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Abstract For an emerging disease like COVID-19, systems immunology tools may quickly identify 
and quantitatively characterize cells associated with disease progression or clinical response. With 
repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel 
virus before disease-specific knowledge and tools are established. However, single cell analysis tools 
can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning 
workflow Tracking Responders EXpanding (T-REX) was created to identify changes in both rare and 
common cells across human immune monitoring settings. T-REX identified cells with highly similar 
phenotypes that localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infec-
tions. Specialized MHCII tetramer reagents that mark rhinovirus-specific CD4+ cells were left out 
during analysis and then used to test whether T-REX identified biologically significant cells. T-REX 
identified rhinovirus-specific CD4+ T cells based on phenotypically homogeneous cells expanding by 
≥95% following infection. T-REX successfully identified hotspots of virus-specific T cells by comparing 
infection (day 7) to either pre-infection (day 0) or post-infection (day 28) samples. Plotting the 
direction and degree of change for each individual donor provided a useful summary view and 
revealed patterns of immune system behavior across immune monitoring settings. For example, the 
magnitude and direction of change in some COVID-19 patients was comparable to blast crisis acute 
myeloid leukemia patients undergoing a complete response to chemotherapy. Other COVID-19 
patients instead displayed an immune trajectory like that seen in rhinovirus infection or checkpoint 
inhibitor therapy for melanoma. The T-REX algorithm thus rapidly identifies and characterizes mech-
anistically significant cells and places emerging diseases into a systems immunology context for 
comparison to well-studied immune changes.   

Introduction
Single-cell systems immune monitoring approaches offer new ways to compare how an individual 
patient’s cells respond to treatment or change during infection (Chattopadhyay et al., 2014; Davis 
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et al., 2017; Greenplate et al., 2016a; Schultze, 2015). However, the computational analysis tools 
used widely in this type of systems immunology study were primarily designed to track major cell 
populations representing >1% of a sample. Viral immune and cancer immunotherapy responses can 
include mechanistically important and extremely rare T cells that proliferate rapidly over the course 
of days but as an aggregate exist as <0.1% of blood CD3+ T cells at their peak. These cells can be 
tracked genetically through clonal expansion, but may be lost in computational analyses focused on 
describing the global landscape of phenotypes. The specific expansion or contraction of phenotyp-
ically distinct cells may be a hallmark feature of key immune effectors and could reveal these cells 
without the need for prior knowledge of their identity or specialized tracking reagents like MHC 
tetramers.

The datasets tested here were all suspension flow cytometry, a data type where it is typical to have 
multiple snapshot samples of cells over time; however, an ongoing challenge in the field is to match or 
register cells to their phenotypic cognates between samples (Irish, 2014; Pyne et al., 2014; Weber 
and Robinson, 2016). Analysis algorithms typically rely on aggregate statistics for clustered groups of 
cells, but the process of grouping the cells works best with larger, established populations (Diggins 
et al., 2015; Irish et al., 2006; Saeys et al., 2016) and can depend on pre-filtering of cells by human 
experts (Greenplate et al., 2016a; Greenplate et al., 2019). Cytometry tools like SPADE (Bendall 
et  al., 2011; Qiu et al., 2011), FlowSOM (Van Gassen et al., 2015), Phenograph (Levine et  al., 
2015), Citrus (Bruggner et al., 2014), and RAPID (Leelatian et al., 2020) generally work best to char-
acterize cell subsets representing >1% of the sample and are less capable of capturing extremely rare 
cells or subsets distinguished by only a fraction of measured features. Tools like t-SNE (Davis et al., 
2013; Krijthe et al., 2015), opt-SNE (Belkina et al., 2019), and Uniform Manifold Approximation 
(UMAP) (Becht et al., 2018; McInnes et al., 2018) embed cells or learn a manifold and represent 
these transformations as algorithmically generated axes. For a biologist, these tools provide a way 
to organize cells according to phenotypic relationships that span multiple measured features, such 
as the proteins quantified on each of millions of cells in the datasets here. In addition to assisting 
with data visualization, these tools frequently reveal unexpected cells and facilitate their identification 
through manual or automated clustering (Davis et al., 2013; Becher et al., 2014; Diggins et al., 
2015; Diggins et al., 2017; Gandelman et al., 2019; Leelatian et al., 2020). Sconify (Burns et al., 
2018) is one such tool that applies k-nearest neighbors (KNN) to calculate aggregate statistics for 
the immediate phenotypic neighborhood around a given cell on a t-SNE plot representing data from 
multiple cytometry samples. This approach to creating a population around every cell was a key inspi-
ration for the Tracking Responders EXpanding (T-REX) tool presented here, which applies KNN to 
every cell to pinpoint rare cells in phenotypic regions of significant change. In addition to combining 
UMAP, KNN, and Marker Enrichment Modeling (MEM) in a rapid, unsupervised analysis workflow for 
paired samples from one individual, T-REX contrasts with prior approaches in its specific focus on the 
regions of great difference between samples. This T-REX design is based on the observation that, in 
the absence of a perturbation such as disease or infection, adults tend to have a stable signature of 
blood cell abundances over weeks to months (Greenplate et al., 2019; Lakshmikanth et al., 2020; 
Mathew et  al., 2020), and the hypothesis that short-term, dramatic changes in rare immune cell 
subsets will identify cells associated with exposure to an immunogenic agent, such as a virus.

