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Abstract

New generation head-mounted displays, such as VR and AR glasses, are coming into the

market with already integrated eye tracking and are expected to enable novel ways of

human-computer interaction in numerous applications. However, since eye movement

properties contain biometric information, privacy concerns have to be handled properly. Pri-

vacy-preservation techniques such as differential privacy mechanisms have recently been

applied to eye movement data obtained from such displays. Standard differential privacy

mechanisms; however, are vulnerable due to temporal correlations between the eye move-

ment observations. In this work, we propose a novel transform-coding based differential

privacy mechanism to further adapt it to the statistics of eye movement feature data and

compare various low-complexity methods. We extend the Fourier perturbation algorithm,

which is a differential privacy mechanism, and correct a scaling mistake in its proof. Further-

more, we illustrate significant reductions in sample correlations in addition to query sensitivi-

ties, which provide the best utility-privacy trade-off in the eye tracking literature. Our results

provide significantly high privacy without any essential loss in classification accuracies while

hiding personal identifiers.

Introduction

Recent advances in the field of head-mounted displays (HMDs), computer graphics, and eye

tracking enable easy access to pervasive eye trackers along with modern HMDs. Soon, the

usage of such devices might result in a significant increase in the amount of eye movement

data collected from users across different application domains such as gaming, entertainment,

or education. A large part of this data is indeed useful for personalized experience and user-

adaptive interaction. Especially in virtual and augmented reality (VR/AR), it is possible to

derive plenty of sensitive information about users from the eye movement data. In general, it

has been shown that eye tracking signals can be employed for activity recognition even in chal-

lenging everyday tasks [1–3], to detect cognitive load [4, 5], mental fatigue [6], and many other

user states. Similarly, assessment of situational attention [7], expert-novice analysis in areas
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such as medicine [8] and sports [9], detection of personality traits [10], and prediction of

human intent during robotic hand-eye coordination [11] can also be carried out based on eye

movement features. Additionally, eye movements are useful for early detection of anomias

[12] and diseases [13]. More importantly, eye movement data allow biometric authentication,

which is considered to be a highly sensitive task [14]. A task-independent authentication using

eye movement features and Gaussian mixtures is, for example, discussed by Kinnunen et al.

[15]. Additionally, biometric identification based on an eye movements and oculomotor plant

model are introduced by Komogortsev and Holland [16] and by Komogortsev et al. [17].

Eberz et al. [18] discuss that eye movement features can be used reliably also for authentication

both in consumer level devices and various real world tasks, whereas Zhang et al. [19] show

that continuous authentication using eye movements is possible in VR headsets. While authen-

tication via eye movements could be useful in biometric applications, the applications that do

not require any authentication step possess privacy risks for the individuals if such information

is not hidden in the data. In addition, if such information is linked to personal identifiers, the

risk might be even higher.

As biometric content can be retrieved from eye movements, it is important to protect them

against adversarial behaviors such as membership inference. According to Steil et al. [20, p. 3],

people agree to share their eye tracking data if a governmental health agency is involved in

owning data or if the purpose is research. Therefore, privacy-preserving techniques are needed

especially on the data sharing side of eye tracking considering that the usage of VR/AR devices

with integrated eye trackers increases. As removing only the personal identifiers from data is

not enough for anonymization due to linkage attacks [21], more sophisticated techniques for

achieving user level privacy are necessary. Differential privacy [22, 23] is one effective solution,

especially in the area of database applications. It protects user privacy by adding randomly gen-

erated noise for a given sensitivity and desired privacy parameter, �. The differentially private

mechanisms provide aggregate statistics or query answers while protecting the information of

whether an individual’s data was contained in a dataset. However, high dimensionality of the

data and temporal correlations can reduce utility and privacy, respectively. Since eye move-

ment features are high dimensional, temporally correlated, and usually contain recordings

with long durations, it is important to tackle utility and privacy problems simultaneously. For

eye movement data collected from HMDs or smart glasses, both local and global differential

privacy can be applied. Applying differential privacy mechanisms to eye movement data

would optimally anonymize the query outcomes that are carried out on such data while keep-

ing data utility and usability high enough. As opposed to global differential privacy, local dif-

ferential privacy adds user level noise to the data but assumes that the user sends data to a

central data collector after adding local noise [24, 25]. While both could be useful depending

on the application use-case, for this work, we focus on global differential privacy, considering

that in many VR/AR applications which collect eye movement data, there is a central trusted

user-level data collector and publisher.

To apply differential privacy to the eye movement data, we evaluate the standard Laplace

Perturbation Algorithm (LPA) [22] of differential privacy and Fourier Perturbation Algorithm

(FPA) [26]. The latter is suitable for time series data such as the eye movement feature signals.

We propose two different methods that apply the FPA to chunks of data using original eye

movement feature signals or consecutive difference signals. While preserving differential pri-

vacy using parallel compositions, chunk-based methods decrease query sensitivity and compu-

tational complexity. The difference-based method significantly decreases the temporal

correlations between the eye movement features in addition to the decorrelation provided by

the FPA that uses the discrete Fourier transform (DFT) as, e.g., in the works of Günlü and

İşcan [27] and Günlü et al. [28]. The difference-based method provides a higher level of
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privacy since consecutive sample differences are observed to be less correlated than original

consecutive data. Furthermore, we evaluate our methods using differentially private eye move-

ment features in document type, gender, scene privacy sensitivity classification, and person

identification tasks on publicly available eye movement datasets by using similar configura-

tions to previous works by Steil et al. [20, 29]. To generate differentially private eye movement

data, we use the complete data instead of applying a subsampling step, used by Steil et al. [20]

to reduce the sensitivity and to improve the classification accuracies for document type and

privacy sensitivity. In addition, the previous work [20] applies the exponential mechanism for

differential privacy on the eye movement feature data. The exponential mechanism is useful

for situations where the best enumerated response needs to be chosen [30]. In eye movements,

we are not interested in the “best” response but in the feature vector. Therefore, we apply the

Laplace mechanism. In summary, we are the first to propose differential privacy solutions for

aggregated eye movement feature signals by taking the temporal correlations into account,

which can help provide user privacy especially for HMD or smart glass usage in VR/AR

setups.

Our main contributions are as follows. (1) We propose chunk-based and difference-based

differential privacy methods for eye movement feature signals to reduce query sensitivities,

computational complexity, and temporal correlations. Furthermore, (2) we evaluate our meth-

ods on two publicly available eye movement datasets, i.e., MPIIDPEye [20] and MPIIPrivacEye

[29], by comparing them with standard techniques such as LPA and FPA using the multiplica-

tive inverse of the absolute normalized mean square error (NMSE) as the utility metric. In

addition, we evaluate document type and gender classification, and privacy sensitivity classifi-

cation accuracies as classification metrics using differentially private eye movements in the

MPIIDPEye and MPIIPrivacEye datasets, respectively. Classification accuracy is used in the lit-

erature as a practical utility metric that shows how useful the data and proposed methods are.

