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Abstract

In cancer, linking epigenetic alterations to drivers of transformation has been difficult, in part

because DNA-methylation analyses must capture epigenetic variability, which is central to tumour

heterogeneity and tumour plasticity. Here, by conducting a comprehensive analysis, based on

information theory, of differences in methylation stochasticity in samples from patients with

paediatric acute lymphoblastic leukaemia (ALL), we show that ALL epigenomes are stochastic,

and marked by increased methylation entropy at specific regulatory regions and genes. By

integrating data methylation and single-cell gene-expression data, we arrived at a relationship

between methylation entropy and gene-expression variability, and found that epigenetic changes in

ALL converge on a shared set of genes that overlap with genetic drivers involved in chromosomal

translocations across the disease spectrum. Our findings suggest that an epigenetically driven

gene- regulation network, with UHRF1 (ubiquitin-like with PHD and RING finger domains 1) as a

central node, links genetic drivers and epigenetic mediators in ALL.

Pre-B cell acute lymphoblastic leukemia (ALL) is the most common form of cancer in

children1,2. Epigenetic alterations are especially relevant to ALL, as well as to pediatric

tumors in general, which are often characterized by a low mutational burden3,4. Genome-

wide methylation profiling at various stages of normal B lymphocyte maturation suggests

that DNA methylation changes in B-cell neoplasms occur in regions undergoing dynamic

methylation adjustments during normal differentiation5. Moreover, array-based methylation

analysis techniques have revealed that alterations in DNA methylation discriminate between

cytogenetic subtypes of pediatric pre-B ALL and may hold prognostic value6,7. Mutational

analyses of paired diagnostic and relapsed pre-B ALL samples have also identified

significant enrichment of mutations in epigenetic regulators, such as SETD2, CREBBP, and

KDM6A, at relapse8,9. These results suggest a critical role for epigenetic dysregulation in

both the etiology and progression of pediatric pre-B ALL that requires thorough

investigation.

Previous studies aiming to define epigenetic drivers of pediatric ALL have been limited by

an emphasis on array-based techniques assessing comparatively few target regions6,7,10–12,

the paucity of available whole-genome bisulfite sequencing (WGBS) data12,13, as well as by

statistical limitations of methylation inferences based on marginal or empirical approaches,

which are not capable of validly summarizing stochastic cell-to-cell variation in DNA

methylation14,15. Only one study has considered methylation stochasticity in ALL13, which

was focused on CpG islands and a method of analysis based on empirically computing a

marginal measure of methylation variance. However, we have previously shown that

marginal or empirical methods for the analysis of methylation stochasticity can produce

unreliable statistical evidence, especially under routine sequencing coverage conditions or

within genomic regions that exhibit correlated methylation, since these approaches can

accrue large statistical uncertainty and exhibit low sensitivity (true positive rate) and

specificity (true negative rate)14,15.

Here we introduce a novel information-theoretic approach for integrating methylation and

gene expression data in pediatric ALL which comprehensively maps and localizes

differences in methylation stochasticity (which we simply refer to as ‘methylation
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discordance’) at high resolution throughout the entire genome. By employing recent

developments14–16, as well as new methods introduced in this paper, we performed a whole-

genome analysis of methylation stochasticity with a systematic application to four

cytogenetically-defined and clinically relevant subsets of ALL that included 10 primary

diagnostic ETV6-RUNX1 in-frame fusion patient samples, 11 hyperdiploid samples, 6

TCF3-PBX1 in-frame fusion samples, and 4 dicentric chromosome (9;20) samples involving

the PAX5 gene (Supplementary Table 1). Our analysis integrated potential energy

landscapes, defined through the Ising model of statistical physics and computed genome-

wide from WGBS samples at high resolution covering the majority of CpG sites in the

human genome (Supplementary Table 1, Supplementary Fig. 1), with bulk and single-cell

RNA sequencing data. This is in contrasts to previous studies which performed methylation

analysis on a small fraction of CpG sites (less than 2%) using methylation arrays7,12 or a

small number (four or fewer) of WGBS samples12,13.

Results

Potential energy landscapes explain DNA methylation stochasticity in ALL.

Characterizing DNA methylation stochasticity requires assessment of the probability that a

specific methylation pattern is observed within a genomic region of interest14,17,18. In our

previous work14, we computed the probability PX x = Pr X = x  of the stochastic

methylation pattern X = X1, X2, …, XN  within a genomic region that contains N CpG sites

1, 2, …, N to take value x = x1, x2, …, xN  by

PX x = 1
Z exp  −U x ,

Where xn equals 1 or 0 depending on whether the n-th CpG site is methylated or

unmethylated, respectively, U x  is the potential energy of the methylation pattern x, and

Z = ∑xexp −U x

is a normalizing constant known as the partition function. By imposing consistency with

methylation means and nearest-neighbor correlations, and by taking into account non-

cooperative and cooperative factors in methylation, we set14

U x = − ∑n = 1
N α + βρn 2xn − 1 − ∑n = 2

N γ
dn

(2xn − 1)(2x(n − 1) − 1),

Where α, β, and γ are parameters characteristic to the genomic region, computed from

WGBS data within non-overlapping estimation regions of the genome via maximum-

likelihood, ρn is the CpG density, given by

ρn = 1
1000 × #   CpG sites within ± 500   nucleotides around   n , and dn is the distance between

CpG sites n and n − 1, defined by
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dn = [ #   base pair steps between the cytosines of CpG sites   n   and   n − 1]. The resulting

probability distribution PX x  is associated with the one-dimensional Ising model of

statistical physics that can effectively capture methylation stochasticity present in WGBS

data and leads to informME, a powerful approach for genome-wide modeling and analysis

of WGBS data which outperforms pre-existing methods of methylation analysis by

producing reliable statistical evidence with high sensitivity and specificity14,15.

Coordinated patterning information present in WGBS data within a genomic region is used

by informME to compute a potential energy landscape for DNA methylation, given by

V x = U x − U x* , where x* is the most probable methylation pattern. In this landscape,

each methylation pattern x is assigned a potential value V x , with smaller values indicating

that the methylation pattern can be observed with higher probability. Notably, the presence

of a deep and narrow ‘potential well’ in the energy landscape located at x* implies low

methylation stochasticity, since only a small number of methylation patterns, which must

necessarily exhibit low variation from x* due to the well’s narrowness, will be associated

with low potential values and therefore will be observed with high probability (Fig. 1a, left).

On the other hand, a shallow and wide ‘potential well’ points to high methylation

stochasticity, since a large number of methylation patterns will now be associated with low

potential values, implying that any of these patterns will be observed with almost equal

probability (Fig. 1b, right).

We initially applied informME on ten WGBS primary diagnostic patient samples from pre-B

cell ALL that carry the most common chromosome translocation seen in this disease,

t(12;21)(p13;q22), resulting in ETV6-RUNX1 in-frame fusion (Supplementary Table 1). We

included two cell types as controls: (1) normal B cell precursors (two replicates of normal

flow sorted pre-B2 cells from fetal bone marrow, defined as CD34-, CD19+, sIgM-)5, and

(2) three replicates of immunomagnetically separated umbilical cord blood (UCB) CD19+ B

cells (Supplementary Table 1). We used pre-B2 cells as controls since they are a close

corresponding normal cell type to pre-B ALL5,12. We also chose UCB CD19+ cells as

additional controls since they are readily available and include a range of CD19+ cells that

are appropriate normal controls for pre-B ALL, although more mature than pre-B2 cells.

We performed methylation analysis genome-wide and show in Fig. 1b an example of

computed potential energy landscapes at a locus inside ERG, a target of genetic alterations

in ALL19,20 that encodes an ETS-family transcription factor with critical roles in

hematopoiesis and leukemogenesis21, which was identified by our analysis to exhibit

significant and consistent methylation discordance in the data (see discussion later in this

paper). In normal CD19+ cells, only a small number of methylation patterns are associated

with low potential values and these patterns vary only moderately from the most probable

pattern of zero potential (which is fully methylated in this case) resulting in low methylation

stochasticity (Fig. 1b, left and Supplementary Fig. 2). By contrast, the potential energy

landscape flattens in ALL with the most probable pattern becoming fully unmethylated

while most other methylation patterns exhibit low potential values, resulting in high

methylation stochasticity (Fig. 1b, right and Supplementary Fig. 2).
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To facilitate genome-wide analysis, given the combinatorial nature of the space of

methylation patterns (N CpG sites are associated with 2N distinct patterns), informME

partitions the genome into small (150 bp) non-overlapping analysis regions and performs

methylation analysis by quantifying methylation within each analysis region that contains N
CpG sites n = 1, 2, …, N using the methylation level (average methylation) L = 1/N∑n = 1

N Xn.

Notably, the probability distribution PL l , l = 0, 1
N , 2

N ,   …, 1, of the methylation level can

be evaluated by grouping the methylation patterns within the analysis region using their

methylation level and by summing the probabilities PX x  associated with the methylation

patterns within each group (Fig. 1c)14,15.

By employing this approach, we characterized methylation stochasticity within each analysis

region using the probability distribution of the methylation level and employed the mean

methylation level to measure average methylation, the normalized methylation entropy of

the methylation level to quantify the amount of methylation stochasticity, and the

methylation sensitivity index to assess the robustness of the probability distribution of the

methylation level to changes in the values of parameters α, β and γ of the potential energy

landscape, with higher values indicating less robust (more sensitive) behavior pointing to a

more ‘responsive’ analysis region in which small changes in parameter values can produce

larger changes in methylation stochasticity (Methods). Such changes could be the result of

local modifications in the biochemical environment provided by the methylation machinery

that can alter the methylation landscape. Using methylation levels instead of methylation

patterns is a form of ‘coarse graining’ resulting in computational advantages that allow

informME to be applied genome wide. However, both approaches lead to a similar behavior

producing identical values for the mean methylation level and comparable values for the

normalized methylation entropy (Supplementary Fig. 3).