Data types used to challenge the T-REX algorithm here included a new spectral flow cytometry 
study (Dataset 1) and three existing mass cytometry datasets (Dataset 2, Dataset 3, and Dataset 
4). Mass cytometry is an established technique for human immune monitoring where commercial 
reagents presently allow 44 antibodies to be measured simultaneously per cell (Greenplate et al., 
2016a; Mistry et al., 2019; Spitzer and Nolan, 2016). Spectral flow cytometry is gaining attention 
in human immune monitoring as it generates data that compares well to mass cytometry (Ferrer-
Font et al., 2020; Mistry et al., 2019). Spectral flow cytometers collect cells at around 10-fold the 
number of cells per second as mass cytometers. While the availability of spectrally distinct antibody-
fluorochrome conjugates imposes some practical limits on spectral flow cytometry at present, estab-
lished panels like the one in Dataset 1 measure ~30 features per cell with excellent resolution, and 
that capacity is expected to roughly double in the next few years as recent work has demonstrated 
40 features (Park et al., 2020). Spectral flow cytometry is thus well-matched to studies of very low-
frequency cells, as was the case in Dataset 1, where a goal was to computationally pinpoint hundreds 
of virus-specific T cells in datasets of over 5 million collected cells.

https://doi.org/10.7554/eLife.64653
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Datasets 1 and 2 were from individuals infected with two different respiratory viruses, rhinovirus 
(RV) or SARS-Cov-2, respectively. Respiratory viruses are ubiquitous, and while some, like rhinovirus, 
are generally benign, they nonetheless pose risks to patients with underlying chronic health conditions. 
The common colds associated with rhinovirus are characterized by shifts in very rare virus-specific cells 
in the blood (Muehling et al., 2020; Muehling et al., 2018). In contrast, novel respiratory viruses, such 
as SARS-CoV-2, the coronavirus causing COVID-19, continue to emerge that enact high morbidity 
and mortality, even among healthy subjects. Understanding the immune response to such viruses is 
vital to treatment and vaccine design, and there has been rapid progress applying human immune 
monitoring to COVID-19 patients (Mathew et al., 2020; Rodriguez et al., 2020). An ongoing chal-
lenge in the field is to quantitatively compare novel diseases, like COVID-19, to other disease states 
and immune responses. T cells are pivotal to such responses. Severe COVID-19 has been linked to 
a pathogenic ‘cytokine storm’ in which cellular immune responses likely play a crucial role (Ragab 
et al., 2020). Nonetheless, in the case of both rhinovirus and COVID-19, it is clear that host factors 
are a key determinant of the degree of the T cell response (Mathew et al., 2020; Muehling et al., 
2020). Datasets 3 and 4 were from cancer patients that included melanoma (MB) patients being 
treated with α-PD-1 checkpoint inhibitor therapies or acute myeloid leukemia (AML) patients under-
going induction chemotherapy. By tracking the CD4+ T cells that expand rapidly during infections and 
respond to immunotherapy, it may be possible to pinpoint or therapeutically guide cells into helpful 
vs. harmful roles or niches. Overall, a goal of this study was to develop an automated, quantitative 
toolkit for immune monitoring that would span a wide range of possible immune changes, identify 
and phenotype statistically significant cell subsets, and provide an overall vector of change indicating 
both the direction and magnitude of shifts, either in the immune system as a whole or in a key cell 
subpopulation.

Results
We report here T-REX, a novel unsupervised machine learning algorithm for characterizing cells in 
phenotypic regions of significant change in a pair of samples (Figure 1). The primary use case for devel-
oping the T-REX algorithm was a new dataset from individuals infected with rhinovirus, where changes 
in the peripheral immune system are expected in very rare memory cells responding directly to the 
virus (Dataset 1). Infection with rhinovirus is known to induce expansion of circulating virus-specific 

Figure 1. Tracking Responders EXpanding (T-REX) algorithm identifies rare cells based on significant expansion or contraction during infection or 
treatment. Graphic of the T-REX workflow. Data from paired samples of blood from a subject are collected over the course of infection and analyzed 
by high-dimensional, high-cellularity cytometry approaches (e.g., Aurora or CyTOF instrument, as with datasets here). Cells from the sample pair are 
then equally subsampled for Uniform Manifold Approximation (UMAP) analysis. A k-nearest neighbors (KNN) search is then performed within the 
UMAP manifold for every cell. For every cell, the percent change between the sample pairs is calculated for the cells within its KNN region. Regions of 
marked expansion or contraction during infection are then analyzed to identify cell types and key features using Marker Enrichment Modeling. For some 
datasets, additional information not used in the analysis could be assessed to determine whether identified cells were virus-specific. Finally, the average 
direction and magnitude of change for cells in the sample was calculated as an overall summary of how the analyzed cells changed between samples.

https://doi.org/10.7554/eLife.64653
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CD4+ T cells in the blood, and a key feature of the new rhinovirus dataset here is that rare and mech-
anistically important virus-specific CD4+ T cells were marked with MHC II tetramers in the context of 
multiple other T cell markers. The T-REX algorithm was blinded to tetramers during analysis so that 
they could subsequently be used to test algorithm performance. In addition, T-REX was tested with 
paired samples from patients with moderate or severe COVID-19 (Dataset 2), melanoma patients 
being treated with α-PD-1 checkpoint inhibitor therapies (Dataset 3), and acute myeloid leukemia 
patients undergoing induction chemotherapy (Dataset 4). These datasets were used to determine 
whether the T-REX algorithm functions effectively across a spectrum of human immune monitoring 
challenges and to see how the algorithm performs when changes are restricted to rare cell subsets, 
as in Dataset 1 and Dataset 3, or when many cells may be expanding or contracting, as in Dataset 2 
and Dataset 4.