Our utility metric also provides insights into the divergence trend of differentially private out-

comes and is analytically trackable unlike the classification accuracy. For both datasets, we also

evaluate person identification task using differentially private data. Our results show signifi-

cantly better performance as compared to previous works while handling correlated data and

decreasing query sensitivities by dividing the data into smaller chunks. In addition, our meth-

ods hide personal identifiers significantly better than existing methods.

Previous research

There are few works that focus on privacy-preserving eye tracking. Liebling and Preibusch

[31] provide motivation as to why privacy considerations are needed for eye tracking data by

focusing on gaze and pupillometry. Practical solutions are; therefore, introduced to protect

user identity and sensitive stimuli based on a degraded iris authentication through optical

defocus [32] and an automated disabling mechanism for the eye tracker’s ego perspective

camera with the help of a mechanical shutter depending on the detection of privacy sensitive

content [29]. Furthermore, a function-specific privacy model for privacy-preserving gaze esti-

mation task and privacy-preserving eye videos by replacing the iris textures are proposed by

Bozkir and Ünal et al. [33] and by Chaudhary and Pelz [34], respectively. In addition, solutions

for privacy-preserving eye tracking data streaming [35] and real-time privacy control for eye

tracking systems using area-of-interests [36] are also introduced in the literature. These works

lack studying effects of temporal correlations.

For the user identity protection on aggregated eye movement features, works that focus on

differential privacy are more relevant for us. Recently, standard differential privacy mecha-

nisms are applied to heatmaps [37] and eye movement data that are obtained from a VR setup
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[20]. These works do not address the effects of temporal correlations in eye movements over

time in the privacy context. In the privacy literature, there are privacy frameworks such as the

Pufferfish [38] or the Olympus [39] for correlated and sensor data, respectively. These works,

however, have different assumptions. For instance, the Pufferfish requires a domain expert to

specify potential secrets and discriminative pairs, and Olympus models privacy and utility

requirements as adversarial networks. As our focus is to protect user identity in the eye move-

ments, we opt for differential privacy by discussing the effects of temporal correlations in eye

movements over time and propose methods to reduce them. It has been shown that standard

differential privacy mechanisms are vulnerable to temporal correlations as such mechanisms

assume that data at different time points are independent from each other or adversaries lack

the information about temporal correlations, leading an increased privacy loss of a differential

privacy mechanism over time due to the temporal correlations [40, 41]. The aggregated eye

movement features over time might end up in an extreme case of such correlations due to vari-

ous user behaviors. Therefore, in addition to discussing the effects of such correlations on dif-

ferential privacy over time, we propose methods to reduce the correlations so that the privacy

leakage due to the temporal correlations are minimal.

Materials and methods

In this section, the theoretical background of differential privacy mechanisms, proposed meth-

ods, and evaluated datasets are discussed.

Theoretical background

Differential privacy uses a metric to measure the privacy risk for an individual participating in a

database. Considering a dataset with weights of N people and a mean function, when an adver-

sary queries the mean function for N people, the average weight over N people is obtained.

After the first query, an additional query for N − 1 people automatically leaks the weight of the

remaining person. Using differential privacy, noise is added to the outcome of a function so

that the outcome does not significantly change based on whether a randomly chosen individual

participated in the dataset. The amount of noise added should be calibrated carefully since a

high amount of noise might decrease the utility. We next define differential privacy.

Definition 1. �-Differential Privacy (�-DP) [22, 23]. A randomized mechanismM is �-differen-
tially private if for all databases D and D0 that differ at most in one element for all S� Range(M)
with

Pr ½MðDÞ 2 S� � e� Pr ½MðD0Þ 2 S�: ð1Þ

The variance of the added noise depends on the query sensitivity, which is defined as

follows.

Definition 2. Query sensitivity [22]. For a random query Xn and w 2 {1, 2}, the query sensi-
tivity Δw of Xn is the smallest number for all databases D and D0 that differ at most in one ele-
ment such that

jjXnðDÞ � XnðD0Þjjw � DwðXnÞ ð2Þ

where the Lw-distance is defined as

jjXnjjw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðjXijÞ
ww

s

: ð3Þ

We list theorems that are used in the proposed methods.
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Theorem 1. Sequential composition theorem [42]. Consider n mechanisms Mi that randomi-
zation of each query is independent for i = 1, 2, . . ., n. If M1, M2, . . ., Mn are �1, �2, . . ., �n-differ-

entially private, respectively, then their joint mechanism is
Xn

i¼1

�i

 !

-differentially private.

Theorem 2. Parallel composition theorem [42]. Consider n mechanisms as Mi for i = 1, 2, . . .,

n that are applied to disjoint subsets of an input domain. If M1, M2, . . ., Mn are �1, �2, . . ., �n-dif-

ferentially private, respectively, then their joint mechanism is max
i2 1;n½ �

�i

� �

-differentially private.

We define the Laplace Perturbation Algorithm (LPA) [22]. To guarantee differential pri-

vacy, the LPA generates the noise according to a Laplace distribution. Lap(λ) denotes a ran-

dom variable drawn from a Laplace distribution with a probability density function (PDF):

Pr ½LapðlÞ ¼ h� ¼ 1

2l
e� jhj=l, where Lap(λ) has zero mean and variance 2λ2. We denote the

noisy and differentially private values as ~Xi ¼ XiðDÞ þ LapðlÞ for i = 1, 2, . . ., n. Since we have

a series of eye movement observations, the final noisy eye movement observations are gener-

ated as ~Xn ¼ XnðDÞ þ LapnðlÞ, where Lapn(λ) is a vector of n independent Lap(λ) random

variables and Xn(D) is the eye movement observations without noise. The LPA is �-differen-

tially private for λ = Δ1(Xn)/� [22].

We define the error function that we use to measure the differences between original Xn

and noisy ~Xn observations. For this purpose, we use the metric normalized mean square error

(NMSE) defined as

NMSE ¼
1

n

Xn

i¼1

ðXi �
~XiÞ

2

X ~X
ð4Þ

where

X ¼
1

n

Xn

i¼1

Xi ;
~X ¼

1

n

Xn

i¼1

~Xi: ð5Þ

We define the utility metric as

Utility ¼
1

jNMSEj
: ð6Þ

As differential privacy is achieved by adding random noise to the data, there is a utility-pri-

vacy trade-off. Too much noise leads to high privacy; however, it might also result in poor

analyses on the further tasks on eye movements. Therefore, it is important to find a good

trade-off.