Genome-wide distributions of mean methylation levels and normalized methylation

entropies for the ETV6-RUNX1 ALL and normal control samples showed hypomethylation

in ALL and a global gain in entropy (Supplementary Figs. 4a and 5a,b), whereas genome-

wide distributions of the values of the methylation sensitivity index globally demonstrated

no considerable changes in sensitivity (Supplementary Fig. 4a). By also examining

distributions over selected genomic features (Methods), we observed hypermethylation over

GpG islands (CGIs) in the ETV6-RUNX1 samples versus the normal controls but

hypomethylation over CGI shores, shelves, open sea, gene bodies, exons, introns, and

intergenic regions (Supplementary Figs. 4b and 5a,b), in agreement with previous

observations7. Notably, the normalized methylation entropy was increased over these

features in ALL, while the methylation sensitivity index was higher over CGIs than over

other genomic features in both the ETV6-RUNX1 and the control samples (Supplementary

Figs. 4b and 5a,b). Interestingly, among classes of enhancers that showed hypomethylation

in ALL, Transcription 5’ Enhancers (TxEnh5’) demonstrated a marked gain in normalized

methylation entropy (Supplementary Figs. 4b and 5b). Moreover, bivalent promoters

(PromBiv) defined by a co-enrichment of the repressive H3K27me3 and activating

H3K4me3 histone tail modifications, showed considerable hypomethylation and gain in

methylation sensitivity in the control samples, when compared to other genomic features
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(Supplementary Figs. 4b and 5a,b), consistent with previous observations that bivalent

domains in normal cells typically have low levels of DNA methylation22,23 and may confer

responsiveness to certain environmental changes24. However, these regions exhibited

substantial hypermethylation in the ETV6-RUNX1 samples, as well as increased entropy

and loss in sensitivity (Supplementary Figs. 4b and 5a,b).

Comparative analysis identifies methylation discordance in ALL localizing to distinct
features and regions of the genome informative of the phenotype.

We next investigated the relationship between the methylation level and the phenotype when

comparing ETV6-RUNX1 ALL to CD19/pre-B2 samples. By using the estimated

probability distributions of the methylation levels within analysis regions, we first computed

their Jensen-Shannon distance between ALL and normal control samples, an information-

theoretic measure of dissimilarity between two probability distributions (Methods) that

captures methylation discordance due to differences in mean methylation level, normalized

methylation entropy, or other statistical factors (Fig. 2a). We then evaluated the degree of

mutual dependence between the mean methylation level and the phenotype within genomic

regions using the average mutual information between the methylation level and the

phenotype, computed as the square of the Jensen-Shannon distance magnitude inside these

regions (Methods). We also examined the detailed structure of methylation discordance by

computing differences in mean methylation level, normalized methylation entropy, and

methylation sensitivity. In addition, we extended our local analysis to larger scales by

detecting long contiguous discordantly methylated regions (DMRs) between ALL and

normal control samples using the Jensen-Shannon distance (Methods), an approach that was

previously shown to outperform pre-existing DMR finders in terms of statistical uncertainty,

sensitivity, and specificity15. Due to the previously mentioned relationship between the

average mutual information and the Jensen-Shannon distance, DMRs identified by our

method point to ‘informative’ regions of the genome in ALL, characterized by statistically

significant values of the average mutual information between the methylation level and the

phenotype, in which there is a significant degree of mutual dependence between the

methylation level and the phenotype.

When comparing the normal CD19/pre-B2 samples, computed distributions of our

differential statistics showed relatively small methylation discordances (Fig. 2b), confirming

the appropriateness of these samples as normal controls and providing a quantitative

assessment of normal biological, statistical, and technical variability in our analyses.

Notably, the normal controls used in this study included highly pure pre-B2 cell populations

and umbilical cord blood CD19+ samples that included mature B cells as well as

progenitors. This allowed us to assess the suitability of these cell types as normal controls

due to differences in purity. As shown in Fig. 2b and Supplementary Fig. 4, distributions of

methylation statistics computed from the control samples were in close agreement to each

other. Moreover, the control samples exhibited much lower normalized methylation

entropies than those associated with the highly pure ALL blasts, providing no evidence of

significant influence of purity differences in the control samples on methylation analysis.
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Distributions of differential methylation statistics within selected genomic features

confirmed gains in Jensen-Shannon distance values, especially within bivalent promoters

and CGIs as compared to other features (Fig. 2c), showing that these features exhibit

statistically significant methylation discordance. For most genomic features, these gains

were consistently associated with hypomethylation and increased normalized methylation

entropy in ALL although gains in Jensen-Shannon distance values for most bivalent

promoters were associated with hypermethylation and increased normalized methylation

entropy in ALL (Fig. 2c). Some CGIs, weak enhancers, and poised promoters exhibited

hypermethylation in ALL, whereas some CGIs, shores, gene bodies, exons, introns,

enhancers, and poised promoters exhibited reduction in normalized methylation entropy

(Fig. 2c). Moreover, distributions of computed values of the methylation sensitivity index

demonstrated both losses and gains in methylation sensitivity over all genomic features (Fig.

2c), in agreement with our genome-wide observations (Supplementary Fig. 4).

Focusing on the relationship between the average mutual information and the Jensen-

Shannon distance (Methods), we sought to identify informative genes in ALL (i.e., genes

exhibiting a significant degree of mutual dependence between the methylation level and the

phenotype). We therefore computed average mutual information values within gene

promoters from a single ETV6-RUNX1/CD19 comparison, evaluated their statistical

significance while controlling for the false-discovery rate (FDR), and ranked genes using the

computed Q-values (Supplementary Table 2a). We found a set of 1960 genes to be

significantly informative of the phenotype (Q-value ≤ 0.05) with important developmental

genes, such as EBF2, HOXD1, MAFB, OTX2, SALL1, and ZIC1, as well as members of the

PAX family of transcription factors, being at the top of the list. By computing overlaps with

the ‘GO gene sets’ (C5) in the Molecular Signatures Database (MSigDB) using gene set

enrichment analysis (GSEA), we found enrichments in genes related to phenotypic

determination and regulation, such as gene expression, development, differentiation,

morphogenesis, and cell fate (Supplementary Table 2b), thus further confirming the

informative nature of the previous set of genes. When we computed overlaps with the

‘curated gene sets’ (C2) in MSigDB, we also found striking enrichments of genes possessing

the chromatin repressive mark H3K27me3 and genes possessing the bivalent marks

H3K4me3 and H3K27me3 in their promoters (Supplementary Table 2c), as well as a striking

enrichment in PRC2 (EED, SUZ12) targets, in agreement with previous results7,12.

We also examined Jensen-Shannon distances and differential mean methylation levels from

all ETV6-RUNX1/CD19–1 comparisons genome-wide and within selected genomic features

and found that Jensen-Shannon distances associated with absolute differential mean

methylation level values vary widely, especially at low such values (Fig. 2d and

Supplementary Fig. 6). To investigate the importance of this finding, we performed an

ETV6-RUNX1/CD19 comparison and identified a set of 411 genes exhibiting significant

magnitudes in Jensen-Shannon distance (Q-values ≤ 0.05) but no significant differences in

mean methylation level within their promoters (Supplementary Table 3a). Interestingly, by

computing overlaps with the ‘GO gene sets’ (C5) in MSigDB using GSEA, we found

enrichment in genes related to development, differentiation, morphogenesis and signaling,

such as HOXA cluster and WNT/FZD pathway genes (Supplementary Table 3b), whereas

computed overlaps with the ‘curated gene set’ (C2) in MSigDB revealed again striking
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enrichments of genes possessing the chromatin repressive mark H3K27me3 and genes

possessing the bivalent marks H3K4me3 and H3K27me3 in their promoters (Supplementary

Table 2c), as well as enrichment in PRC2 (EED, SUZ12) targets and WNT pathway genes

(Supplementary Table 3c), confirming the importance of genes that exhibit significant

methylation discordance within their promoters for factors other than differences in mean

methylation, whose detection is expected to be missed by a mean-based hypothesis testing

approach.

Notably, our ETV6-RUNX1 samples consistently exhibited strong methylation discordance

within specific genomic regions, as illustrated by the large values of the computed Jensen-

Shannon distances and the significant DMRs observed over ERG across samples

(Supplementary Fig. 7). Due to the relationship between the average mutual information and

Jensen-Shannon distances (Methods), these genomic regions are informative, exhibiting a

significant degree of mutual dependence between their methylation level and the phenotype.

Large scale analysis of the ETV6-RUNX1 ALL data produced a higher percentage of DMRs

overlapping bivalent promoters and CGIs, and to a lesser extent CGI shores, TxEnh5’

enhancers, and EnhA1 enhancers (Fig. 2e). We also assessed methylation discordance within

regulatory elements by evaluating significant DMRs at the scale of genes. A notable

example of a statistically significant DMR is the one localized at ERG (Fig. 2f), which

exhibited consistent hypomethylation. A DMR region upstream the 5’ end of this gene was

associated with a consistent loss in normalized methylation entropy in ALL, indicating

decreased methylation stochasticity, whereas a DMR region downstream the 3’ end was

associated with a consistent gain in entropy, implying increased methylation stochasticity.

Other examples of informative regions of the genome identified by significant DMRs

localizing at finer genomic features include those mapping to promoters, such as over the

promoter of EBF2 (Early B-cell Factor 2), which exhibited consistent hypermethylation,

increased normalized methylation entropy, and loss in methylation sensitivity in ALL

(Supplementary Fig. 8a), as well as those that overlap known regulatory elements at the

EBF2 and NR2F2 (nuclear receptor subfamily 2 group F member 2) genes, such as binding

sites for EZH2 and SUZ12, two transcription factors that are functional enzymatic

components of the polycomb repressive complex 2 (PRC2) regulating heterochromatin

formation (Supplementary Figs. 8a,b).

To further investigate regulatory influences of regions of significant methylation discordance

between ETV6-RUNX1 ALL and normal CD19+ cells, we carried out odds ratio enrichment

analysis among detected DMRs (Supplementary Table 4a) and found a consistently

significant enrichment of SUZ12 targets (16.10 ≤ OR ≤ 91.78, hypergeometric P-value

<   0.001 ), in agreement with previous observations12, and EZH2 targets (9.71 ≤ OR ≤

64.38, hypergeometric P-value <   0.001), as well as H3K4me3 (1.70 ≤ OR ≤ 6.29,

hypergeometric P-value <   0.001) and H3K27me3 domains (1.85 ≤ OR ≤ 12.95,

hypergeometric P-value <   0.001), in agreement with previous results7. Finally, by

analyzing DMRs in ETV6-RUNX1 ALL using the genomic regions enrichment of

annotations tool (GREAT)25, we showed enrichments for lymphoblastic leukemia disease

ontology genes, for known B lymphocyte progenitor genes, for genes annotated to be related

to B cell/hematopoietic development phenotypes in mouse knockout studies, and for
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MSigDB perturbation gene sets related to PRC2/H3K27me3 and B cell progenitor

phenotypes (Supplementary Table 4b).