Figure 2. Tracking Responders EXpanding (T-REX) identifies molecular signatures of CD4+ T cells that are expanded during acute rhinovirus infection 
and enriched for virus-specific cells. A subject (RV001) was experimentally infected with rhinovirus (RV-A16) and CD4+ T cell signatures monitored by 
spectral flow cytometry in conjunction with tetramer staining during the course of infection. (A) Fold change in the number of tetramer+ cells (log2) 
after rhinovirus challenge on day 0. (B) Data showing the percentage of tetramer+ cells in each cell’s k-nearest neighbors (KNN) region (where k = 60) 
plotted against the percentage change in its KNN region on day 7 vs. day 0. A statistical threshold of 80 % or higher for the percentage change in KNN 
region corresponded to marked enrichment of tetramer+ cells at day 7. (C) Uniform Manifold Approximation (UMAP) plots with T-REX analysis of CD4+ 
T cells for day 7 vs. day 0 based on statistical thresholds of 90–95% change (left column) and ≥95 % change (right column) in cell phenotypes. Pink and 
red colors denote regions of phenotypic change identified by T-REX. Numbers of tetramer+ cells within the cell’s KNN region captured in these areas 
of phenotypic change are denoted. Cells containing >5% tetramer+ virus-specific cells in the corresponding KNN region are labeled pink. Red cells 
denote a KNN region that was not enriched for tetramer+ cells, and purple cells denote a tetramer enriched region not captured by T-REX. Values in 
black indicate the actual number of tetramer+ cells in each circled hotspot of phenotypic change. Marker Enrichment Modeling (MEM) labels on the 
right indicate cell phenotypes of each hotspot.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Tracking Responders EXpanding (T-REX) identifies CD4+ T cell tetramer+ hotspot using all cells from RV001.

Figure supplement 2. Tracking Responders EXpanding (T-REX) identifies regions of great change enriched for tetramers in infected individuals.

Figure supplement 3. Marker Enrichment Modeling (MEM)-derived gating strategy for the enrichment of rhinovirus-specific CD4+ T cells.

Figure supplement 4. T cell sorting strategy derived using Tracking Responders EXpanding (T-REX) effectively enriches for rhinovirus-specific cells in 
infected subjects.

https://doi.org/10.7554/eLife.64653
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T-REX identifies cells in phenotypically distinct regions of significant 
change
For the rhinovirus challenge study in Dataset 1, sample pairs available for T-REX included cells taken 
immediately prior to intranasal inoculation with virus (i.e., pre-infection, day 0), as well as those during 
(day 7) or following inoculation (day 28). Cells were subsampled equally from each timepoint and then 
concatenated for a single UMAP specific to each analysis pair. UMAP axes were labeled to indicate 
they were specific to a comparison for a given individual (Figure 2). Thus, each UMAP comparison was 
a new run of the algorithm. Although it is also possible to map all sample times or all individuals into 
a single UMAP for analysis, a key goal here was to imagine a minimal T-REX use case with only a pair 
of samples from one individual. The features selected for UMAP analysis were intentionally limited 
to surface proteins in order to test whether suitable features for live cell fluorescence-activated cell 
sorting (FACS) could be identified. Following UMAP, each cell was used as the seed for a KNN search 
of the local neighborhood within the UMAP axes (i.e., the KNN search was within the learned mani-
fold, as with the analysis in Sconify [Burns et al., 2018] or RAPID [Leelatian et al., 2020]). The k-value 
for KNN was set to 60 as a starting point based on prior studies and later optimized. For each cell, the 
KNN region could include cells from either time chosen for analysis, and the percentage of each was 
calculated to determine the representation of each sampled time in a cellular neighborhood. When 
cells in regions of expansion (≥95 % of cells in the KNN region from one sampling time) were clus-
tered together in one phenotypic region of the UMAP, they were considered a ‘hotspot’ of significant 
change. Cells in change hotspots were aggregated and the phenotype automatically characterized 
using MEM (Diggins et al., 2017). MEM labels here indicated features that were enriched relative to 
a statistical null control on a scale from 0 (no expression or enrichment) to +10 (greatest enrichment). 
Ultimately, T-REX and MEM were used to reveal hotspots of ≥95 % change and assign a label that 
could be used by experts to infer cell identity.