Methods

Standard differential privacy mechanisms are vulnerable to temporal correlations, since the

independent noise realizations that are added to temporally correlated data could be useful for

adversaries. However, decorrelating the data without the domain knowledge before adding the

noise might remove important eye movement patterns and provide poor results in analyses.

Many eye movement features are extracted by using time windows, as in previous work [20,

29], which makes the features highly correlated. Another challenge is that the duration of eye

tracking recordings could change depending on the personal behaviors, skills, or personalities

of the users. The longer duration causes an increased query sensitivity, which means that

higher amounts of noise should be added to achieve differential privacy. In addition, when
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correlations between different data points exist, �0 is defined as the actual privacy metric

instead of � [43] that is obtained considering the fact that correlations can be used by an

attacker to obtain more information about the differentially private data by filtering. In this

work, we discuss and propose generic low-complexity methods to keep �0 small for eye move-

ment feature signals. To deal with correlated eye movement feature signals, we propose three

different methods: FPA, chunk-based FPA (CFPA) for original feature signals, and chunk-

based FPA for difference based sequences (DCFPA). The sensitivity of each eye movement fea-

ture signal is calculated by using the Lw-distance such that

D
f
wðX

nÞ ¼ max
p; q
kXn;ðp;f Þ � Xn;ðq;f Þkw

¼ max
p; q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

t¼1

ðjXðp;f Þt � Xðq;f Þt jÞ
ww

s
ð7Þ

where Xn, (p, f) and Xn, (q, f) denote observation vectors for a feature f from two participants p
and q, n denotes the maximum length of the observation vectors, and w 2 {1, 2}.

Fourier Perturbation Algorithm (FPA). In the FPA [26], the signal is represented with a

small number of transform coefficients such that the query sensitivity of the representative sig-

nal decreases. A smaller query sensitivity decreases the noise power required to make the noisy

signal differentially private. In the FPA, the signal is transformed into the frequency domain

by applying Discrete Fourier Transform (DFT), which is commonly applied as a non-unitary

transform. The frequency domain representation of a signal consists of less correlated trans-

form coefficients as compared to the time domain signal due to the high decorrelation effi-

ciency of the DFT. Therefore, the correlation between the eye movement feature signals is

reduced by applying the DFT. After the DFT, the noise sampled from the LPA is added to the

first k elements of DFT(Xn) that correspond to k lowest frequency components, denoted as

Fk = DFTk(Xn). Once the noise is added, the remaining part (of size n − k) of the noisy signal

~Fk is zero padded and denoted as PADnð~FkÞ. Lastly, using the Inverse DFT (IDFT), the padded

signal is transformed back into the time domain. We can show that �-differential privacy is sat-

isfied by the FPA for l ¼
ffiffi
n
p ffiffi

k
p

D2ðXnÞ
�

unlike the value claimed in previous work [26], as observed

independently by Kellaris and Papadopoulos [44]. The procedure is summarized in Fig 1, and

the proof is provided below. Since not all coefficients are used, in addition to the perturbation

error caused by the added noise, a reconstruction error caused by the lossy compression is

introduced. It is important to determine the number of used coefficients k to minimize the

total error. We discuss how we choose k values for FPA-based methods below.

Proof of FPA being differentially private. We next prove that the FPA is � differentially

private for l ¼ ð
ffiffiffi
n
p ffiffiffi

k
p

D2ðX
nÞÞ=�. First, we prove the inequalities (a) and (b) in the following.

D1ðF̂nÞ�
ðaÞ ffiffiffi

k
p
�D2ðF̂

nÞ�
ðbÞ ffiffiffi

n
p
�
ffiffiffi
k
p
�D2ðX

nÞ ð8Þ

where F̂nðIÞ ¼ ½F̂ kðIÞ; 0; 0; . . . ; 0� such that n − k zeros are padded. Consider (8)(a), which

Fig 1. Flow of the Fourier Perturbation Algorithm (FPA).

https://doi.org/10.1371/journal.pone.0255979.g001
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follows since we have

D1ðF̂nÞ ¼ max
I; I0
k F̂nðIÞ � F̂nðI0Þk

1
¼ max

I; I0

Xn

j¼1

j F̂ jðIÞ � F̂ jðI
0Þj

¼ max
I; I0

Xk

j¼1

j F̂ jðIÞ � F̂ jðI
0Þj � 1

ð9Þ

so that by applying Cauchy-Schwarz inequality, we obtain

max
I; I0

Xk

j¼1

j F̂ jðIÞ � F̂ jðI
0Þj � 1 � max

I; I0
ð
Xk

j¼1

j F̂ jðIÞ � F̂ jðI
0Þj

2
Þ

1=2
� ð
Xk

j¼1

12Þ
1=2

� max
I; I0
k F̂nðIÞ � F̂nðI0Þk2 �

ffiffiffi
k
p

�
ffiffiffi
k
p
� D2ðF̂nÞ:

ð10Þ

Consider next (8)(b), which follows since we obtain

D2ðF̂nÞ ¼ max
I; I0
k F̂nðIÞ � F̂nðI0Þk

2
¼ max

I; I0
ð
Xn

j¼1

j F̂ jðIÞ � F̂ jðI
0Þj

2
Þ

1=2
ð11Þ

and since Fn has more non-zero elements than F̂n, we have

D2ðF̂nÞ � max
I; I0
ð
Xn

j¼1

j FjðIÞ � FjðI
0Þj

2
Þ

1=2
: ð12Þ

Recall that Fn(I) = DFT(Xn(I)), Fn(I0) = DFT(Xn(I0)), and DFT is linear, so we have

DFTðXnðIÞ � XnðI0ÞÞ ¼ FnðIÞ � FnðI0Þ: ð13Þ

By applying Parseval’s theorem to the DFT, we obtain

ð
1

n
�
Xn

j¼1

j FjðIÞ � FjðI
0Þj

2
Þ1=2 ¼ ð

Xn

j¼1

jXjðIÞ � XjðI
0Þj

2
Þ

1=2
: ð14Þ

Combining (12) and (14), we prove (8)(b) since we have

D2ðF̂nÞ � max
I; I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

jXjðIÞ � XjðI
0Þj

2

v
u
u
t �

ffiffiffi
n
p

� max
I; I0
kXnðIÞ � XnðI0Þk2 �

ffiffiffi
n
p

� D2ðXnÞ �
ffiffiffi
n
p

:

ð15Þ

Finally, since the LPA that is applied to F̂k is �-DP for l ¼
D1ðF̂ nÞ

�
[22], (8) proves that the

FPA is �-DP for l ¼

ffiffiffi
n
p ffiffiffi

k
p

D2ðXnÞ

�
.