Taken together, the previous results show that significant methylation discordance in ETV6-
RUNX1 ALL localizes to informative features and regions of the genome that exhibit a

significant degree of dependence between the methylation level and the phenotype, raising

the possibility that their epigenetic control plays an important role in ALL. In addition, our

results show that performing methylation analysis using only mean methylation levels may

not be sufficient in comparative studies, since methylation discordance may be influenced by

other statistical factors, whereas identification of informative regions of the genome is not

possible by a mean-based approach.

DNA methylation stochasticity in ALL relates to gene expression.

We also assessed the influence of DNA methylation stochasticity on gene expression in

ETV6-RUNX1 ALL by performing bulk and single-cell RNA sequencing and its associated

statistical analysis (Methods, Supplementary Tables 5a,b and 6a–n). Notably, the four

samples used for single-cell analysis (Supplementary Table 6a) were found to be relatively

homogenous in terms of gene expression (Supplementary Fig. 9), thus confirming that cell

purity does not affect our results.

Globally, we observed an increase in gene expression mean and a larger increase in

expression variance in ETV6-RUNX1 ALL cells when comparing to normal CD19+ cells

(Supplementary Fig. 10). By dividing genes into quartiles of gene expression mean and

variance and by using two ETV6-RUNX1 samples, we demonstrated a relationship between

DNA methylation stochasticity and stochastic gene expression in ETV6-RUNX1 ALL (Fig.

3). To further investigate this relationship, we identified differentially methylated genes

(DMGs), where a DMG is defined here as a gene whose promoter or body overlaps a region

of significant methylation discordance as determined by our DMR analysis using the Jensen-

Shannon distance. We found significant enrichment of DMGs in differentially expressed

genes (OR 1.84, one-sided Fisher’s exact test P-value <   0.001) when comparing ALL-45 to

CD19–1, and similarly when comparing ALL-289 to CD19–1 (Supplementary Tables 7a,b).

By computing overlaps with the ‘GO gene sets’ (C5) in MSigDB using GSEA, we found

that differentially expressed DMGs in ALL exhibited enrichments in genes related to

phenotypic determination and regulation, such as development, differentiation,

morphogenesis, and signaling (Supplementary Tables 7c,d). When computing overlaps with

the ‘curated gene sets’ (C2) in MSigDB, we found relationships to stem cell signatures,

including hematopoietic and leukemia stem cells, in genes related to B lymphocyte

progenitors, in genes normally downregulated in response to glucocorticoids in ALL, in

genes associated with AML, and in genes associated with cell cycle control (Supplementary

Tables 7e,f).

Motivated by the observed association between bivalent promoters and genomic regions

exhibiting methylation discordance, we also sought to investigate the relationship between

bivalency, DNA methylation stochasticity, and gene expression. We identified bivalent genes

in CD19 as those genes whose bodies or promoters overlapped with bivalent domains and

found that there is no significant enrichment of bivalent genes in differentially expressed

Koldobskiy et al. Page 9

Nat Biomed Eng. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genes (Supplementary Table 8a) when comparing ETV6-RUNX1 ALL to CD19 (OR 1.05,

one-sided Fisher’s exact test P-value =   0.31). From the 287 bivalent genes in CD19

identified as being overexpressed in ALL, we found 155 (54%) genes exhibiting significant

methylation discordance in ALL, whereas the remaining 132 (46%) genes showed no

difference in methylation stochasticity. Moreover, none of the 292 bivalent genes in CD19

that were underexpressed in ALL were differentially methylated. GSEA analysis of the 155

overexpressed and differentially methylated bivalent genes using the ‘GO gene sets’ (C5)

and the ‘curated gene sets’ (C2) in MSigDB showed overlaps with gene sets associated with

development, morphogenesis, cell signaling, differentiation, motility, growth, and apoptosis

(Supplementary Table 8b), as well as with gene sets associated with stemness, B lymphocyte

progenitors, responses to glucocorticoids in ALL, and AML (Supplementary Table 8c).

Moreover, and in addition to these results, the 132 overexpressed but non-differentially

methylated bivalent genes showed overlaps with gene sets associated with cell proliferation

but not cell growth and apoptosis when using the ‘GO gene sets’ (Supplementary Table 8d),

and did not overlap with the gene set associated with responses to glucocorticoids in ALL

when using the ‘curated gene sets’ (Supplementary Table 8e). Importantly, by identifying

genes exhibiting differential gene expression variability in ALL (Methods and

Supplementary Tables 6k–n, 8a), we found a significant enrichment of bivalent genes in

CD19 (OR 1.74, one-sided Fisher’s exact test P-value <   0.001), even though bivalent genes

in CD19 were not enriched for significant differences in mean expression (Supplementary

Table 8a).

The previous results show that DNA methylation stochasticity influences gene expression in

ALL demonstrating that, on the average, lower mean expression relates to higher mean

methylation level and higher normalized methylation entropy, whereas gene expression

variability relates only weakly to mean methylation level but associates more tightly to

normalized methylation entropy. Importantly, our data indicate that critical regulators of the

leukemic phenotype identify with informative genes, thus providing evidence that genes

exhibiting statistically significant values in mutual information between the methylation

level and the phenotype within their promoters may play a key role in leukemogenesis.

Methylation discordance associates with bona fide driver genes of ALL across cytogenetic
subtypes.

Pediatric B-cell precursor ALL includes multiple subtypes characterized by distinct somatic

structural chromosomal alterations, including chromosome translocations resulting in in-

frame gene fusions, such as ETV6-RUNX1 and TCF3-PBX1, dicentric chromosomes, or

chromosome number alterations, such as hyperdiploidy19,26–30. While these are known to

serve as initiating lesions, further cooperating alterations are essential for leukemogenesis31.

To determine whether methylation discordance is an important epigenetic driver across

distinct molecular subtypes of ALL, we performed methylation analysis on 21 additional

primary diagnostic patient samples of pre-B cell ALL (Supplementary Table 1) with TCF3-
PBX1 in-frame fusion (6 samples), hyperdiploidy (11 samples), and dicentric chromosome

(9;20) involving the PAX5 gene (4 samples). Notably, the DNA methylation landscape of

these additional subtypes of ALL behaved similarly to that of ETV6-RUNX1, with
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hypomethylation and increased normalized methylation entropy relative to control samples,

as well as gains in normalized methylation entropy and losses in methylation sensitivity over

Transcription 5’ Enhancers and bivalent promoters (Supplementary Figs. 2, 11–13). Odds

ratio enrichment analysis among detected DMRs consistently revealed significant

enrichments of SUZ12 and EZH2 targets in all leukemic subtypes and samples

(Supplementary Table 9), although some subtype-specific differences were also observed, as

for example enrichments of H3K4me3 domains among DMRs in ETV6-RUNX1 ALL.

To investigate co-occurrence of methylation discordance across distinct cytogenetic subtypes

of pre-B ALL, we identified common DMGs using four representative samples from each

subtype group (Fig. 4a and Supplementary Table 10a). Interestingly, we found a set of 1290

DMGs exhibiting statistically significant methylation discordance in all four samples

(Methods, Monte Carlo P-value <   0.001), pointing to a possibly common epigenetic basis

for dysregulation of gene expression across cytogenetic subtypes of ALL. Gene set

enrichment analysis (GSEA) of this set of genes using the ‘GO gene sets’ (C5) in MSigDB

revealed enrichments in genes related to development, differentiation, morphogenesis and

gene expression (Supplementary Table 10b). Moreover, GSEA using the ‘curated gene sets’

(C2) in MSigDB showed a striking enrichment of PRC2 targets (Supplementary Table 10c),

reinforcing similar results obtained by our previous odds ratio analyses using all samples

(Supplementary Table 9) and by the GREAT enrichment analysis using an ETV6-RUNX1
sample (Supplementary Table 4b), raising the possibility that alterations in methylation

stochasticity over targets of PRC2 is common across the four cytogenetic subtypes of ALL.

However, it was surprising to discover that the set of 1290 common DMGs included 16

genes (Supplementary Table 10a) that have been previously reported in in-frame

chromosomal translocations across the disease spectrum of ALL19.

Motivated by this observation, we sought to examine the possibility that there is a greater

than expected chance for translocation genes to exhibit significant methylation discordance

(i.e., to be DMGs) in pre-B ALL. Towards this goal, we used previously identified in-frame

fusion genes, known to be potent driver lesions in cancer, and constructed a target list of 71

known in-frame chromosomal translocation genes (henceforth referred to as translocation

genes) across the disease spectrum of ALL (Fig. 4b and Methods). We then established bona
fide drivers of ALL by identifying translocation genes that were classified as DMGs by our

DMR analysis. Surprisingly, we found that most translocation genes (41/71) in the ETV6-
RUNX1 ALL-45 sample were DMGs, which – except for ETV6 and RUNX1 – were not

subject to chromosomal rearrangement in that patient, and obtained similar results for the

remaining ALL samples (Fig. 4b). To evaluate the statistical significance of this outcome,

we tested for each ALL sample against the null hypothesis that associations between

translocation genes and DMGs were generated by chance and found a significant enrichment

of DMGs in the list of translocation genes (Supplementary Table 10d; hypergeometric tests

combined with Fisher’s meta-analysis; P-values <   0.001), including those driven by ETV6-
RUNX1 and TCF3-PBX1 rearrangements, dicentric chromosome (9;20) involving the PAX5
gene, and cases driven by changes in chromosome number characterized by hyperdiploidy.

The previous analysis shows that, more often by chance, cytogenetic alterations in ALL

concur with significant methylation discordance over a set of genes known to be in-frame
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bona fide genetic drivers of ALL, suggesting that changes in DNA methylation stochasticity

is an important epigenetic driver across different cytogenetic subtypes of ALL. It also raises

the possibility that these genes are co-regulated by an underlying gene regulatory network

that exhibits significant dysregulation in gene expression due to a common epigenetic

disruption in ALL.

Methylomic landscapes identify UHRF1 as a potential driver of ETV6-RUNX1 ALL.