In the human rhinovirus challenge study yielding Dataset 1, MHC class II tetramers were used to 
identify rhinovirus-specific CD4+ T cells with the goal of tracking phenotypic changes over the course 
of infection. Increases in tetramer+ cells on day 7 (Figure 2A) corresponded to the acute infection 
phase (Muehling et al., 2020). This tetramer tracking system for virus-specific T cells provided an 
opportunity to test whether the cells identified by T-REX were biologically significant by leaving the 
tetramer stain features out of the computational analysis (i.e., not using tetramers to make the UMAP 
or in other parts of T-REX) and then testing to see whether hotspots of cellular change identified 
by T-REX were statistically enriched for tetramer+, virus-specific cells. A hotspot region was consid-
ered to be enriched for tetramer+ cells if >5% of the cells in the region were tetramer+. In the 
example subject shown, the pairwise comparisons used in T-REX analysis included CD4+ T cells from 
day 0, immediately prior to rhinovirus infection, and day 7, a well-studied timepoint at which rare, 
virus-specific CD4+ T cells are observed at higher frequencies (Muehling et al., 2020). This trajectory 
of virus-specific cell expansion was confirmed by a peak in the log2 fold change in the frequency 
of tetramer+ CD4+ T cells (Figure  2A). Applying T-REX to the rhinovirus data revealed that KNN 
regions with expansion from day 0 to day 7 were greatly enriched for tetramer+ cells, as compared 
to regions with less expansion (Figure 2B). UMAP axes were labeled as UMAP_RV001_7_0 to denote 
this UMAP analyzed day 0 and day 7 for individual RV001 (Figure 2C). Regions of contraction were 
observed but were not enriched for tetramer+ cells, except in the case of one individual, RV007, 
studied here (Figure 3). Notably, two of the eight study subjects challenged with rhinovirus were 
not infected (RV002 and RV003); all other individuals were infected (Supplementary file 1). As the 
focus of this study was virus-specific T cells, CD4+ T cells were the main populations analyzed in all 
subjects (Supplementary file 2). However, T-REX finds the largest tetramer+ cell population with the 
same phenotype even when using all 4.9 million live cells instead of only the 1.3 million CD4+ T cells 
(Figure 2—figure supplement 1).

A key question for the T-REX algorithm is where to set a statistical cutoff for what is considered to 
be a biologically significant amount of expansion. Two change cutoffs were tested with subject RV001, 
≥90 % and ≥95 % (Figure 2C). Using a cutoff of ≥95 % identified 2/2 (100%) tetramer+ hotspots 
of change for RV001 and did not identify any additional regions that were not tetramer hotspots, 
whereas the ≥90 % cutoff identified both tetramer+ hotspots and an additional tetramer– hotspot 
(Figure 2C, top). Thus, ≥95 % represented a stringent cutoff that still captured biologically significant 
cells. An analysis of tetramer enrichment as a function of percentile of expansion from day 0 to day 7 

https://doi.org/10.7554/eLife.64653
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(Figure 2B) showed that tetramer+ cells were not commonly observed to be in local neighborhoods 
around cells with change below 80 % in their KNN region. In contrast, above 90 % change, the median 
CD4+ T cell had 10 % or more tetramer+ neighbors around it in the KNN region (Figure 2B). Thus, 
only regions of 80 % or more expansion from day 0 to day 7 were enriched for tetramer+ CD4+ T cells 
in study individual RV001.

A k-value of 60 effectively identified immune hotspots in T-REX
A critical question for KNN analysis is the value of k, the number of neighbors to assess. While it 
is useful to have a lower k-value as the analysis will complete more quickly, increasing the k-value 

Figure 3. Cells in regions of significant change between day 0 and day 7 were typically in tetramer+ hotspots. Tracking Responders EXpanding (T-REX) 
plots of regions of significant change (blue and red) are shown on Uniform Manifold Approximation (UMAP) axes for CD4+ T cells from eight rhinovirus 
challenge study individuals. Solid pink circles indicate tetramer+ hotspots that also contained cells that were in regions of marked expansion ≥85%.

https://doi.org/10.7554/eLife.64653
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might better represent the phenotypic neighborhood or be more statistically robust. To assess how 
k-value impacted detection of cells in regions of change and the degree to which these cells were 
virus-specific in rhinovirus challenge Dataset 1, the k-value was systematically changed. In example 
case RV001, an optimal k was determined to be an inflection point in a graph of the average tetramer 
enrichment (y-axis, Figure 4) vs. increasing values of k (x-axis, Figure 4). To calculate this curve, a 
KNN search was repeated while increasing k in steps from 0 to 300 for every cell in each sampling. 
This analysis was performed for all tetramer+ cells from day 7 (dark purple, Figure 4), all tetramer+ 
cells from day 0 (light purple, Figure 4), and, as a negative control, random tetramer– cells from day 
7 (black, Figure 4). Within each of these neighborhoods, tetramer enrichment was calculated. This 
approach identified the inflection point of the percent tetramer+ curve as k = 70 for RV001 (Figure 4). 
In further analysis of the remaining infected rhinovirus subjects, optimal k-values ranged from 30 to 
80. A k-value of 60 was chosen and used in all other analyses of rhinovirus subjects (Figure 3), as well 
as Datasets 2, 3, and 4 described below.