Chunk-based FPA (CFPA). One drawback of directly applying the FPA to the eye move-

ment feature signals is large query sensitivities for each feature f due to long signal sizes. To

solve this, Steil et al. [20] propose to subsample the signal using non-overlapping windows,

which means removing many data points. While subsampling decreases the query sensitivities,

it also decreases the amount of data. Instead, we propose to split each signal into smaller
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chunks and apply the FPA to each chunk so that complete data can be used. We choose the

chunk sizes of 32, 64, and 128 since there are divide-and-conquer type tree-based implementa-

tion algorithms for fast DFT calculations when the transform size is a power of 2 [45]. When

the signals are split into chunks, chunk level query sensitivities are calculated and used rather

than the sensitivity of the whole sequence. Differential privacy for the complete signal is pre-

served by Theorem 2 [42] since the used chunks are non-overlapping. As the chunk size

decreases, the chunk level sensitivity decreases as well as the computational complexity. How-

ever, the parameter �0 that accounts for the sample correlations might increase with smaller

chunk sizes because temporal correlations between neighboring samples are larger in an eye

movement dataset. On the other hand, if the chunk sizes are kept large, then the required

amount of noise to achieve differential privacy increases due to the increased query sensitivity.

Therefore, a good trade-off between computational complexity, and correlations is needed to

determine the optimal chunk size.

Difference- and chunk-based FPA (DCFPA). To tackle temporal correlations, we con-

vert the eye movement feature signals into difference signals where differences between conse-

cutive eye movement features are calculated as

X̂ ðf Þt ¼ fX
ðf Þ
t � Xðf Þt� 1gj

n
t¼2

; X̂ ðf Þ1 ¼ Xðf Þ1 : ð16Þ

Using the difference signals denoted by X̂n;ðf Þ, we aim to further decrease the correlations

before applying a differential privacy method. We conjecture that the ratio �0/� decreases in

the difference-based method as compared to the FPA method. To support this conjecture, we

show that the correlations in the difference signals decrease significantly as compared to the

original signals. This results in lower �0 and better privacy for the same �. The difference-based

method is applied together with the CFPA. Therefore, the differences are calculated inside

chunks. The first element of each chunk is preserved. Then, the FPA mechanism is applied to

the difference signals by using query sensitivities calculated based on differences and chunks.

For each chunk, noisy difference observations are aggregated to obtain the final noisy signals.

This mechanism is differentially private by Theorem 1 [42], and described in Algorithm 1.

Algorithm 1: DCFPA.
Input: Xn, λ, k
Outut: ~Xn

1) X̂ t ¼ fXt � Xt� 1gj
n
t¼2

; X̂1 ¼ X1.

2) ~̂Xn ¼ FPAðX̂n; l; kÞ.

3) ~Xt ¼ f
~̂Xt þ

~X̂ t� 1gj
n
t¼2

; ~X1 ¼
~̂X1.

Since Theorem 1 can be applied to the DCFPA when the consecutive differences are

assumed to be independent, which is a valid assumption for eye movement feature signals as

we illustrate below, there is also a trade-off between the chunk sizes and utility for the DCFPA.

If a large chunk size is chosen, then the total � value could be very large, which reduces privacy.

Therefore, we choose chunk sizes of 32, 64, and 128 for the DCFPA as well for evaluation We

illustrate the CFPA and DCFPA in Fig 2, for instance with three chunks.

Choice of the number of transform coefficients. The proposed methods require a selec-

tion of a value for k. A small k value increases the reconstruction error, while a large k value

results in an increase in the perturbation error. Therefore, it is important to find an optimal k
value that minimizes the sum of the two errors. In this work, we compare a large set of possible

k values to choose the best values.

We apply the aforementioned differential privacy mechanisms by using 100 noisy evalua-

tions to find optimal k values applied to features or chunks. Optimal k values have the mini-

mum absolute NMSE for each chunk, eye movement feature, and document or recording
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type. In a distributed setting, each party should know the k values in advance. However, in a

centralized setting, it is crucial to choose the k values in a differentially private manner. To

evaluate the differential privacy in the eye tracking area while taking the temporal correlations

into account, we focus on optimal k values for this work. One shortcoming of this approach is

that the optimal k value compromises some information about the data, which leaks privacy

[26]. Our observation is that the information leaked by optimizing the parameter k is negligible

as compared to the privacy reduction due to temporally correlated data. Thus, we illustrate the

results with optimal k values.

Datasets

We evaluate our methods on two different publicly available eye movement datasets namely,

MPIIDPEye and MPIIPrivacEye that are dedicated to privacy-preserving eye tracking. Both

datasets consist of aggregated and timely eye movement feature signals related to eye fixations,

saccades, blinks, and pupil diameters which are commonly used in VR/AR applications as they

represent individual user behaviors. As all minimum values of wordbook features ranging

from 1 to 4 are zeros in both datasets, we exclude them from the utility and privacy calcula-

tions. In addition, we remark that both datasets are available for non-commercial scientific

purposes.

MPIIDPEye [20]: A publicly available eye movement dataset consisting of 60 recordings

that is collected from VR devices for a reading task of three document types (comics, newspa-

per, and textbook) from 20 (10 female, 10 male) participants. Each recording consists of 52 eye

movement feature sequences computed with a sliding window size of 30 seconds and a step

size of 0.5 seconds.

MPIIPrivacEye [29]: A publicly available eye movement dataset consisting of 51 recordings

from 17 participants for 3 consecutive sessions with a head-mounted eye tracker and a field

Fig 2. Flow of the CFPA and DCFPA.

https://doi.org/10.1371/journal.pone.0255979.g002
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camera, which is similar to an AR setup. Each recording consists of 52 eye movement feature

sequences computed with a sliding window size of 30 seconds and a step size of 1 second, and

each observation is annotated with binary privacy sensitivity levels of the scene that is being

viewed. The dataset also consists of scene features extracted with convolutional neural net-

works. We do not evaluate the last part of the recording 1 of the participant 10, as the eye

movement features are not available for this region. To detect the privacy level of the scene

that is being viewed, we remark that the scene is very important [46]; however, an individual’s

eye movements can improve the detection rate when they are fused with the information from

the scene.

Results

This section discusses data correlations in addition to evaluations using utility and classifica-

tion metrics. The utility and classification results are averaged over 100 noisy evaluations with

the optimal k values in MATLAB. We evaluate and compare the utility of differentially private

eye movement feature signals by using absolute NMSE, as this metric provides analytically

trackable results. However, it does not provide implications regarding the practical usability of

the private eye movement signals. Therefore, we also report classification accuracies of docu-

ment type, scene privacy sensitivity, gender prediction, and person identification tasks in

order to show the usability of the private data and proposed methods. An optimal trade-off

between utility tasks (e.g., low absolute NMSE, high classification accuracy in document type

prediction) and privacy (e.g., low �, low classification accuracy in person identification or gen-

der prediction tasks) is favorable.

