning approaches may
improve analysis of DGM structures to identify optimal regions of
interest.

Significant progress has been made in DGM segmentation. Use of
multimodal approaches, multi-atlas approaches, subregional
approaches, and machine learning may significantly improve
DGM segmentation and its utility. Pulse sequences that generate
quantitative data should take into consideration the local contrast
generated for each specific structure and the resolution needed.
Creation of data repositories and imaging toolboxes as shared
resources will advance discovery. To enhance real-world utility,
segmentation would ideally use pulse sequences that are widely
available or postprocessing algorithms that are robust to different
input sequences. Finally, the long-term goal of these measures is
clinical translation, which requires multicentre validation and
determination of clinical meaningfulness.

Clinical relevance of deep grey matter
injury

Thalamic volume loss is observed on MRI in the earliest identifi-
able phases of multiple sclerosis, including pediatric multiple scle-
rosis,’®?? clinically isolated syndrome (CIS),*>*' and radiologically
isolated syndrome,'® whereas whole brain volume and total grey
matter volume may still be preserved. Thalamic volume declines
consistently as a function of disease’ and, correlates with clinical
end points, including cognition,®”°>°® and provides feasible sam-
ple sizes as a primary end point for clinical trials.” Thalamic vol-
ume was shown to be modifiable in several recent randomized,
placebo-controlled trials (see below). Given its high sensitivity in
early disease and correlation with cognition, thalamic volume may
be particularly useful in studies targeting cognition, or younger
patients early in the disease.

Limited data exist regarding the impact of normal ageing on grey
matter structures in multiple sclerosis. Whole and regional
brain volumes can follow a linear or non-linear trajectory of
decline,®* % suggesting that the contribution of normal ageing to
brain atrophy in multiple sclerosis may not be constant.

In a recent analysis, normal ageing was shown to contribute to
whole brain and thalamic atrophy, whereas it did not in the puta-
men and caudate.”® Most atrophy observed in whole brain and tha-
lamus in early adulthood was multiple sclerosis-related, and by
age 60, most of the atrophy was primarily attributable to normal
ageing. The lack of ageing effect in the caudate and putamen
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suggests DGM atrophy may differ across structures, an area of
high interest for future studies.

While the effects of disease-modifying therapies on whole brain
volume in multiple sclerosis” have been extensively described,
effects of disease-modifying therapies on DGM structures are only
beginning to be investigated. Thalamic volume loss was reduced
by ozanimod and is the first example where thalamic volume was
reported in the primary analysis of a phase 3 study in multiple
sclerosis.?®® Thalamic volume loss was slower in laquinomod,*®
fingolimod,*°* and ibudilast'®? treated patients compared to pla-
cebo. In a multivariate retrospective analysis of a small, non-
randomized cohort, natalizumab and rituximab were associated
with a slower rate of thalamic and putaminal atrophy compared to
interferon-beta and glatiramer acetate, whereas whole-brain vol-
ume decline did not differ between the two groups.’® Exploring
the differential effect of treatments on DGM may provide insight
into specific pathways of injury related to these structures'®’;
however, the feasibility of advanced MRI sequences must be con-
sidered for trial application (Table 2). It is likely that DGM MRI end
points will be incorporated in future clinical trials. Tailoring the
MRI end point to the patient population or clinical end point being
studied could reduce sample sizes and improve trial efficiency.

Incorporating brain volumetrics, including DGM, into clinical prac-
tice has proven challenging for several reasons, which have been
reviewed.’® Developing image-processing algorithms that are
robust to image heterogeneity would address many barriers. A
gold standard for DGM measurements is needed, and the variabil-
ity in each structure needs to be known and accounted for.
Differences in acquisition, gradient distortion, intrascanner varia-
bility, movement, and scanner upgrades have been cited as sour-
ces of variability for brain volume.'® Whether DGM measures are
susceptible to these same confounders as well as the effects of
pseudoatrophy (initial apparent brain volume loss associated with
anti-inflammatory effect),’®'°” in measures of total versus indi-
vidual DGM structures, are outstanding questions. Statistical tech-
niques to translate DGM measurements into clinically relevant
outcomes at the individual level are needed, and will need to
account for age, treatment status, and measurement error at a
minimum.