Considering the enrichment of bona fide drivers of ALL observed in our common list of

DMGs, we were curious to identify other genes in this list known to be involved in the

pathogenesis of cancer that could be candidate drivers of ALL. By using the Jensen-Shannon

distance, we computed the average mutual information within promoters and gene bodies

and ranked genes in terms of the statistical significance of the degree of mutual dependence

between the mean methylation level and the phenotype within these genomic features

(Methods and Supplementary Tables 11a,b). We found UHRF1 (ubiquitin-like containing

PHD and RING finger domains 1), one of the DMGs in our common list (Supplementary

Table 10a), to be the most informative gene (associated with the smallest Q-value), within its

gene body in 9/10 ETV6-RUNX1/CD19–1 comparisons (Supplementary Table 11a, Q-

values <   0.001) but not within its promoter (Supplementary Table 11b). We also obtained

similar results when comparing other cytogenetic subtypes to CD19–1 (Supplementary

Tables 11c–h), implying that the methylation level within UHRF1’s body is highly

informative of the phenotype in most of our samples. We also identified additional

informative genes located near the top of the ‘body’ ranked lists known to be involved in

ALL chromosome translocations, including CBFA2T3, ERG, LDLRAD4, BCR, and

RCSD119,32, as well as other genes associated with leukemia, such as UBASH3B33,

MLXIP34, and MME (an important cell surface marker of ALL).

UHRF1 is an important regulator of the epigenome, which maintains DNA methylation and

histone modifications in cells by encoding for a multi-domain E3 ubiquitin ligase that

coordinates the recognition of repressive histone H3K9 modifications and recruitment of the

DNA methyltransferase DNMT1 to regulate chromatin structure and gene expression.

Although dysregulation of UHRF1 expression has been implicated in some solid

tumors35–38, it has not been sufficiently investigated in ALL. Motivated by the role of

UHRF1 in DNA methylation maintenance and chromatin regulation, the consistently

exceptional informational content within its body across our pre-B samples, and the fact that

UHRF1 consistently exhibited significant upregulation of expression mean and variance in

our bulk and single-cell sequencing data (Supplementary Tables 5b, 6b–e), we sought to

evaluate the impact of UHRF1 loss on DNA methylation stochasticity.

To this end, we employed CRISPR/Cas9 mediated genome editing to silence UHRF1 in the

Reh cell line, a pediatric ALL cell line carrying the ETV6-RUNX1 translocation. Western

blot experiments confirmed the targeted loss of UHRF1 protein in a clonal Reh UHRF1
knockout (Reh-UHRF1-KO) cell line (Supplementary Fig. 14a), which exhibited a complete

abrogation of clonogenicity (a fundamental property of cancer) as compared to non-targeted

(Reh-NT) controls (Supplementary Figs. 14b,c), thus confirming the importance of UHRF1
expression for maintaining the self-renewal capacity of leukemia cells.
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By carrying out WGBS of the Reh-NT and Reh-UHRF1-KO cells and by performing

analysis of methylation stochasticity using informME, we found that UHRF1 silencing

resulted in a profound disruption of the methylation landscape that led to a global loss in

mean methylation level and a global increase in normalized methylation entropy (Fig. 5a),

indicating that UHRF1 expression plays a major role in globally regulating methylation

stochasticity in ALL. By also investigating the effect of UHRF1 disruption on

computationally predicted A/B chromatin domains39 in Reh-NT cells (Methods), we

observed an altered chromatin structure in which gene rich and transcriptionally active

euchromatic A domains exhibited profound hypomethylation and gain in normalized

methylation entropy in Reh-UHRF1-KO cells (Figs. 5b,c), in agreement with our global

results. However, we were surprised to find a preferential and almost complete loss in mean

methylation level and normalized methylation entropy localized at gene poor,

transcriptionally inactive, and normally highly entropic heterochromatic B domains (Figs.

5b,c), suggesting that UHRF1 expression exerts substantial control on the methylation state

within these domains in ALL (Fig. 5b).

To further explore the previous findings, we ranked genes based on the average mutual

information between the methylation level and the phenotype within their promoters in NT

and UHRF1-KO Reh cells, as quantified by the square Jensen-Shannon distance magnitude

(Supplementary Table 12a), and found several genes with an important role in

leukemogenesis, such as PRDM16, SOX8, MEG3, GATA6, and GBX2, to be highly

informative of the phenotype (average mutual information > 0.99), suggesting that UHRF1
exerts substantial control on the epigenetic state of these genes. Notably, although the

promoters of these genes were nearly methylated in Reh-NT and exhibited low normalized

methylation entropy, they switched to being nearly unmethylated upon UHRF1 silencing. By

computing overlaps of the top 1000 genes with the ‘GO gene sets’ (C5) in MSigDB, we

found enrichments in genes related to transcription regulation, signaling, development,

differentiation, morphogenesis, cell proliferation, and cell fate (Supplementary Table 12b),

whereas by using the ‘curated gene sets’ (C2) in MSigDB, we found enrichment of PRC2

(EED, SUZ12) targets, as well as of genes possessing bivalent (H3K4me3 and H3K27me3)

marks in their promoters (Supplementary Table 12c). Interestingly, UHRF1 was recently

demonstrated to be essential for maintenance of bivalent chromatin domains and regulation

of lineage specification in embryonic stem cells40, whereas, UHRF1 silencing was shown to

lead to reduced proliferation and increased apoptosis in some types of cancer41–43.

The previous enrichments were strikingly similar to the ones obtained by comparing ETV6-
RUNX1 ALL and CD19+ cells (Supplementary Tables 2b,c) providing evidence that some

genes whose promoter methylation is regulated by UHRF1 may also exhibit significant

methylation discordance within their promoters in ETV6-RUNX1 ALL. To further examine

this evidence, we compared the top 1000 genes with the highest methylation discordance

within their promoters in the ALL-45/CD19–1 comparison (Supplementary Table 2a) to the

top 1000 genes obtained in the Reh-UHRF1-KO/Reh-NT comparison (Supplementary Table

12a). We found 264 common genes that included EBF2, GATA5, GATA6, MAFB, SOX9,

SOX14, several FOX family genes, and members of the PAX family of transcription factors

implicated in leukemia, which led again to GSEA enrichments in genes related to
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phenotypic determination and regulation, such as gene expression, differentiation,

morphogenesis, and cell fate (Supplementary Table 12d), as well as to PRC2 (EED, SUZ12)

targets and genes possessing bivalent marks at their promoters (Supplementary Table 12e).

To gain further insight into the role of UHRF1 in pre-B ALL, we performed an integrative

analysis to investigate whether our DNA methylation and gene expression data confirm the

possibility that in-frame chromosomal translocation genes in ALL are co-regulated through

a gene regulatory network that is driven by UHRF1. By employing our single-cell RNA

sequencing data and by exploring statistical dependencies among UHRF1 and the

translocation genes in these data using a recent multivariate information-theoretic method

(Methods), we surprisingly identified an elaborate regulatory network relationship between

UHRF1 and 34 translocation genes (Fig. 6, Supplementary Table 13). In this network,

UHRF1 exhibited significant upregulation in expression mean and variance and was

predicted to be the gene with the largest ‘betweenness centrality’ (Methods), indicating that

it may exert the most influence over the network as compared to other genes. We found

UHRF1 to interact with seven translocation genes (AFF1, APBB1IP, BCR, ERG,

LDLRAD4, MLLT3, RUNX1), and this was accompanied with significant upregulation of

mean expression in 9 translocation genes (BCR, CBFA2T3, CEBPE, CLIP2, ERG, ESYT2,

PTHLH, TCF3, ZCCHC7), while the remaining genes exhibited no significant change in

mean expression (Fig. 6 and Supplementary Table 13). In addition, 4 translocation genes

(ERG, PAX5, CLIP2, CBFA2T3) demonstrated significant upregulation of expression

variance in an ETV6-RUNX1/CD19 comparison (AL-45/CD19–4), whereas 18 genes

(AFF1, APBB1IP, BCR, CREBBP, ESYT2, ETV6, FOXK2, GALNS, GAS7, IKZF1,

LDLRAD4, MLLT3, RUNX1, SCARB1, SUPT3H, TCF3, ZC3HAV1, ZCCHC7) exhibited

no significant change in expression variance (Fig. 6, Supplementary Table 13), with similar

results obtained from other comparisons.

Taken together, these results suggest that dysregulation of DNA methylation stochasticity

associated with the highly informative gene UHRF1 and its resultant overexpression may

play a crucial role in pediatric ALL, possibly by preferentially altering stochastic epigenetic

properties of the chromatin state via regulation of histone modifications and through

influencing the expression of key translocation and other genes that serve as genetic drivers

of this disease.

Discussion

Structural chromosome alterations act as initiating driver lesions in the majority of ALL

cases, with in-frame fusion genes produced by chromosome translocations constituting the

largest set44. Identifying the full gamut of driver genes involved in (in-frame) gene fusions

across the disease spectrum of pediatric B-precursor ALL has required DNA or RNA

sequencing of hundreds of patient samples19,45. Here, by carrying out an integrative analysis

of methylation and gene expression data, we identified a surprising convergence of

stochastic epigenetic behavior in this genetically diverse disease. Potential energy landscape

analysis of methylation discordance using the Jensen-Shannon distance between the

probability distributions of the methylation level in even a single ALL/CD19 comparison

yielded enrichments of translocation genes that exhibit significant methylation discordance

Koldobskiy et al. Page 14

Nat Biomed Eng. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in ALL. Importantly, these translocation genes are informative of the biological state

(cancer/normal) in the sense that they exhibit a statistically significant degree of mutual

dependence between their methylation level and the phenotype. This novel result identifies

non-mutated ALL driver genes as important targets of epigenetic instability and suggests the

potential existence of a core gene regulatory network underlying ALL, in which nodes are

perturbed either genetically or epigenetically during leukemic transformation.

Investigations across diverse types of cancer have revealed many epigenetic changes in

tumor cells due to mutations in genes encoding epigenetic regulators, alterations in DNA

methylation, histone modifications, and reorganization of chromatin structure46–48.

Recently, array-based DNA methylation analysis across major subtypes of B cell

malignancies, including ALL, showed that tumor-specific DNA methylation signatures

provide insight into cellular developmental origin and proliferative history and thereby can

be predictive of clinical outcome49. It is increasingly recognized that stochastic epigenetic

variation is also an important force in cancer by driving phenotypic plasticity that allows for

selection of cellular traits promoting growth and survival in a changing environment50–52.

For example, using reduced-representation bisulfite sequencing (RRBS) data and two whole-

genome bisulfite sequencing (WGBS) samples, it was recently shown that high DNA

methylation pattern heterogeneity in chronic lymphocytic leukemia (CLL) could be

associated with adverse clinical outcome53. Moreover, DNA methylation analysis of

enhanced reduced-representation bisulfite sequencing (ERRBS) data in acute myeloid

leukemia (AML) has revealed a link between epigenetic variation and inferior clinical

outcome54. Finally, DNA methylation analysis of paired ERRBS samples in diffuse large B-

cell lymphoma has also demonstrated that increased methylation heterogeneity at diagnosis

is predictive of relapse55. These results affirm the importance of epigenetic stochasticity in

cancer and show that understanding its regulatory role is crucial when targeting tumor

evolution and resistance to therapy.