Correlation analysis

Using the correlation coefficient as the metric, we first illustrate high temporal correlation

between eye movement feature data. Since there are 52 eye movement features in both data-

sets, it is not feasible to illustrate all correlation results. Thus, in the following we illustrate

the correlations for the features ratio large saccade and blink rate in the MPIIDPEye and

MPIIPrivacEye datasets, respectively. The correlation coefficients of ratio large saccade and

blink rate for three document and recording types over a time difference Δt w.r.t. the signal

samples at, e.g., the fifth time instance for original eye movement feature signals and differ-

ence signals for all participants for both datasets are depicted in Figs 3–6, respectively. As

Fig 3. Correlation coefficients of the raw signals of feature ratio large saccade in the MPIIDPEye dataset. The values are calculated over a time

difference of Δt (Each time step corresponds to 0.5s) w.r.t. the samples at the fifth time instance.

https://doi.org/10.1371/journal.pone.0255979.g003
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correlations between the difference signals are significantly smaller than correlations

between the original eye movement feature signals, the DCFPA is less vulnerable to privacy

reduction due to temporal correlations, thus ensuring that the value of �0 is close to the differ-

ential privacy design parameter �.

Fig 4. Correlation coefficients of the difference signals of feature ratio large saccade in the MPIIDPEye dataset. The values are calculated over a

time difference of Δt (Each time step corresponds to 0.5s) w.r.t. the samples at the fifth time instance.

https://doi.org/10.1371/journal.pone.0255979.g004

Fig 5. Correlation coefficients of the raw signals of feature blink rate in the MPIIPrivacEye dataset. The values are calculated over a time difference

of Δt (Each time step corresponds to 1s) w.r.t. the samples at the fifth time instance.

https://doi.org/10.1371/journal.pone.0255979.g005

Fig 6. Correlation coefficients of the difference signals of feature blink rate in the MPIIPrivacEye dataset. The values are calculated over a time

difference of Δt (Each time step corresponds to 1s) w.r.t. the samples at the fifth time instance.

https://doi.org/10.1371/journal.pone.0255979.g006
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Utility results

We evaluate the utility defined in Eq (6) by applying our methods separately to different docu-

ment and recording types; therefore, we report the utility results separately. As we apply the

proposed methods separately to each eye movement feature, we first calculate the mean utility

of each feature and then calculate the average utility over all features. The utility results for var-

ious � values for aforementioned methods on the MPIIDPEye and MPIIPrivacEye datasets are

given in Figs 7–12, respectively.

While a high absolute NMSE, i.e., low utility, does not necessarily mean that a mechanism

is completely useless, higher utility means that the mechanism would perform more effectively

Fig 7. Utility of the LPA and FPA for MPIIDPEye.

https://doi.org/10.1371/journal.pone.0255979.g007

Fig 8. Utility of the CFPA for MPIIDPEye.

https://doi.org/10.1371/journal.pone.0255979.g008
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than low utility in various tasks. The trend in the utility results of both evaluated datasets are

similar. As the query sensitivities are lower in CFPA, utilities of CFPA are always higher than

the utilities of the FPA as theoretically expected. The DCFPA particularly with small chunks

outperforms other methods in the most private settings, namely in the lowest � regions. When

different chunk sizes are compared within the CFPA and DCFPA, different chunk sizes per-

form similarly for the CFPA method. For the DCFPA, there is a significant trend for better

utilities when the chunk sizes are decreased. However, as temporal correlations in the smaller

chunk sizes higher and since a higher chunk size reduces the temporal correlations better, it is

ideal to use a higher chunk size if the utilities are comparable. In general, while the LPA,

Fig 9. Utility of the DCFPA for MPIIDPEye.

https://doi.org/10.1371/journal.pone.0255979.g009

Fig 10. Utility of the LPA and FPA for MPIIPrivacEye.

https://doi.org/10.1371/journal.pone.0255979.g010
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namely the standard Laplace mechanism used for differential privacy, is vulnerable to tempo-

ral correlations [41], our methods also outperform it in terms of utilities. In addition to high

utilities, the calculation complexities are decreased with the CFPA and DCFPA which is

another advantage of chunk-based methods.

Classification accuracy results

We evaluate document type and gender classification results for the MPIIDPEye and privacy

sensitivity classification results for the MPIIPrivacEye by using differentially private data gen-

erated by the methods which handle temporal correlations in the privacy context. In addition,

Fig 11. Utility of the CFPA for MPIIPrivacEye.

https://doi.org/10.1371/journal.pone.0255979.g011

Fig 12. Utility of the DCFPA for MPIIPrivacEye.

https://doi.org/10.1371/journal.pone.0255979.g012
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for both datasets, we evaluate person identification tasks. While a NMSE-based utility metric

provides analytically trackable way for comparison, evaluating private data using classification

accuracies give insights about the usability of the noisy data in practice. Instead of only using

Support Vector Machines (SVM) as in previous works [20, 29], we evaluate a set of classifiers

including SVMs, decision trees (DTs), random forests (RFs), and k-Nearest Neighbors (k-

NNs). We employ a similar setup as in previous work [20] with radial basis function (RBF)

kernel, bias parameter of C = 1, and automatic kernel scale for the SVMs. For RFs and k-NNs,

we use 10 trees and k = 11 with a random tie breaker among tied groups, respectively. We nor-

malize the training data to zero mean and unit variance, and apply the same parameters to the

test data. Although we do not apply subsampling while generating the differentially private

data, which is applied in previous work [20], we use subsampled data for training and testing

for document type, gender, and privacy sensitivity classification tasks with window sizes of 10

and 20 for MPIIDPEye and MPIIPrivacEye, respectively, to have a fair comparison and similar

amount of data. Apart from the person identification task, all the classifiers are trained and

tested in a leave-one-person-out cross-validation setup, which is considered as a more chal-

lenging but generic setup. For the person identification task, since it is not possible to carry

out the experiments in a leave-one-person-out cross-validation setup, we opt for a similar con-

figuration as in previous work [20] by using the first halves of the signals as training data and

the remaining parts as test data. Such setup can be considered as one of the hypothetical best-

case scenarios for an adversary as this simulates some set of prior knowledge for an adversary

on participants’ visual behaviors. For the person identification task, in order to use similar

amount of data with other classification tasks from each signal, we use window sizes of 5 and

10 for MPIIDPEye and MPIIPrivacEye, respectively. For the MPIIDPEye, we evaluate results

both with majority voting by summarizing classifications from different time instances for

each participant and recording and without majority voting. Privacy sensitivity classification

tasks for MPIIPrivacEye are carried only without majority voting since privacy sensitivity of

the scene can change at each time step and applying majority voting to such task in our setup

is not reasonable.

