Table 3. Results for frame-based two-class polyp detection.
Category | Precision | Recall | F1-score | AP | |
---|---|---|---|---|---|
Faster RCNN | ad | 72.8 | 73.0 | 72.9 | 72.9 |
hp | 42.2 | 63.1 | 50.6 | 42.5 | |
Mean | 57.5 | 68.1 | 62.3 | 57.7 | |
SSD | ad | 82.7 | 77.4 | 80.0 | 82.7 |
hp | 54.6 | 51.8 | 53.1 | 52.5 | |
Mean | 68.6 | 64.6 | 66.5 | 67.6 | |
YOLOv3 | ad | 89.7 | 23.2 | 36.9 | 61.1 |
hp | 60.0 | 16.2 | 25.5 | 35.0 | |
Mean | 74.9 | 19.7 | 31.2 | 48.0 | |
RetinaNet | ad | 85.4 | 59.1 | 69.8 | 57.9 |
hp | 52.9 | 43.7 | 47.9 | 40.5 | |
Mean | 69.2 | 51.4 | 59.0 | 49.2 | |
DetNet | ad | 73.0 | 67.5 | 70.2 | 60.4 |
hp | 46.0 | 65.0 | 53.8 | 42.2 | |
Mean | 59.5 | 66.2 | 62.7 | 51.3 | |
RefineDet | ad | 92.2 | 61.3 | 73.6 | 81.1 |
hp | 49.1 | 86.3 | 62.6 | 65.9 | |
Mean | 70.7 | 73.8 | 72.2 | 73.5 | |
YOLOv4 | ad | 90.5 | 54.0 | 67.6 | 70.4 |
hp | 54.0 | 40.6 | 46.3 | 42.7 | |
Mean | 72.3 | 47.3 | 57.2 | 56.6 | |
ATSS | ad | 79.5 | 76.3 | 77.9 | 80.7 |
hp | 57.2 | 68.0 | 62.2 | 58.4 | |
Mean | 68.4 | 72.2 | 70.2 | 69.5 |