Here, we carried out an information-theoretic analysis of a set of WGBS primary ALL and

normal CD19+ B/pre-B samples in conjunction with bulk and single-cell gene expression

data, and generated a comprehensive map of statistical properties of the methylomic

landscape in ALL. We locally estimated probability distributions of the stochastic

methylation state which, in addition to computing mean methylation levels, allowed us to

quantify the amount of methylation stochasticity within genomic regions using the

information-theoretic concept of Shannon entropy, evaluate the robustness of these

distributions to changes in the potential energy landscape, and use these statistics to perform

differential analysis with respect to normal samples. By employing the information-theoretic

concept of mutual information, we also identified ‘informative’ regions of the genome

characterized by statistically significant associations between their methylation level and the

phenotype in our cancer/normal comparisons. Informative regions are of compelling interest

when investigating epigenetic dysregulation in cancer since the probability distribution of

the methylation state within these regions is significantly determined by the phenotype,

pointing to the possibility that they may play an important role in tumor initiation and

progression.
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Our analysis revealed that, on the average, DNA methylation stochasticity within gene

promoters relates to mean gene expression and gene variability in ALL, with more stochastic

methylation associated with genes exhibiting lower mean expression levels and higher

expression variability. We also found that significant methylation discordance in ALL

localizes within distinct and highly informative regions of the genome, including genes that

are critical regulators of the leukemic phenotype. Further investigation revealed a surprising

convergence of statistically significant methylation discordance on a shared set of genes,

exhibiting overlap with known genetic drivers of ALL (genes involved in in-frame fusions)

across different cytogenetic subtypes. This led to the novel hypothesis that these genes may

interact through an epigenetically driven regulatory network that exhibits significant

dysregulation in pediatric ALL. Finally, we detected enrichment of PRC2 binding sites, as

well as H3K4me3 and H3K27me3 domains, in highly informative regions of the genome

characterized by a statistically significant degree of mutual dependence between the

methylation level and the phenotype.

We also observed profound gains in mean methylation level within regions harboring

bivalent chromatin marks in normal B cells, in agreement with a prior WGBS analysis of

two ALL samples demonstrating that bivalent domains of embryonic stem cells are

hypermethylated in ALL12. Moreover, we consistently found considerable gains in

normalized methylation entropy and marked losses in methylation sensitivity within bivalent

domains of normal B cells across four cytogenetic subtypes of pre-B ALL. Given the

important role of bivalent domains in cell differentiation, gains in methylation stochasticity

within these domains raise the possibility of a biological relationship between normal tissue

differentiation and stochastic epigenetic variation that may lead to increased phenotypic

tumor heterogeneity in pre-B ALL, whereas, losses in methylation sensitivity advocate a

reduced ability of the epigenome to regulate methylation stochasticity. Notably, most genes

marked by bivalent domains of CD19 that were identified as being overexpressed in ALL

exhibited significant methylation discordance. This however was not true for underexpressed

bivalent genes, raising the possibility that epigenetic disruption of bivalency in ALL is

primarily associated with upregulation of gene expression.

From methylation data alone, our analysis identified UHRF1 as the most informative gene of

the leukemic phenotype. Moreover, by using single-cell RNA sequencing data and an

information-theoretic network inference method56 that is appropriate for the methylation

analysis approach considered in this paper, we found an elaborate regulatory network

relationship between UHRF1 and translocation genes in which UHRF1 is the most

influential node (i.e., a hub). This suggests that UHRF1 may play an important regulatory

role at the heart of ALL. We provided support for this hypothesis by CRISPR/Cas9 silencing

of UHRF1 in the Reh cell line, which showed complete abrogation of leukemic

clonogenicity. Interestingly, UHRF1 has been reported as a potential translocation target in a

case of B-precursor ALL that is due to a rare translocation between chromosomes 19 and 21

resulting in an NRIP1-UHRF1 gene fusion35, and has also been identified in t(1;19) pre-B

ALL cells by siRNA screening as being essential for leukemic cell viability38. This is in

agreement with previous array-based analysis of DNA methylation and gene expression in

B-ALL which reported overexpression of UHRF1 across ALL samples independent of

genetic subtype, and demonstrated a strong inverse correlation between methylation β-value
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and UHRF1 expression7. Our knockout experiments showed a profound reduction of

methylation stochasticity in heterochromatic B domains, which are normally characterized

by highly disordered methylation. This suggests that UHRF1 expression is essential for

faithfully maintaining DNA methylation and for preserving the chromatin state within

heterochromatic regions of the genome, which is consistent with its function as a link

between repressive histone modifications and the DNA methylation machinery. Ultimate

confirmation of the role of UHRF1 in leukemic patients will require mouse knockdown/

transplantation and/or design of UHRF1-specific inhibitors for preclinical or clinical

investigation, in addition to nonspecific agents which act on this target and are under

investigation in prostate and colon cancer57. This however is beyond the scope of the present

study.

Notably, the information-theoretic differential analysis of methylation stochasticity

performed here identified additional genes that consistently exhibited strong methylation

discordance across our cytogenetic subtypes and samples and demonstrated that these genes

exhibit high levels of mutual dependence between their methylation level and the phenotype

(Supplementary Table 11). For example, we identified genes in the protocadherin families

PCDHA and PCDHG, which we found intriguing, given their known stochastic

combinatorial expression in defining cell surface diversity and survival during neural system

development and in other contexts58, as well as their previously reported role in the

epigenetic dysregulation of cancer59. These families are made however by many

constituents, which makes targeted gene disruption a much more difficult endeavor in this

case when comparing to UHRF1 silencing.

It is also possible to identify additional gene networks that may be significantly dysregulated

in ETV6-RUNX1 ALL. To demonstrate this possibility, we integrated existing knowledge of

protein-protein interactions in the human interactome with methylation and gene expression

data, as well with detected methylation discordance within gene promoters and bodies, and

identified a number of functional epigenetic modules (FEMs) in ALL (i.e., gene regulatory

networks which are subject to significant epigenetic control in ALL), which included

modules associated with TCF3, PLXNB1, LYN, MME, and SLC9A3R2 (Methods,

Supplementary Table 14, and Supplementary Fig. 15). Notably, TCF3 is a transcription

factor that is critical for regulating lymphoid specification from hematopoietic stem

cells60,61 and the target of multiple recurrent structural alterations in ALL, such as TCF3-
PBX1 fusions encoded by t(1;19)(q23;p13.3)62 and TCF3-HLF fusions encoded by t(17;19)

(q22;p13.3)63.

In conclusion, by integrating WGBS with bulk and single-cell RNA sequencing data, we

here conducted a comprehensive and cytogenetically relevant analysis of DNA methylation

stochasticity in pediatric ALL using an information-theoretic potential energy landscape

approach. This allowed us to quantify informational properties of the methylomic landscape

in ALL, identify regulatory underpinnings of malignant transformation, and assess the

importance of epigenetic stochasticity as a driver of this disease. Our results demonstrate

that cytogenetic alterations in ALL concur with significant dysregulation of methylation

stochasticity over a set of in-frame translocation genes whose methylation levels carry

significant information about the phenotype. In addition, our analysis predicts that UHRF1
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plays a crucial role in pediatric ALL by possibly driving a regulatory network of

translocation genes that exhibits significant and targeted dysregulation in ALL. Taken

together, our comprehensive genome-wide evaluation of information-theoretic properties of

the methylomic landscape in pediatric ALL using our integrated computational method for

analyzing DNA methylation stochasticity, which employs potential energy landscapes and

uses the Jensen-Shannon distance, mutual information, mean methylation level, normalized

methylation entropy, and the methylation sensitivity index to summarize multiple statistical

factors influencing methylation stochasticity, shows a great utility for formulating new

biological hypotheses that could likely explain diversity in the genetic origins of pediatric

ALL and, more generally, for understanding the role of stochastic epigenetic regulation in

cancer.

Methods

Sample collection and preparation.

Primary patient ALL samples were collected under the approval of The Johns Hopkins

University and Baylor College of Medicine Institutional Review Boards (IRBs), and

informed consents were obtained for all research samples. Samples were selected for

analysis based on high blast proportion (> 90%) in their clinical characterization. Leukemic

blasts were enriched from bone marrow or peripheral blood samples of newly diagnosed

patients (collected prior to any chemotherapy) by Ficoll-Hypaque centrifugation. Samples

with blast composition < 90% were purified by flow sorting, as follows. Leukemia cell

populations were sorted on a FACSMelody (BD) using FACSChorus software (BD). Cells

were stained with Live/Dead Fixable Viability Stain 780, PE mouse anti-human CD19 clone

HIB19, and APC Mouse Anti-Human CD10 clone HI10a (BD) with the CD19+CD10+ gate

defining leukemic cells (Supplementary Fig. 16). The maximum number of cells was

acquired, isolated by centrifugation, and cell pellets were immediately flash frozen.

Diagnosis and characterization of ALL was based on standard clinical assays, including

morphology, flow cytometric immunophenotype, and cytogenetics. Clinical characteristics

of primary patient samples are provided in Supplementary Table 1.

Human umbilical cord blood CD19+ primary cells were purchased from Stemcell

Technologies, Vancouver, BC, Canada, in three independent lots from distinct donors. The

ETV6-RUNX1 pre-B ALL cell line Reh (ATCC CRL-8286) was grown in RPMI 1640

medium with L-glutamine (ThermoFisher), supplemented with 1x penicillin/streptomycin

(ThermoFisher) and 10% fetal bovine serum (Gemini Bio-Products, West Sacramento, CA).

CRISPR/Cas9 edited Reh cell lines (Reh-NT and Reh-UHRF1-KO) were generated by

lentiviral transduction, puromycin selection, and clonal expansion, as described below, and

maintained under the same culture conditions.

CRISPR/Cas9 genome editing.

Lentiviral particles were purchased from Sigma-Aldrich using the LentiCRISPR platform.

UHRF1 targeting used the gRNA sequence TCCCGTCCATGGTCCGAACC in the pLV-

U6g-EPCG vector, with viral titer by p24 antigen ELISA of 8.8 x 106 TU/ml. CRISPR

lentivirus non-targeting control particles utilizing the identical pLV-U6g-EPCG vector were
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also purchased from Sigma-Aldrich (Lot 10201511MN), with p24 antigen ELISA titer

2.9x107 TU/ml. Reh cells (1x105) were combined with viral particles at multiplicity of

infection (MOI) 2, in 0.5 ml RPMI media supplemented with 10% FBS and Polybrene 4

μg/ml (Millipore), and centrifuged for 60 minutes at 800x g at 32°C. Cells were grown in

RPMI with 10% FBS for 72 hours and subsequently selected with 1 μg/ml Puromycin

followed by clonal dilution and evaluation by PCR and Western blot.