While classification results cannot be treated directly as the utility, they provide insights

into the usability of the differentially private data in practice. We first evaluate document type

classification task in the majority voting setting in Table 1 for MPIIDPEye dataset as it is possi-

ble to compare our results with the previous work [20]. As previous results quickly drop to the

0.33 guessing probability in high privacy regions, we significantly outperform them particu-

larly with DCFPA and FPA with the accuracies over 0.60 and 0.85, respectively. In the less pri-

vate regions towards � = 48, this trend still exists with the CFPA and FPA with accuracy results

over 0.7 and 0.85. Chunk-based methods perform slightly worse than the FPA in the document

Table 1. Document type classification accuracies in the MPIIDPEye dataset using differentially private eye move-

ment features with majority voting.

Document type classification accuracies (k-NN|SVM|DT|RF)

Method � = 0.48 � = 2.4 � = 4.8 � = 24 � = 48

FPA 0.50|0.63|0.82|0.87 0.51|0.63|0.81|0.87 0.5|0.61|0.81|0.87 0.52|0.63|0.82|0.87 0.52|0.64|0.83|0.88

CFPA-32 0.39|0.37|0.45|0.44 0.40|0.38|0.45|0.44 0.40|0.44|0.46|0.44 0.58|0.58|0.55|0.60 0.71|0.69|0.66|0.66

CFPA-64 0.41|0.36|0.45|0.45 0.40|0.37|0.44|0.45 0.40|0.41|0.44|0.45 0.57|0.59|0.55|0.59 0.70|0.70|0.66|0.66

CFPA-128 0.36|0.33|0.45|0.45 0.36|0.33|0.44|0.44 0.37|0.35|0.44|0.45 0.52|0.56|0.52|0.57 0.69|0.68|0.64|0.66

DCFPA-32 0.51|0.37|0.46|0.44 0.51|0.36|0.47|0.42 0.47|0.35|0.47|0.43 0.49|0.37|0.46|0.44 0.48|0.36|0.47|0.45

DCFPA-64 0.61|0.45|0.43|0.41 0.55|0.35|0.43|0.41 0.56|0.41|0.43|0.41 0.60|0.43|0.45|0.42 0.59|0.40|0.44|0.43

DCFPA-128 0.64|0.45|0.46|0.48 0.62|0.42|0.45|0.46 0.69|0.50|0.44|0.46 0.57|0.45|0.45|0.46 0.60|0.42|0.45|0.46

https://doi.org/10.1371/journal.pone.0255979.t001

PLOS ONE Differential privacy for eye tracking

PLOS ONE | https://doi.org/10.1371/journal.pone.0255979 August 17, 2021 15 / 22

https://doi.org/10.1371/journal.pone.0255979.t001
https://doi.org/10.1371/journal.pone.0255979


type classifications even though the utility of the FPA is lower. We observe that the reading

patterns are hidden easier with chunk-based methods; therefore, document type classification

task becomes more challenging. This is especially validated with DCFPA methods using differ-

ent chunk sizes, as DCFPA-128 outperforms smaller chunk-sized DCFPAs even though the

sensitivities are higher. Therefore, we conclude that the differential privacy method should be

selected for eye movements depending on the further task which will be applied. The docu-

ment type classification results without majority voting are provided in the table in S1 Table.

Next, we analyze the gender classification results for MPIIDPEye. All methods are able to

hide the gender information in the high privacy regions as it is already challenging to identify

it with clean data as accuracies are�0.7 in previous work [20]. While we obtain similar results

compared to previous work for the gender classification task, the CFPA method is able to pre-

dict gender information correctly in the less private regions, namely � = 48, as it also has the

highest utility values in these regions. The FPA applied to the complete signal and the DCFPA

are not able to classify genders accurately. We observe that higher amount of noise that is

needed by the FPA and noising the fine-grained “difference” information between eye move-

ment observations with DCFPA are the reasons for hiding the gender information successfully

in all privacy regions. Overall, the CFPA provides an optimal equilibrium between gender and

document type classification success in the less private regions if gender information is not

considered as a feature that should be protected from adversaries. Otherwise, all proposed

methods are able to hide gender information from the data in the higher privacy regions as

expected. Gender classification results are depicted in Table 2. Especially in some methods

with k-NNs and SVMs, gender classification accuracies are close to zero because of the major-

ity voting and it is validated by the results without majority voting in the table in S2 Table.

Lastly for the MPIIDPEye, we evaluate person identification task using differentially private

data. The resulting classification accuracies with majority voting are depicted in Table 3. By

Table 2. Gender classification accuracies in the MPIIDPEye dataset using differentially private eye movement features with majority voting.

Gender classification accuracies (k-NN|SVM|DT|RF)

Method � = 0.48 � = 2.4 � = 4.8 � = 24 � = 48

FPA 0.44|0.30|0.43|0.38 0.45|0.30|0.41|0.37 0.44|0.28|0.41|0.39 0.43|0.27|0.43|0.38 0.44|0.31|0.42|0.39

CFPA-32 0.04|0.01|0.26|0.24 0.05|0.01|0.27|0.25 0.05|0.02|0.28|0.27 0.36|0.30|0.50|0.45 0.62|0.50|0.67|0.53

CFPA-64 0.08|0.05|0.27|0.26 0.08|0.04|0.28|0.27 0.10|0.06|0.31|0.27 0.38|0.34|0.52|0.47 0.62|0.51|0.68|0.54

CFPA-128 0.18|0.15|0.32|0.30 0.16|0.12|0.31|0.30 0.18|0.10|0.32|0.31 0.36|0.30|0.50|0.46 0.60|0.47|0.68|0.54

DCFPA-32 0.03|�0|0.22|0.31 0.04|�0|0.23|0.32 0.04|�0|0.22|0.32 0.04|�0|0.23|0.31 0.04|�0|0.23|0.32

DCFPA-64 0.04|�0|0.30|0.33 0.04|�0|0.30|0.34 0.04|�0|0.30|0.32 0.04|�0|0.29|0.34 0.03|�0|0.30|0.34

DCFPA-128 0.09|0.01|0.34|0.35 0.08|�0|0.32|0.34 0.08|0.01|0.32|0.35 0.07|�0|0.33|0.34 0.07|0.01|0.34|0.34

https://doi.org/10.1371/journal.pone.0255979.t002

Table 3. Person identification accuracies in the MPIIDPEye dataset using differentially private eye movement fea-

tures with majority voting.