Regions of significant change contained rhinovirus-specific CD4+ T cells 
in Dataset 1
The association between regions of change and enrichment for virus-specific cells observed in the 
example subject shown (Figure 2B) was observed in five infected rhinovirus subjects; tetramer+ CD4+ 
T cells were not enriched in KNN regions around cells that had not expanded from day 0 to day 7 
(one infected, two uninfected; Figure  2—figure supplement 2). This observation suggested that 
cutoffs at the 5th and 95th percentile would accurately capture cells representing phenotypic regions 
with significant change over time. In addition, 15th and 85th percentiles were chosen as cutoffs to 
capture a more moderate degree of change and track cells that might still be of interest but not from 
regions experiencing significant change. The remaining cells in phenotypic regions between the 15th 
and 85th percentiles were not considered to have not changed significantly in the context of these 
studies. Going forward, it was of interest to determine how often regions of significant change (i.e., 

Figure 4. k-nearest neighbors (KNN) analysis around tetramer+ cells reveals an optimized k-value at the inflection point of the tetramer density curve. 
(A) Tetramer+ cells from day 7 (dark purple) or from day 0 (light purple) and random tetramer- cells from day 7 (black) are shown overlaid on a common 
Uniform Manifold Approximation (UMAP) plot. The number of cells for each group is shown in the upper left of each plot. (B) Average tetramer 
enrichment is shown for increasing k-values in repeated KNN analysis of the cells. The inflection point of the resulting curve is circled in red at k = 70, 
which was the optimized k-value for KNN implemented as in Tracking Responders EXpanding (T-REX) for subject RV001. The T-REX plots on the UMAP 
axes are shown for various k-values.

https://doi.org/10.7554/eLife.64653
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the 95th and 5th percentile cutoffs) would contain tetramer+ CD4+ T cells in different individuals 
participating in the rhinovirus challenge study. Cells in regions of significant expansion (≥95%) were 
also from regions that were enriched for virus-specific cells in nearly all rhinovirus-infected individuals 
(4/6 at 95 % cutoff, 5/6 at 85 % cutoff) (Figure 2, Figure 2—figure supplement 2, Figure 3). Thus, 
by focusing specifically on cells in regions representing the most change over time, T-REX analysis 
revealed subpopulations containing virus-specific cells. This highlights the ability of T-REX to pinpoint 
such cells without the use of antigen-specific reagents. Following T-REX, MEM analysis was performed 
using all available features, including intracellular features not used to define the UMAP space (TCF1, 
TBET, and Ki-67). The phenotype of the regions of significant change enriched for virus-specific cells 
was quantitatively described with MEM scores (hotspot 1: ▲CD45R0+10 CD38+8 ICOS+6 CCR5+5 TCF1+5 
CD27+4 PD-1+4 CXCR3+3 CD95+3 TBET+2 CD25+2; hotspot 2: ▲CD45R0+10 CD38+8 ICOS+6 CD27+5 TCF1+5 
CCR5+4 CXCR3+3 CD95+3 CCR7+3 PD-1+2 CD25+2 CXCR5+2). The change hotspots thus contained acti-
vated memory cells (CD45RO + CD38+) that were notable for their early memory/stem-like T cell 
signature (TCF1+ CD27+), as well as their expression of CCR5 and CXCR3, both of which are chemo-
kine receptors found on rhinovirus-specific CD4+ T  cells that respond during infection (Muehling 
et al., 2020; Muehling et al., 2018).

To determine the sensitivity of this method, all tetramer+ regions were next reviewed, including 
those that did not meet the criteria for hotspots of significant change (Figure 2C, bottom). In analysis 
of RV001, 66.6 % (2/3) of tetramer+ regions were captured, meaning there was one region with lower 
change that contained tetramer+ cells. However, there were only 87 cells in these missed regions 
compared to 896  cells and 826  cells in the regions with  ≥95  % expansion, confirming that T-REX 
captured the majority of virus-specific cells in the dataset.

Figure 5. Infected cell phenotypes can be compared to cells taken after infection to reveal regions of expansion. (A) Fold change in the number of 
tetramer+ cells (log2) after rhinovirus challenge on day 0. (B) Box and whisker plot show k-nearest neighbors (KNN) regions in terms of expansion 
during infection represented by percent change as well as percent of tetramer+ cells for post-infection (day 28) and during infection (day 7). (C) Uniform 
Manifold Approximation (UMAP) plots for 95% change and 5% tetramer cutoffs. Cell count is in black as well as in the upper right of each UMAP plot. 
Marker Enrichment Modeling (MEM) labels are given for highly expanded and tetramer-enriched regions.

https://doi.org/10.7554/eLife.64653
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In the case of an emerging infectious disease, it may not be possible to have a pre-infection 
sample and it would be useful to know whether T-REX analysis of change between a peak of infec-
tion and a later time might also reveal virus-specific T cells. To test this idea, pairwise comparisons 
were performed with cells from day 7 following rhinovirus inoculation and at day 28 after inoculation 
(Figure 5). Strikingly, cells in phenotypic regions of significant change again were enriched for virus-
specific, tetramer+ CD4+ T cells. The MEM values for these cells further identified them as CD45R0+ 
memory cells enriched for CD38, ICOS, CD27, TCF1, CXCR5, PD-1, and CD95 expression, a pheno-
type matching that of the cells identified in the day 0 to day 7 analysis for this individual (RV001, 
Figure 5).