Western blot.

Cells were lysed in lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% Triton

X-100, 10% glycerol) supplemented with Complete protease inhibitor tablet (Roche) on ice.

Lysates were boiled in 1x NuPAGE lithium dodecyl sulfate sample buffer and subjected to

SDS-PAGE using the Novex system (Invitrogen) following the manufacturer’s instructions,

transferred to nitrocellulose membranes using the iBlot transfer system (Invitrogen), blocked

in 5% nonfat milk in Tris-buffered saline/0.1% Tween-20 (TBST) for 1 hour at room

temperature, and incubated with primary antibodies in TBST overnight at 4°C. The antibody

for UHRF1 (Purified Mouse Anti-ICBP90) was from BD Biosciences (Cat. 612264). The

beta-actin antibody was from Thermo (MA1–140 Invitrogen beta-actin antibody, 15G5A11/

E2).

Methylcellulose assay.

Methylcellulose 3% stock solution was purchased from R&D Systems (cat. HSC001). A 10x

cell suspension in RPMI media was mixed with RPMI supplemented to yield a final

concentration of 1.27% methylcellulose and 30% FBS. Methylcellulose colony counts were

carried out after 14 days in culture.

Library preparation and sequence data generation.

For primary ALL and umbilical cord blood CD19+ cell samples, genomic DNA and total

RNA were extracted using the ZR-Duet DNA/RNA MiniPrep kit (Zymo Research, cat.

D7001). RNA preparation included an on-column DNase I digestion (Invitrogen). For cell

lines, genomic DNA isolation was carried out using the MasterPure DNA Purification kit

(Epicentre). Integrity of genomic DNA was confirmed by gel electrophoresis. RNA was

assessed on an Agilent 2100 Bioanalyzer using the Agilent RNA 6000 Nano kit.

WGBS single indexed libraries were generated using NEBNext Ultra DNA library Prep kit

for Illumina (New England BioLabs) according to the manufacturer’s instructions with the

following modifications. 500 ng input gDNA was quantified by Qubit dsDNA BR assay

(Invitrogen) and spiked with 1% unmethylated Lambda DNA (Promega, cat # D1521) to

monitor bisulfite conversion efficiency. Input gDNA was fragmented by Covaris S220

Focused-ultrasonicator to an average insert size of 350 bp. Samples were sheared for 60 sec

using Covaris microTUBEs, with instrument settings of duty cycle 10%, intensity 5 and

cycles per burst 200. Size selection was performed using AMPure XP beads and insert sizes

of 300–400bp were isolated. Samples were bisulfite converted after size selection using EZ

DNA Methylation-Gold Kit or EZ DNA Methylation-Lightning Kit (Zymo cat#D5005,

cat#D5030) following the manufacturer’s instructions. Amplification was performed after

the bisulfite conversion using Kapa Hifi Uracil+ (Kapa Biosystems, cat# KK282)
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polymerase based on the following cycling conditions: 98°C 45s / 8cycles: 98°C 15s, 65°C

30s, 72°C 30s / 72°C 1 min. AMPure cleaned-up libraries were run on the 2100 Bioanalyzer

(Agilent) High-Sensitivity DNA assay, and samples were also run on the Bioanalyzer after

shearing and size selection for quality control purpose. Libraries were quantified by qPCR

using the Library Quantification Kit for Illumina sequencing platforms (Kapa Biosystems,

cat#KK4824) and the 7900HT Real Time PCR System (Applied Biosystems). WGBS

libraries were sequenced on an Illumina HiSeq4000 instrument using 150 bp paired end

indexed reads and 25% of non-indexed PhiX library control (Illumina). Coverage is

indicated in Supplementary Table 1. The bisulfite conversion rate of unmethylated Lambda

DNA was 99.6% on average.

FASTQ files were processed using Trim Galore! v0.3.6 (Babraham Institute) to perform

single-pass adapter- and quality-trimming of reads. FastQC v0.11.2 was employed for

quality control of reads. Reads were aligned to the hg19/GRCh37 genome using Bismark

v0.14.5 and Bowtie2 v2.2.6. Separate M-bias plots for read 1 and read 2 were generated by

running the Bismark methylation extractor using the ‘mbias_only’ flag (Supplementary Fig.

17), and these plots were used to determine how many bases to remove from the 5’ end of

reads. The number was generally higher for read 2, known to exhibit a lower quality. The

amount of 5’ trimming ranged from 5 bp to 18 bp, consistent with ref. 14. BAM files were

subsequently processed with Samtools v0.1.19 for sorting, merging, duplicate removal, and

indexing.

Bulk RNA sequencing.

Strand specific mRNA libraries were generated using the TruSeq Stranded mRNA protocol

(Illumina, cat# RS-122–2101). Preparation of libraries followed the manufacturer’s protocol

(Illumina, Part#15031050) with minor modifications. Input was 500 ng and samples were

fragmented for 6 min. The following PCR cycling conditions were used: 98°C 30s / 14

cycles: 98°C 10s, 60°C 30s, 72°C 30s / 72°C 5 min. Stranded mRNA libraries were

sequenced on an Illumina HiSeq4000 instrument using 75bp or 125bp paired-end indexed

reads and 1% of PhiX control. mRNA sequencing depth ranged from 90–125M reads.

Single-cell RNA sequencing.

Single cells were captured on medium sized Fluidigm C1 Single Cell Integrated Fluidic

Circuit (IFC). The SMARTer Ultra Low RNA Kit for Illumina (Clontech) was used for

single-cell capture (verified via microscope), on-chip lysis, reverse transcription, and

complementary DNA (cDNA) generation. An ERCC Spike-in Mix (Ambion) was used as

the technical control per Fluidigm recommendation. Single-cell cDNA quantification was

performed using Agilent High Sensitivity DNA Kits and Quant-it Picogreen dsDNA

(Invitrogen). cDNA was normalized to 0.20ng/μL with Biomek NXP(Beckman Coulter). The

Nextera XT DNA Library Prep Kit (Illumina) was used for dual indexing and amplification

following the Fluidigm C1 protocol. Libraries were purified and size selected twice using

0.9x volume of Agencourt AMPure XP beads (Beckman Coulter). Cleaned libraries were

quantified with Quant-it Picogreen dsDNA (Invitrogen) and normalized to 0.3ng/µl with

Biomek NXP (Beckman Coulter). Single-cell RNA sequencing libraries were subsequently

pooled for 96-plex sequencing. The resulting cDNA libraries were quantified using High
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Sensitivity DNA Kit (Agilent). The pooled 96x single-cell libraries were sequenced using

HiSeq 2500 (Illumina) with paired end 126bp-8bp-8bp-126bp and 14pM-loading

concentration with 5% PhiX spike-in.

Genomic features and annotations.

Files and tracks bear genomic coordinates for hg19. CGIs were obtained from ref. 64. CGI

shores were defined as sequences flanking 2-kb on either side of islands, shelves as

sequences flanking 2-kb beyond the shores, and open seas as everything else. The R

Bioconductor package ‘TxDb.Hsapiens.UCSC.hg19.knownGene’ was used for defining

genes, exons, introns, and gene bodies. The promoter region of a gene was defined as the 4-

kb window centered at the TSS and the gene body region was defined as the remainder of

the gene. The enhancer and promoter annotations, as well as other relevant genomic

annotations not mentioned above, were obtained from Ernst and Kellis65 using the

ChromHMM 25-state reference model. ChromHMM 25-state enhancer and promoter

annotations with definitions and emission parameters as previously described were

employed66. Specific states such as TxEnh5’ (transcription 5’ enhancer), EnhA1 (active

enhancers 1 – enriched in H3K27ac and H3K4me1), EnhW1 (weak enhancers 1 – enriched

in H3K4me1 but not in H3K27ac), PromP (poised promoters), and PromBiv (bivalent

promoters – enriched in H3K27me3 and H3K4me3), were included in some parts of the data

analysis due to their marked methylation discordance when analyzing ETV6-RUNX1 ALL

and normal control samples, as compared to the remaining ChromHMM annotations

(Supplementary Table 15). Histone marks were obtained from the Roadmap Epigenomics

Project23. SUZ12 and EZH2 binding sites were obtained from ENCODE67. A/B chromatin

domains for Reh cells were computed using a previously developed random forest

approach14 that learns these domains from available ground-truth data.

PEL computation and visualization.

Potential energy landscape (PEL) computations from WGBS data were performed using

informME (v0.3.3), a freely available information-theoretic pipeline for analysis of

methylation stochasticity based on the one-dimensional Ising model of statistical physics15.

To balance computational and estimation performance, it was previously determined15 that a

good choice for the length of each genomic region used for parameter estimation is 3-kb.

Because of concerns regarding statistical overfitting (i.e., not having enough data for reliable

parameter estimation), we did not model genomic regions that had less than 10 CpG sites,

for which less than 2/3 of the CpG sites were observed, or for which the average depth of

coverage was less than 2.5 observations per CpG site. While CpG sites in very low-density

estimation regions were not considered, the vast majority (> 82%) of the CpG sites with data

in the WGBS samples were properly modeled (Supplementary Fig. 1). PELs were visualized

by employing the two-dimensional version of Gray’s code68 and by assigning to each

methylation pattern its potential value. Grays’s code places all possible binary-valued

methylation patterns within a genomic region on a two-dimensional pattern space in a

manner so that patterns located adjacent to each other in the east/west and north/south

directions differ in only one bit.
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Methylation level and entropy.

Probability distributions of methylation levels, as well as mean methylation levels and

normalized methylation entropies, were computed within each analysis region using

informME. The mean methylation level is the expected value of the methylation level L
within an analysis region, and is given by E L = ∑l l × PL l , where PL l ,

l = 0, 1
N , 2

N ,   …,   1, is the associated probability distribution of L. The normalized

methylation entropy is a normalized version of Shannon’s entropy, given by

ℎ = − [1/log2 N + 1 ]∑lPL l log2PL l , and was used to quantify the amount of methylation

stochasticity observed within an analysis region. It ranges between 0 and 1, taking its

maximum value when all methylation levels within an analysis region are equally likely

(fully stochastic methylation), and achieving its minimum value only when a single

methylation level is observed (perfectly ordered methylation).