Person identification accuracies (k-NN|SVM|DT|RF)

Method � = 0.48 � = 2.4 � = 4.8 � = 24 � = 48

FPA 1 1 1 1 1

CFPA-32 0.15|0.08|0.44|0.37 0.13|0.08|0.46|0.39 0.11|0.08|0.48|0.41 0.40|0.11|0.64|0.70 0.72|0.16|0.87|0.92

CFPA-64 0.14|0.08|0.42|0.34 0.13|0.08|0.44|0.37 0.12|0.08|0.45|0.38 0.39|0.11|0.63|0.71 0.70|0.17|0.85|0.92

CFPA-128 0.16|0.05|0.39|0.36 0.15|0.05|0.41|0.36 0.17|0.05|0.43|0.39 0.45|0.07|0.55|0.63 0.70|0.16|0.74|0.88

DCFPA-32 0.06|0.10|0.39|0.37 0.06|0.10|0.39|0.36 0.08|0.10|0.39|0.36 0.10|0.10|0.39|0.37 0.10|0.10|0.40|0.38

DCFPA-64 0.10|0.10|0.33|0.35 0.10|0.10|0.32|0.34 0.10|0.10|0.32|0.33 0.13|0.10|0.31|0.34 0.13|0.10|0.32|0.33

DCFPA-128 0.09|0.05|0.24|0.28 0.09|0.05|0.25|0.27 0.10|0.05|0.23|0.27 0.10|0.06|0.24|0.26 0.10|0.05|0.22|0.25

https://doi.org/10.1371/journal.pone.0255979.t003
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using the FPA, it is possible to identify the participants very accurately, which means that even

though the document type classification accuracies of the FPA are higher than the others, a

strong adversary can also identify personal ids when this method is used. The same trend also

exists in the without majority voting setting, which is reported in the table in S3 Table. The

CFPA and DCFPA perform well against person identification attempts in the high privacy

regions. However, when the CFPA is used, it is possible to identify personal ids in the less pri-

vate regions. Overall, for the MPIIDPEye dataset, the DCFPA performs better than the others

due to its resistance against person identification and gender classification and relatively high

classification accuracies for the document type predictions. We conclude that this is due to the

robust decorrelation effect of the DCFPA.

For the MPIIPrivacEye, we report privacy sensitivity classification accuracies using differen-

tially private eye movement features in the Table 4. The FPA performs worse than our methods.

The DCFPA, particularly with the chunk size of 32, outperforms all other methods slightly in

the higher privacy regions as it is also the case for the utility results. In the lower privacy regions,

the CFPA performs the best with�0.60 accuracy. Since performance does not drop significantly

in the higher chunk sizes, it is reasonable to use higher chunk-sized methods as they decrease

the temporal correlations better. While having an accuracy of approximately 0.6 in a binary clas-

sification problem does not form the best performance, according to the previous work [29],

privacy sensitivity classification using only eye movements with clean data in a person-indepen-

dent setup only performs marginally higher than 0.60. Therefore, we show that even though we

use differentially private data in the most private settings, we obtain similar results to the classi-

fication results using clean data. This means that differentially private eye movements can be

used along with scene features for detecting privacy sensitive scenes in AR setups.

The results of the person identification task in the MPIIPrivacEye dataset are similar to the

results of the MPIIDPEye dataset and the results with majority voting are depicted in Table 5.

Personal identifiers are predicted very accurately when the FPA is used. The CFPA and

DCFPA are resistant to person identification attacks in all privacy regions performing around

the random guess probability in almost all cases. Similar to the classification results of the

MPIIDPEye dataset, the DCFPA method performs the best when utility-privacy trade-off is

taken into consideration. The person identification results without majority voting are pre-

sented in the table in S4 Table.

Discussion

We compared our differential privacy methods with the standard Laplace mechanism as well

as the FPA method, which is proposed for temporally correlated data, by using the MPIIDPEye

Table 4. Privacy sensitivity classification accuracies in the MPIIPrivacEye dataset using differentially private eye

movement features.

Privacy sensitivity classification accuracies (k-NN|SVM|DT|RF)

Method � = 0.48 � = 2.4 � = 4.8 � = 24 � = 48

FPA 0.49|0.58|0.51|0.55 0.49|0.58|0.51|0.55 0.49|0.58|0.51|0.55 0.50|0.58|0.51|0.55 0.50|0.59|0.51|0.55

CFPA-32 0.55|0.59|0.52|0.56 0.55|0.58|0.52|0.56 0.55|0.58|0.52|0.56 0.56|0.58|0.53|0.57 0.58|0.60|0.54|0.58

CFPA-64 0.55|0.58|0.52|0.56 0.55|0.58|0.52|0.56 0.55|0.58|0.52|0.56 0.56|0.58|0.53|0.57 0.58|0.59|0.54|0.58

CFPA-128 0.55|0.57|0.52|0.56 0.55|0.57|0.52|0.56 0.55|0.57|0.52|0.56 0.56|0.58|0.53|0.57 0.58|0.59|0.54|0.59

DCFPA-32 0.54|0.59|0.52|0.56 0.55|0.59|0.52|0.56 0.55|0.59|0.52|0.56 0.54|0.59|0.52|0.56 0.55|0.59|0.52|0.56

DCFPA-64 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56

DCFPA-128 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56

https://doi.org/10.1371/journal.pone.0255979.t004
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and MPIIPrivacEye datasets. The utility results based on the NMSE metric show that due to

the reduced sensitivities as a result of the chunking operations, the CFPA and DCFPA perform

better than the FPA and standard Laplace mechanism. While larger chunk sizes applied with

the CFPA and DCFPA decrease the effects of temporal correlations on the differential privacy

mechanisms, they also increase the sensitivities, leading to higher amount of noise addition to

the data and worse utility performance. Utility evaluations represent how much differentially

private signals diverge from the original signals. Having eye movement feature signals less

diverged from the original values by providing the differential privacy would lead better per-

formance in various tasks. While the FPA, CFPA, and DCFPA are appropriate for temporally

correlated data, the DCFPA uses the consecutive differences of eye movement feature signals,

which are significantly less correlated than the original feature signals, as illustrated in Figs 4

and 6. Thus, the DCFPA is less vulnerable to temporal correlations in the differential privacy

context.

In addition to utility results, we evaluated document type, gender, and person identification

tasks for the MPIIDPEye dataset and privacy sensitivity classification of the observed scene

and person identification task for the MPIIPrivacEye dataset and compared our results with

the previous works especially in the eye tracking literature. The FPA outperforms the CFPA

and DCFPA in document type classification task since the chunks perturb “Z”-type reading

patterns. However, this might be a task-specific outcome as the CFPA and DCFPA perform

better in terms of utility. In addition, when the FPA is used, personal identifiers can be esti-

mated with high accuracies in both datasets. On the contrary, especially the DCFPA provides

decreased probabilities for person identification tasks in the MPIIDPEye, and probabilities

close to the random guess probability for the MPIIPrivacEye, which are optimal from a pri-

vacy-preservation perspective. We remark that this outcome is also related to decreased tem-

poral correlations. Gender information is successfully hidden in all methods and scene privacy

can be predicted to some extent using differentially private eye movement signals. In addition,

privacy sensitivity detection results on the MPIIPrivacEye are consistent with the utility results

based on the NMSE metric.