Although not considered a DGM region, many studies examining
DGM include the hippocampus in the analysis and classification of
DGM structures,'®® and also because imaging methods sensitive to
DGM damage are used to assess the hippocampus. The hippocam-
pus is composed of several subregions, each of which has a dis-
tinct function and susceptibility to pathology.'® It plays an
important role in memory, regulation of mood, and emotional
response.'’® Histopathological studies show extensive involve-
ment of the hippocampus in multiple sclerosis, including wide-
spread demyelination, neuronal loss, and synaptic loss.?*? Using
MRI, total hippocampal volume loss has been associated with cog-
nitive impairment in multiple sclerosis.’** Atrophy in the CA1 sub-
region is associated with deficits in verbal memory in early
relapsing remitting multiple sclerosis,* and atrophy in the CA3
subregion is associated with depression.'*? CA4 subregion/dentate
gyrus may be the earliest subfield with volume loss compared to
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healthy controls, and that CA4/dentate volume predicts atrophy in
the CA1 subregion 1 year later,'"® suggesting a ‘dynamic spread’ of
pathology.

Total hippocampal volume, or CA1 and/or CA3 subregional
volumes, could be wuseful to study cognitive dysfunction
and depression in multiple sclerosis, which lack sensitive and
specific MRI correlates. Moreover, because of the potential for
structural and functional plasticity within the hippocampal net-
work,* the hippocampus may be an interesting target for cogni-
tive rehabilitation and neuroprotection interventions. The
effects of exercise''® and cognitive rehabilitation'*® on the hippo-
campus have been studied in several populations, including
multiple sclerosis. Exercise interventions preserve or even
increase hippocampal volume or activity, potentially leading to
improvements in memory."'®'"”

Because of low MR contrast with surrounding tissues, the
hippocampus remains a technically challenging region to seg-
ment, particularly at the subregion level. Multiple automated
segmentation algorithms exist, with variable levels of agree-
ment with manual segmentation.''® Areas of interest for future
hippocampal work in multiple sclerosis include improving lon-
gitudinal volume measurements, validating automated subre-
gion techniques, pursuing hippocampal connectivity studies,
and exploring the potential to preserve or reverse hippocampal
damage, memory loss, and mood impairments using rehabilita-
tive strategies.

Deep grey matter atrophy to understand
disease biology better

Most of the current literature in multiple sclerosis has examined
whole-brain and DGM volumes as predictors of clinical worsening.
However, brain atrophy represents irreversible tissue loss, which
is precisely what disease-modifying therapies aim to prevent.
Future studies may use atrophy as the outcome rather than the
predictor, to study biologic mechanisms of volume loss. The DGM
is particularly well-suited for such studies because of the breadth
of multiple sclerosis pathology present, mixed white and GM
structures, early disease impact, and the highly connected nature
of several regions. Different structures may provide insights into
specific pathogenic mechanisms. For example, the mechanism of
thalamic atrophy likely differs from that of hippocampal or basal
ganglia atrophy, with different contributions from white matter
lesions, intrinsic DGM lesions, iron deposition, oxidative stress,
primary degeneration, etc., within each structure.'®1184546 p
long-term goal is to understand the contribution of mechanisms of
injury within each structure, leading to more specific targets using
imaging endpoints for specific biological pathways.

Conclusions

DGM injury in multiple sclerosis is common and results from a
combination of focal lesions and changes in normal-appearing
DGM, as well as upstream/downstream injury secondary to distant
lesions. Significant improvement in DGM segmentation has
resulted in ample evidence demonstrating the clinical relevance of
DGM in multiple sclerosis. Improvements in acquisition, segmen-
tation (including subregions), and analysis methods promise to
refine DGM measures further (DGM lesional volume, thalamic vol-
ume, caudate volume, hippocampal volume) and enable future
use in clinical trials, potentially even as primary outcome for
phase 2 studies focusing on neuroprotection. DGM clinical diag-
nostic tools and biomarkers of therapeutic response will be
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accelerated by shared resources including pulse sequences, imag-
ing datasets, and analysis tools.
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