Jensen-Shannon distance and mutual information.

Within an analysis region, the Jensen-Shannon distance between the two probability

distributions PL
t  and PL

r  of the methylation level in a test (ALL) and a reference (CD19/

pre-B2) sample was calculated by 1
2 DKL PL

t , PL + DKL PL
r , PL , where PL =

PL
t + PL

r

2

and DKL P, R = ∑lP l log2
P l
R l  is the Kullback-Leibler divergence between two

probability distributions P  and R (also known as the relative entropy), and was used to

quantify dissimilarities between the two probability distributions PL
t  and PL

r . It ranges

between 0 and 1, taking its minimum value only when the two probability distributions are

identical, in which case no statistical discordance in methylation level is present, and its

maximum value of 1 only when the supports of the two probability distributions do not

intersect each other, in which case a maximum statistical discordance in methylation level is

observed.

Within an analysis region, the mutual information between the methylation level L and the

phenotype A is given by I L; A = ∑l ∑lPr L = l, A = j log2
Pr L = l,   A = j
Pr L = l Pr A = j , where j = 0 for

the reference phenotype and j = 1 for the test phenotype, respectively. We used this quantity

to measure, within an analysis region, the degree of mutual dependence between the

methylation level and the phenotype, with higher values indicating a stronger mutual

dependence. By making the (reasonable) assumption that the test and reference phenotypes

are equally probable (i.e., Pr A = 0 = Pr[A = 1] = 1/2), it can be shown16 that the average

mutual information between the methylation level and the phenotype within a region of the

genome that includes K analysis regions, given by

I L; A = 1
K ∑k ∑lk ∑jPr Lk = lk, A = j log2

Pr Lk = lk, A = j
Pr Lk = lk Pr A = j , where Lk is the methylation

level of the k -th analysis region, equals the square of the magnitude 1/K∑k = 1
K JSD k 2 of

the Jensen-Shannon distance within the genomic region, where JSD k  is the Jensen-Shannon

distance within the k-th analysis region. Note that the average mutual information ranges
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between 0 and 1, with higher values indicating a more informative genomic region in which

there is a greater degree of mutual dependence between the methylation level and the

phenotype. Notably, the previous relationship implies that the mutual information between

the methylation level and the phenotype within an analysis region equals the square of the

Jensen-Shannon distance between the probability distributions of the methylation level

within the region in a test/reference comparison.

Methylation sensitivity.

Local modifications in the biochemical environment produced by the methylation

machinery, due for example to environmental variability, can result in a change to the values

of parameters α,   β, γ of the methylation potential energy landscape. We modeled this

change as a perturbation of size ϵ applied on α, β, and γ, which results in a new probability

distribution PL l; ϵ  of the methylation level. We quantified the rate of this change using the

methylation sensitivity index, defined as the absolute value of the derivative

dJSD ϵ /dϵ   |ϵ = 0, evaluated at ϵ = 0, where JSD ϵ  is the Jensen-Shannon distance between

the probability distributions PL l  and PL l; ϵ  of the methylation level before and after

perturbation, respectively. Note that dJSD ϵ /dϵ   |ϵ = 0   ≈ JSD ϵ − JSD 0
ϵ  for a small enough

ϵ, whereas JSD 0 = 0. We therefore set ϵ = 0.01 and approximately computed the

methylation sensitivity index by 10−2 × JSD ϵ . This index assesses robustness of the

probability distribution of the methylation level to changes in parameter values of the

potential energy landscape, with higher sensitivity indicating less robust behavior pointing to

a more ‘responsive’ region in which small variations in parameter values can produce larger

changes in the stochastic behavior of the methylation level.

Differential analysis.

Differential analysis between test (ALL) and reference (CD19/pre-B2) WGBS samples was

performed using informME by computing, within analysis regions, Jensen-Shannon

distances between corresponding probability distributions of the methylation level, as well

as by evaluating differences between mean methylation levels, normalized methylation

entropies, and methylation sensitivity indices. DMR detection was performed by employing

the ‘jsDMR’ utility of informME, which uses the Jensen-Shannon distance to identify

regions of the genome with significant methylation discordance. As previously described15,

this was done by smoothing the values of the Jensen-Shannon distance using the Nadaraya-

Watson kernel regression smother with a Gaussian kernel of a fixed bandwidth (5-kb), by

performing multiple hypothesis testing on the smoothed values using, as the null

distribution, the density of the Jensen-Shannon distance values obtained from all CD19

control sample comparisons, and by employing the Benjamini-Yekutieli method69 to control

the false discovery rate (FDR) at 0.05. Since the mutual information within an analysis

region between the methylation level and the phenotype equals the square of the Jensen-

Shannon distance, the DMRs identified by the ‘jsDMR’ utility of informME point to

informative regions of the genome in which there is a significant degree of mutual

dependence between the methylation level and the phenotype.
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Hypothesis testing and gene ranking.

In each test/reference comparison, promoter and gene body regions were assigned a score

given by the magnitude 1/K∑k = 1
K JSD k 2 of the Jensen-Shannon distance or by the

magnitude 1/K∑k = 1
K dMML k 2 of the differential mean methylation level within each

feature, where JSD k  is the Jensen-Shannon distance and dMML k  is the differential mean

methylation level within the k-th analysis region. One-sided hypothesis testing was

performed by testing against the null hypothesis that a genomic feature exhibits a Jensen-

Shannon distance (or differential mean methylation level) magnitude that can be explained

by normal technical, statistical, or biological variability. To do so, a null distribution was

constructed for the Jensen-Shannon distance (or differential mean methylation level)

magnitude by comparing the normal control samples. To account for variability in the

number of analysis regions overlapping each feature, generalized additive models were

employed for location scale and shape (GAMLSS)70 with a logit skewed Student’s t-
distribution. This was implemented by the R function ‘gamlss’ with the ‘family’ argument

set to ‘logitSST’ and the log-number of overlapping analysis regions used as the

independent variable. To evaluate the statistical significance of each gene while controlling

for the false-discovery rate (FDR), Q-values were computed using the Benjamini-Yekutieli

procedure69. In each test/reference comparison, genes were ranked using the calculated Q-

values, with genes located higher in the list being associated with lower Q-values. We

performed these steps by employing the ‘jsGrank’ utility of informME16.

Gene enrichment analysis.

Gene set enrichment analysis (GSEA) was performed using Broad Institute’s GSEA

‘investigate gene sets’ tool that computes overlaps of a given set of genes in the molecular

signatures database (MSigDB) v7.0.

Bulk RNA sequencing analysis.

Bulk RNA sequencing was performed on eight ETV6-RUNX1 ALL samples (ALL-45,

−100, −127, −137, −276, −289, −311, −321) and the three normal CD19+ samples used for

WGBS (CD19–1, −2, −3). For each bulk RNA sequencing data, paired-end reads were

mapped to human genome hg19 using HISAT271. Gene expression values were calculated in

TPM (transcripts per million) using StringTie72. The TPM values were log2 transformed

(after adding a pseudo-count of 1) and quantile normalized across samples (Supplementary

Table 5a). Differentially expressed genes were obtained using the Bioconductor package

‘limma’73 and by performing differential expression analysis between the eight ALL and the

three normal CD19+ cell samples based on a moderated t-statistic for differential gene

expression (Supplementary Table 5b). To control the false discovery rate (FDR), Q-values

were calculated using the Benjamini-Hochberg procedure74.

Single-cell RNA sequencing analysis.

Single-cell RNA sequencing was performed on two ETV6-RUNX1 samples, ALL-45 and

ALL-289, and on two normal CD19+ samples, CD19–4 and CD19–5, which were different

from the samples used for WGBS and bulk RNA sequencing because single-cell separation
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required viable cells that were not available for the CD19 samples employed for WGBS. For

each cell analyzed, paired-end reads were mapped to human genome hg19 using HISAT2

and gene expression values were calculated in TPM (transcripts per million) using StringTie.

Cells with more than 1 million sequenced reads and mapping rate larger than 50% were

retained for further analysis. The TPM values were log2 transformed, after adding a pseudo-

count of 1 (Supplementary Table 6a). For each sample, genes with average log2 transformed

TPM values greater than 1 were retained for subsequent analyses. To adjust for dropout

events75, the R package SCDV was used, which applies a two-component mixture model to

estimate the true expression value and the dropout probability for each gene.

To compare variation in gene expression between ALL and normal CD19+ cells, the

weighted mean μ and the weighted variance σ2 of the expression of each gene within each

sample were calculated by μ = ∑i 1 − pi ei/∑i 1 − pi  and σ2 = ∑i 1 − pi ei − μ 2/∑i 1 − pi ,

where ei is the i-th expression value available for the gene within the sample and pi is the

associated dropout probability. To identify genes with differential gene expression and

differential variation while accounting for non-normality, the R package SCDV was used to

apply a two-sided permutation test to each gene in each ALL/CD19 comparison, based on a

t-statistic for differential weighted mean expression (Supplementary Tables 6b–e) and an F-

statistic for differential weighted expression variance (Supplementary Tables 6f–i).

Specifically, Welch’s t-test statistic was used, calculated by (μ1 − μ2)/
σ1

2

N1
+

σ2
2

N2
, where μ1

and σ1
2 is the weighted mean and variance in the ALL sample, respectively, μ2 and σ2

2 is the

weighted mean and variance in the CD19 sample, and N1, N2 are the corresponding

numbers of cells in each sample. Moreover, the F-statistic was computed by the ratio 
σ1

2

σ2
2 . To

control the false discovery rate (FDR), Q-values were calculated using the Benjamini-

Hochberg procedure74.

To further characterize variation in gene expression, a generalized version of the dispersion

index was employed, given by d = σ2/f μ , where μ and σ2 is the weighted expression mean

and variance of a gene, respectively, and f μ  is a baseline function so that d > 1 implies that

the expression variance is higher than what is expected for a given expression mean. Taking

f μ = μ recovers the traditional dispersion index whose baseline is given by a Poisson

process, but here we constructed f to account for biases of the single-cell RNA sequencing

data sampling process. This leads to log2σ2 = g log2μ + v, where g x = log2f 2x  and

v = log2d, where v is the variability level of the gene76. In a given sample, we estimated the

function g log2μ  by curve fitting, using local polynomial regression (LOESS), to all pairs of

log2-scaled weighted variances and means computed in the sample. All LOESS curves

calculated from the ALL and CD19 samples were almost identical to each other

(Supplementary Fig. 18), thus permitting comparative analyses. The variability level of a

gene was then calculated by computing the vertical distance (i.e., residual) of the log2-

weighted variance from the LOESS curve (Supplementary Table 6j).