Due to the significant reduction of temporal correlations and high utility and relatively

accurate classification results in different tasks, the DCFPA is the best performing differential

privacy method for eye movement feature signals. In addition, it is not possible to recognize

the person accurately from eye movement data when the DCFPA is used. From correlation

reduction point of view, in both methods namely, CFPA and DCFPA, when the performances

are similar, it is reasonable to use higher chunk sizes as such chunks are less vulnerable to tem-

poral correlations as illustrated in Figs 3 and 5. Overall, our methods outperform the state-of-

the-art for differential privacy for aggregated eye movement feature signals.

Table 5. Person identification classification accuracies in the MPIIPrivacEye dataset using differentially private

eye movement features with majority voting.

Person identification classification accuracies (k-NN|SVM|DT|RF)

Method � = 0.48 � = 2.4 � = 4.8 � = 24 � = 48

FPA 1 1 1 1 1

CFPA-32 0.05|0.06|0.07|0.07 0.05|0.06|0.07|0.07 0.06|0.06|0.08|0.07 0.07|0.06|0.09|0.11 0.11|0.06|0.14|0.16

CFPA-64 0.06|0.06|0.06|0.07 0.06|0.06|0.06|0.06 0.06|0.06|0.07|0.07 0.07|0.06|0.09|0.09 0.11|0.06|0.16|0.16

CFPA-128 0.06|0.06|0.07|0.07 0.06|0.06|0.07|0.07 0.06|0.06|0.07|0.08 0.07|0.06|0.09|0.11 0.11|0.06|0.15|0.15

DCFPA-32 0.06|0.05|0.08|0.07 0.06|0.06|0.07|0.08 0.07|0.05|0.08|0.08 0.07|0.05|0.08|0.08 0.07|0.06|0.08|0.08

DCFPA-64 0.06|0.05|0.06|0.06 0.06|0.05|0.06|0.06 0.06|0.05|0.06|0.06 0.05|0.06|0.06|0.06 0.06|0.05|0.06|0.06

DCFPA-128 0.05|0.05|0.06|0.06 0.05|0.05|0.05|0.06 0.06|0.05|0.06|0.06 0.05|0.05|0.05|0.06 0.06|0.05|0.05|0.06

https://doi.org/10.1371/journal.pone.0255979.t005
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Conclusion

We proposed different methods to achieve differential privacy for eye movement feature sig-

nals by correcting, extending, and adapting the FPA method. Since eye movement features are

correlated over time and are high dimensional, standard differential privacy methods provide

low utility and are vulnerable to inference attacks. Thus, we proposed privacy solutions for

temporally correlated eye movement data. Our methods can be easily applied to other biomet-

ric human-computer interaction data as well since they are independent of the used data and

outperform the state-of-the-art methods in terms of both NMSE and classification accuracy

and reduce the correlations significantly. In future work, we will analyze the actual privacy

metric �0 which takes the data correlations into account and choose k values in a private man-

ner for the centralized differential privacy setting.
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14. Günlü O. Key Agreement with Physical Unclonable Functions and Biometric Identifiers [Ph.D. Thesis].

Technical University of Munich. Munich, Germany; 2018.

15. Kinnunen T, Sedlak F, Bednarik R. Towards Task-independent Person Authentication Using Eye Move-

ment Signals. In: ACM Symposium on Eye-Tracking Research & Applications. New York, NY, USA:

ACM; 2010. p. 187–190.

16. Komogortsev OV, Holland CD. Biometric authentication via complex oculomotor behavior. In: 2013

IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems. New York, NY,

USA: IEEE; 2013. p. 1–8.

17. Komogortsev OV, Jayarathna S, Aragon CR, Mahmoud M. Biometric Identification via an Oculomotor

Plant Mathematical Model. In: ACM Symposium on Eye-Tracking Research & Applications. New York,

NY, USA: ACM; 2010. p. 57–60.

18. Eberz S, Rasmussen KB, Lenders V, Martinovic I. Looks Like Eve: Exposing Insider Threats Using Eye

Movement Biometrics. ACM Transactions on Privacy and Security. 2016; 19(1):1:1–1:31. https://doi.

org/10.1145/2904018

19. Zhang Y, Hu W, Xu W, Chou CT, Hu J. Continuous Authentication Using Eye Movement Response of

Implicit Visual Stimuli. ACM Interactive Mobile Wearable Ubiquitous Technologies. 2018; 1(4):177:1–

177:22.

20. Steil J, Hagestedt I, Huang MX, Bulling A. Privacy-aware Eye Tracking Using Differential Privacy. In:

ACM Symposium on Eye Tracking Research & Applications. New York, NY, USA: ACM; 2019. p. 27:1–

27:9.

PLOS ONE Differential privacy for eye tracking

PLOS ONE | https://doi.org/10.1371/journal.pone.0255979 August 17, 2021 20 / 22

https://doi.org/10.1109/MITS.2017.2743171
https://doi.org/10.1109/MITS.2017.2743171
https://doi.org/10.1371/journal.pone.0203629
https://doi.org/10.1371/journal.pone.0203629
https://doi.org/10.1016/j.artmed.2018.06.005
https://doi.org/10.1371/journal.pone.0186871
https://doi.org/10.1371/journal.pone.0186871
https://doi.org/10.3389/fnhum.2019.00354
https://doi.org/10.3233/JAD-150265
https://doi.org/10.1145/2904018
https://doi.org/10.1145/2904018
https://doi.org/10.1371/journal.pone.0255979


21. Narayanan A, Shmatikov V. Robust De-anonymization of Large Sparse Datasets. In: IEEE Symposium

on Security and Privacy. New York, NY, USA: IEEE; 2008. p. 111–125.

22. Dwork C, McSherry F, Nissim K, Smith A. Calibrating Noise to Sensitivity in Private Data Analysis. In:

Halevi S, Rabin T, editors. Theory of Cryptography. Berlin, Heidelberg, Germany: Springer Berlin Hei-

delberg; 2006. p. 265–284.

23. Dwork C. Differential Privacy. In: Automata, Languages and Programming. Berlin, Heidelberg, Ger-

many: Springer Berlin Heidelberg; 2006. p. 1–12.

24. Erlingsson U, Pihur V, Korolova A. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal

Response. In: ACM SIGSAC Conference on Computer and Communications Security. New York, NY,

USA: ACM; 2014. p. 1054–1067.

25. Ding B, Kulkarni J, Yekhanin S. Collecting Telemetry Data Privately. In: International Conference on

Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc.; 2017. p. 3574–

3583.

26. Rastogi V, Nath S. Differentially Private Aggregation of Distributed Time-series with Transformation and

Encryption. In: ACM SIGMOD International Conference on Management of Data. New York, NY, USA:

ACM; 2010. p. 735–746.
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