Traditional biaxial gating of cells identified by T-REX and MEM enriches 
for RV-specific T cells
Once identified by machine learning approaches, it can be useful to define a gating scheme that 
might be used to test whether computationally defined cell subsets can be found using traditional 
gates. In addition, FACS sorting for live T cells could use surface antigens and biaxial gates to phys-
ically separate such cells, as is typical for interrogation in vitro. To test this idea computationally, 
the features enriched in MEM labels for cells identified by T-REX (MEM label average and standard 
deviation: ▲CD45R09±2.5 CD387±2.0 ICOS6±1.4 CCR54±1.7 PD-14±0.9 CD954±0.7 CD273±1.6 CXCR32±0.5) were 
used to define a new gating strategy that used a single positive cutoff gate for each feature of CD4+ 
T cells (Live, Dump-, CD3+, CD4+) in the order CD45R0, CD38, ICOS, CCR5, PD-1, CD95, CD27, and 
CXCR3 (Figure 2—figure supplement 3). At each gating step, the percentage of RV-specific cells was 
determined.

It is known that precursor frequencies of rhinovirus-specific CD4+ T cells are very low, even during 
active infection (0.0004‒0.04 % of CD4+ T cells, Figure 2—figure supplement 4). The ‘virtual sort’ 
successfully enriched for rhinovirus tetramer+ cells in all infected subjects (0.89‒9.25  % of CD4+ 
T cells; Figure 2—figure supplement 4). This is notable, considering that the consensus MEM label 
was generated from regions of ≥95 % change, some of which did not include tetramers. Further-
more, this strategy was able to enrich for tetramer+ cells in the one infected subject for which T-REX 
was unable to identify tetramer hotspots (RV007), and one in which the tetramer+ hotspot only met 
a ≥85 % threshold of expansion (RV005), suggesting that T-REX-derived sorting strategies can be 
broadly applied across cohorts, including subjects whose response may not reach the threshold of 
identification by T-REX. A minimal panel of 10 markers (Live, Dump–, CD3+, CD4+, CD45R0+, CD38+, 
ICOS+, CCR5+, PD-1+, CD95+) was sufficient to achieve maximal tetramer enrichment. Interestingly, 
gating for CD45R0 alone ‒ the first MEM-enriched feature ‒ did not significantly enrich for virus-
specific T cells. Furthermore, the T-REX-derived sorting strategy failed to enrich for rhinovirus-specific 
T cells in uninfected subject, nor did it enrich for CD4+ T cells stained with a control influenza tetramer, 
confirming the specificity of this method (Figure 2—figure supplement 4). Thus, a computational 
‘virtual sort’ for the cells suggests that FACS gates could be drawn using the results of T-REX and 
MEM analysis. This result further confirms that the populations identified computationally also exist as 
populations that can be defined in traditional ways.

T-REX tracking of direction and degree of change contextualizes 
diverse immune responses
The next goal was to test T-REX with additional data types and contextualize the results from rhino-
virus infection (Dataset 1) with changes that might be observed in other immune responses, such as 
another respiratory infection (Dataset 2), cancer immunotherapy (Datasets 3), or cancer chemotherapy 
(Dataset 4). To accomplish this, metrics for degree of change as well as direction of change in each 
sample were devised (Figure 6A). Degree of change was calculated as the sum of the percent of 
cells in the 5th and 95th hotspots of change. Therefore, degree of change is the percentage of the 
sample that has changed significantly (≥95%) between the two samples (i.e., the percentage of the 
sample that was dark red or dark blue in the T-REX plot). A degree of change of 100 % would mean 
that the KNN region around every cell was populated only by cells from the same sample, which is 
interpreted as meaning the pair of samples had changed completely (half the sample contracting and 
half expanding). Direction of change is the ratio of ≥95 % expansion to contraction in the sample and 
was calculated as the difference between the number of cells in the 95th and 5th hotspots of change 

https://doi.org/10.7554/eLife.64653
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divided by the sum of the number of cells in the 95th and 5th hotspots of change. A negative direction 
of change value indicates that there was significant contraction that was more common than significant 
expansion. The values for directionality range from 0.00 (evenly contracting and expanding) to ±1.00 
(all contracting or expanding). This way of looking at the data provided a method for comparing 
changes across different systems immune monitoring settings (Figure  6). Rhinovirus subjects had 
small changes in samples over time with a median of 0.019 % and an interquartile range (IQR) of 
0.0006 %. Rhinovirus also had large directionality across all subjects either up or down, with a median 
of 0.029 and an IQR of 2.00. Thus, rhinovirus infections resulted in an extremely low magnitude of 
change, as very rare cell subsets were responding, and the direction of this change was typically 
fairly high or low for a given individual (i.e., the changes were not balanced and tended to represent 
marked expansion or contraction in the rare subsets that changed; Figure 6).

Regions of change included cells expressing CD147 and CD38 in 
COVID-19 Dataset 2
Next, T-REX was applied to Dataset 2, a mass cytometry study of longitudinal collection of blood from 
patients with COVID-19 (Rodriguez et al., 2020). This study originally contained data for 39 total 
patients, of which 12 patients had accessible mass cytometry data with at least two blood samples 
over time. For each patient, the day 0 timepoint and the closest sampled timepoint to day 7 were 

Figure 6. Mapping degree and direction of change for 5th and 95th hotspots reveals disease-specific patterns. (A) Degree of change and direction of 
change from Tracking Responders EXpanding (T-REX) analysis in a timepoint comparison shown for acute myeloid leukemia (AML, day 5/8 vs. day 0), 
COVID (COV, day 1/3/4/5/6/7 vs. day 0), melanoma (MB, day 21/35 vs. day 0), and rhinovirus (RV, day 7 vs. day 0) samples. (B) Example T-REX plots are 
shown for each disease type analyzed. Degree of change shown in red and blue with red showing regions of expansion over time compared to the blue 
representing regions of contraction over time. Marker Enrichment Modeling (MEM) label given for change hotspots in the left example in each sample 
type.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Root mean square deviation (RMSD) on Tracking Responders EXpanding (T-REX) hotspot phenotypes from analysis of the 
COVID-19 CD4+ T cells identified three, distinct phenotypic groups.