Koldobskiy et al. Page 25

Nat Biomed Eng. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, to identify a gene that shows differential variability between ALL and normal

CD19+ cells, a two-sided permutation test was performed using the R package SCDV based

on the computed difference in variability levels (Supplementary Tables 6k–n). To control the

false discovery rate (FDR), Q-values were calculated using the Benjamini-Hochberg

procedure74.

Statistical analysis of genetic bona fide drivers of ALL.

Evaluation of the statistical significance of the 1290 differential methylated genes (DMGs)

in ALL common to four cytogenetic subtypes (Supplementary Table 10a) was performed by

testing against the null hypothesis that the DMGs were selected by chance. The number of

DMGs common to all samples considered was used as a test statistic and its null distribution

was constructed using 107 Monte Carlo iterations. At each iteration and for each cytogenetic

sample, a number of genes equal to the number of DMGs in the sample were selected at

random and the number of common genes to all samples was computed. The null

distribution was then approximated by the empirical distribution of all 107 Monte Carlo

values for the number of common genes.

We derived a target list of 71 translocation genes from a published list of in-frame

chromosomal translocations19 from which we removed those genes not on autosomes or in

the hg19 annotation (e.g., DUX4). Statistical evaluation for enrichment of DMGs in the

target list was then carried out using a hypergeometric test in each sample and by combining

results across samples using Fisher’s meta-analysis.

Gene network inference.

Inference of the UHRF1 regulatory network was directly performed from the single-cell

gene expression data (Supplementary Table 6a) using a previously proposed multivariate

information-theoretic method56, which was implemented using the Julia package

‘NetworkInference.jl’ with its default settings. Betweenness centrality of a gene gk in the

network measures the extent to which the gene lies on paths between other genes in the

network. We computed this quantity by ∑j ≠ k ≠ lNjl k /Njl, where Njl denotes the number

of shortest paths from a gene gj to a gene gl and Njl k  denotes the number of shortest paths

from gj to gl that pass through gene gk, using the function ‘betweenness centrality’ of the

Julia package ‘LightGraphs.jl’.

Inference of functional epigenetic modules (FEMs) was performed using a functional

supervised algorithm77 that integrates WGBS and RNA sequencing data in order to identify

networks of interacting genes that are significantly dysregulated in a disease, which we

modified to fit our information-theoretic framework of methylation analysis. This algorithm

employs a known protein-protein interaction (PPI) network and a spin-glass algorithm to

identify, for a particular gene of interest (seed), a gene subnetwork (i.e., a FEM)

characterized by significant discordance in DNA methylation and gene expression as

compared to the rest of the PPI network. For FEM inference, each gene in the PPI network

was associated with two P-values, quantifying the significance of its expression and

methylation discordance, which were then combined using Fisher’s test statistic.78 The
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‘expression’ P-value was computed by analyzing the bulk RNA sequencing data

(Supplementary Table 5b). The ‘methylation’ P-value was evaluated by computing, in a

single sample comparison, two P-values of methylation discordance (one quantified by the

Jensen-Shannon distance within a gene’s promoter and the other within its body), by

combining these two P-values using Fisher’s test statistic, and by using again Fisher’s test

statistic to combine all P-values obtained from multiple sample comparisons.

Implementation of the spin glass algorithm was based on weights assigned to each edge

connecting two genes in the PPI network, with each weight computed as the average of the

two Fisher test statistics associated with the corresponding genes. This algorithm was

applied on each of the top 100 genes ranked by their combined ‘expression/methylation’ P-

values obtained using Fisher’s test statistic. Statistical significance of an inferred FEM was

assessed via P-values computed by Monte Carlo, which were obtained by testing against the

null hypothesis that observed discordance in gene expression and methylation within the

FEM was due to chance. FEMs were ranked in terms of their statistical significance

evaluated by Q-values, which were computed using the Benjamini-Hochberg procedure74 to

control for the FDR that would otherwise be affected by the number of initial hypothesis

tests (seeds) used. Only subnetworks containing at least 10 genes and Q-values no more than

0.05 were reported.

Reporting summary.

Further information on research design is available in the Nature Research Reporting

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Potential energy landscapes explain DNA methylation stochasticity in normal and cancer
cells.
a, Illustration of potential energy landscapes. Each methylation pattern (brown balls) is

assigned a potential value that provides a measure of its improbability to be observed

relative to the most probable pattern (green ball), which is assigned zero potential. A deep

and narrow ‘potential well’ indicates low methylation stochasticity in a cell population (left),

whereas a shallow and wide ‘potential well’ points to high methylation stochasticity (right).

b, Potential energy landscapes associated with twelve contiguous CpG sites within ERG
[chr21: 39,830,065 – 39,830,570] demonstrate increased methylation stochasticity for ERG
in ALL, in agreement with observed WGBS data (Supplementary Fig. 2). Here the

methylation patterns are assigned to points in a two-dimensional state-space using Gray’s

code (Methods). c, Within an analysis region, methylation patterns are grouped in terms of

their methylation level (ML). The probability distribution of the methylation level (PDML)

is then evaluated by summing the probabilities associated with the methylation patterns
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within each group. The depicted probability distribution points to an analysis region that is

most likely methylated.
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Fig. 2 |. Differential analysis localizes methylation discordance in ALL.
a, The Jensen-Shannon distance (JSD) captures methylation discordance within an analysis

region by evaluating differences in the location and shape of the probability distributions of

the methylation levels associated with a test (ALL) and a reference (CD19/pre-B2) sample.

Methylation discordance can be due to a difference in mean methylation level (dMML – top

row), in normalized methylation entropy (dNME – middle row), or due to other statistical

factors (bottom row). b, Densities of JSD, dMML, and dNME, as well as of differences in

the values of the methylation sensitivity index (dMSI), when comparing all normal CD19

and pre-B2 samples, show relatively small discordances associated with biological,

statistical, and technical variability in these samples. c, Distributions of JSD, dMML,

dNME, and dMSI values genome-wide and within selected genomic features in an ETV6-
RUNX1/CD19 comparison (ALL-45 vs. CD19–1). Green, positive values; red, negative

values; center lines, median; boxes, interquartile range (IQR); whiskers, 1.5 × IRQ. d,
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Distribution of the number N of analysis regions with respect to their JSD and absolute

dMML values, computed from all ETV6-RUNX1/CD19–1 comparisons genome-wide.

Many analysis regions that exhibit similar absolute differences in mean methylation level are

associated with a wide range of Jensen-Shannon distance values demonstrating that the

mean methylation level is not the only statistical factor influencing methylation discordance

in ALL. e, Percentage of analysis regions with significant methylation discordance within

selected genomic features when comparing ETV6-RUNX1 ALL with CD19. f, UCSC

genome browser images of a chromosomal region associated with ERG exhibiting

significant Jensen-Shannon distance values in an ETV6-RUNX1/CD19 comparison

(ALL-45 vs. CD19–1), and thus being significantly informative of the phenotype. This

region exhibits consistent reduction in mean methylation level and loss in methylation

sensitivity, but localized gain or loss in normalized methylation entropy.
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Fig. 3 |. DNA methylation stochasticity relates to gene expression in ETV6-RUNX1 ALL.
Average relationships in ETV6-RUNX1 ALL between mean methylation level (MML) and

normalized methylation entropy (NME) within gene promoters as a function of distance

from the transcription start site (TSS). The results correspond to quartiles of gene expression

mean (left column), variance (middle column), and variability level (right column). Lower

mean expression associates with higher levels of mean methylation (left column, first and

third rows), confirming a known relationship between promoter methylation and gene

expression. However, lower levels of mean expression are associated with higher levels of

normalized methylation entropy (left column, second and fourth rows) implying that

promoters of genes with lower gene expression are associated with higher levels of

methylation stochasticity. Higher expression variance also relates to reduced levels of mean

methylation level and normalized methylation entropy, but these associations can be weak

(center column). Although a measure of expression variability (Methods) does not clearly

associate with mean methylation level (right column, first and third rows), it relates to

normalized methylation entropy, with higher entropy near the TSS being identified with
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statistically significant gains in expression variability (right column, second and fourth rows

- highlighted: two-sided Wilcoxon rank sum test on medians within −500   bp, 500   bp  from

the TSS, P-values < 0.001 for second vs. first quartile, third vs. second quartile, and fourth

vs. third quartile). This implies that promoter regions of genes with higher expression

variability exhibit higher levels of methylation stochasticity near the TSS.
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Fig. 4 |. Methylation discordance and four cytogenetic subtypes of ALL.
a, Numbers of differentially methylated genes (DMGs) common to four groups of

cytogenetic subtypes of ALL as indicated. The corresponding genes are listed in

Supplementary Table 10a. b, Differentially methylated regions detected in individual

samples (rows) identify in-frame chromosomal translocation genes in ALL exhibiting

significant methylation discordance (columns). Colors indicate the underlying cytogenetic

abnormality for each sample as well as the genes involved in a sample-specific translocation.

Marked columns (*) pinpoint to genes undergoing chromosomal translocation in a specific

cytogenetic abnormality.
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Fig. 5 |. UHRF1 is a target of epigenetic disruption in ALL.
a, Boxplots and densities of genome-wide distributions of mean methylation level (MML)

and normalized methylation entropy (NME) values in NT and UHRF1-KO WGBS samples

show that UHRF1 silencing results in profound global hypomethylation and marked gain in

normalized methylation entropy. Center lines, median; boxes, interquartile range (IQR);

whiskers, 1.5 × IRQ. b, UCSC genome browser example showing that chromosome 16

exhibits profound hypomethylation and marked gain in normalized methylation entropy in

UHRF1-KO Reh cells over NT associated euchromatic A domains (light blue), as well as

almost zero mean methylation level and profound loss in normalized methylation entropy

over heterochromatic B domains and over several genomic regions within A domains (dark

blue). c, Densities of mean methylation level and normalized methylation entropy within NT

associated A/B domains confirm the previous findings genome-wide.
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Fig. 6 |. A plausible regulatory relationship between UHRF1 and 34 in-frame translocation genes
identified in ETV6-RUNX1 ALL.
An information-theoretic analysis of single-cell RNA sequencing data identifies a network

relationship between UHRF1 and 34 translocation genes driving significant and targeted

expression discordance of genetic drivers in ALL. In this network, UHRF1 may play the

most influential role as compared to other genes in the network. Red, overexpression; brown,

upregulated expression variance; blue, no change in expression variance.
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