Figure supplement 2. Marker Enrichment Modeling (MEM)-derived gating strategy for the enrichment of CD4+ T cells in COVID-19-infected 
individuals.

https://doi.org/10.7554/eLife.64653
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used for pairwise comparison using T-REX. The COVID-19 samples varied from <1% to 68% in terms 
of degree of change, with a median of 6.86 % and an IQR of 30.4 %. The directionality of change 
was near zero, with a median of –0.00880 and IQR of 0.773. Thus, the blood of COVID-19 patients 
could display marked changes or little change. Notably, the changes <5% were generally positive 
(median directionality of 0.55, N = 6), whereas the COVID-19 patient cell populations experiencing 
change >5% typically decreased between day 0 to day 7 (median directionality of –0.33, N = 6).

In T-REX analysis looking at change on the UMAP axes, patients with significant change were 
apparent due to large islands of cells being painted dark red or dark blue, indicating ≥95 % change 
between paired days (Figure 6). These cell populations were clustered and separated into popula-
tions representing day 0 or the later time near day 7, and MEM labels calculated in order to assess the 
identity and phenotypic changes. For example, patient COV26 saw little change (magnitude of 2.02%) 
and this was almost entirely expansion (directionality of 0.99). The largest population experiencing 
significant change from COV26 decreased over time and had a MEM phenotype of CD147+10 CD99+8 
CD29+6 CD38+4 CD55+3 CD14+2 CD39+2 CD64+1 CD56+1 CD8a+1, indicating that it was a CD14+ myeloid 
cell subset with high expression of CD147/Basigin. The phenotypes for all automatically identified 
clusters of cells that expanded or contracted greatly, and the degree and direction of change for each 
COVID-19 patient from Dataset 2 are listed in Supplementary file 3. These reference phenotypes 
should be comparable to those in other studies of COVID-19, and a meta-analysis of phenotypes 
could use quantitative analysis of MEM labels to compare these highly expanding and contracting 
cells.

T-REX was also applied to only CD4+ T cells from patients with sufficient T cell counts (10 out of the 
12 patients as described above). Of the 10 COVID-19 patients available for analysis, 5 individuals had 
at least one hotspot of great change, as revealed by T-REX, in CD4+ T cell-specific analysis (Figure 6—
figure supplement 1, Supplementary file 3). Analysis of the COVID-19 CD4+ T cell hotspot pheno-
types using root mean square deviation (RMSD) analysis (Diggins et al., 2018; Diggins et al., 2017) 
identified three phenotypic groups. One of these groups was a set of closely related T cell subsets 
from one individual, patient COV32, and the aggregate MEM label for this population was (MEM label 
average and standard deviation: ▲CD57+8±0.8 CD99+9±1.4 CD29+7±0.5 CD147+6±0.5 CD43+5±0.6 CD45+4±0.3 
CD3+4±0.5 CD81+4±0.4 CD52+4±0.3 CD49d+3±0.5 CD45RA+3±2.3 CD5+3±1 CD56+2±1.5, Figure 2—figure supple-
ment 4). Another phenotype of CD4+ T cells was consistently observed in those COVID-19 patients 
where T-REX revealed a hotspot. Of the  five patients where T-REX identified a CD4+ T cell hotspot, 
four of the patients had a hotspot matching the aggregate phenotype (MEM label average and stan-
dard deviation: ▲CD147+9±0.8 CD99+9±1.3 CD29+8±1.3 CD45+4±2 CD3+4±0.7 CD38+4±1.8 CD49d+3±1.6 CD52+3±1 
CD27+3±2.1 CD28+3±0.8 CD81+2±1.3 CD62L+2±1.2 CD56+2±0.7 CD5+2±0.6, Figure  6—figure supplement 1). 
When comparing day 0 to day 6 (±3 days), this population of CD4+ T cells was observed to change 
significantly in patients COV24, COV29, COV32, and COV39 (four of the five with a CD4+ T cell 
hotspot). The features of this subset could now be used to physically separate this population using 
FACS, highlighting a practical application. As a test of this idea, manual biaxial gating, as in standard 
FACS for physical separation of cell subset, was performed using the cell surface markers identified 
by MEM as most enriched, as in the prior analysis of cells from the rhinovirus study (Figure 6—figure 
supplement 2). While CD4+ T cells only represented 5.5–14.0% of total cells, following MEM-based 
gating they were enriched to 49.6–83.3% of cells. Following expert gating, the MEM label of the 
resulting population was ▲CD147+9±0.6 CD99+8±1 CD29+7±0.6 CD38+7±0.8 CD27+5±0.8 CD45+4±1.2 CD3+4±0.6 
CD49d+3±0.5 CD81+3±0.7 CD52+3±0.7 CD28+3±0.7 CD62L+2±0.8 CD56+2±0.5 CD5+2±0.6, which closely matched 
the computationally identified cells.

T-REX reveals immune cell changes during cancer therapies in Dataset 3 
and Dataset 4
T-REX was next tested on two previously published cancer immune monitoring studies representing a 
wide range of immune system changes, from modest to extensive. Dataset 3 consisted of mass cytom-
etry analysis of peripheral blood mononuclear cells (PBMCs) from melanoma patients treated with 
anti-PD-1. This well-studied dataset primarily includes melanoma patients whose blood had modest, 
subtle shifts in PBMC phenotypes over time. However, one patient in the set, patient MB-009, devel-
oped myelodysplastic syndrome (MDS) and experienced a great shift in blood immunophenotype 
in parallel with the emergence of a small population of blasts in PBMCs (Greenplate et al., 2016b). 

https://doi.org/10.7554/eLife.64653
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Overall, when analyzed by T-REX, the melanoma samples in Dataset 3 for comparisons of day 21/35 
vs. day 0 had a small degree of change (median of 0.58 % and an IQR 2.34%) with a varying direction-
ality (median of –0.42 and an IQR of 1.46), confirming the subtle shifts in phenotypes as previously 
indicated. The great shift in peripheral immunophenotypes observed in MB-009 was confirmed with 
T-REX analysis when comparing the 6 -week and 12 -week times. Notably, at 6 weeks, the peripheral 
blast count was still below 5 % (Greenplate et al., 2016b), so T-REX detected a substantial change in 
subsets that were not driven solely by the emergence from the marrow of the MDS blasts.

Dataset 4 was chosen to represent large changes and included peripheral blood from AML patients 
treated with induction chemotherapy (Ferrell et al., 2016). The compared timepoints for the AML 
data in Dataset 4 were day 5/8 vs. day 0. As expected, the majority of AML patients had a large 
degree of change in samples (median of 81.0 % and an IQR of 75.2%) with little to no directionality 
to the change (median of –0.00250 and an IQR of 0.0173), meaning that there were massive changes 
in terms of both expansion and contraction over the course of treatment. MEM labels showed that 
the cells contracting in responder patients were the AML blasts, whereas the emerging cells were 
the non-malignant immune cells (Figure 6). AML samples with a degree of change >80% (AML001, 
AML002, AML004) came from patients with high blast count in the blood and complete response 
to treatment, indicating the complete transformation of the immune environment after treatment. 
AML007, a patient with no blasts in the blood, had a degree of change of 5.97 % over treatment. For 
AML003, a patient that did not respond to treatment, little change was seen from days 0 to 5 (degree 
of change = 3.19%) by means of T-REX analysis.

T-REX outperforms other algorithms based on accuracy and speed
The T-REX workflow combines multiple algorithms, and each step represents a choice of tool and 
settings. T-REX was next tested against (1) T-REX with different choices of dimensionality reduction 
or no dimensionality reduction, (2) T-REX with a different clustering method from KNN, and (3) other 
algorithms. The results were evaluated based on speed (overall runtime, including any dimensionality 
reduction), whether regions of significant change were detected, and whether regions of change were 
also tetramer+ hotspots (Figure 7).

Throughout this work, we have presented a version of T-REX that utilizes UMAP for dimensionality 
reduction and KNN for clustering. This standard version of T-REX ran in 0.35 hr on the 1.3 million 
cell dataset from RV001 (Figure 7, left column) and identified a cluster that was 22 % tetramer+. An 
altered version of T-REX, in which t-SNE replaced UMAP as the method of dimensionality reduction, 
resulted in a much longer runtime of 23 hr and comparable capture of areas of change, containing 
22 % tetramer+ cells (Figure 7). Finally, we tested T-REX without dimensionality reduction, running 
KNN directly on the 14 original surface protein features previously utilized when performing either 
UMAP or t-SNE dimensionality reduction. This KNN on the original feature space was both slower 
(1.7 hr) and less accurate, in that it identified too many putative regions of change, most of which were 
not tetramer+ hotspots (Figure 7).

We also compared T-REX with other commonly used dimensionality reduction and clustering algo-
rithms (Weber and Robinson, 2016), including SPADE, Phenograph, FlowSOM, and Citrus. These 
algorithms were designed to run on the original measured features and not on t-SNE or UMAP axes, 
although we have previously used FlowSOM on t-SNE as part of the RAPID algorithm (Leelatian et al., 
2020). When SPADE was tested using the 14 original features, no regions of change ≥95 % were iden-
tified (Figure 7). Of the 160 cell clusters requested and produced in SPADE, only two clusters had a 
percent change between 85% and 90% and contained 7% and 10% tetramer+ cells. The other clusters 
changed little (average of 53% ± 10.5%). Next, the KNN-based Phenograph algorithm was tested 
using the 14 original features and a k-value of 60 (as in T-REX, Figure 4). This test of Phenograph 
identified 13 clusters, none of which displayed significant change (average of 49% ± 6.4%) and none 
of which contained >5% tetramer+ cells. Phenograph was also tested using the UMAP coordinates 
and a k-value of 60 (as with standard T-REX in Figure 2). This approach identified 113 clusters, one of 
which was between 85% and 95% change, 8 % tetramer+, and contained cells that were phenotypi-
cally similar to those identified by T-REX using MEM (Figure 7). The remaining clusters identified by 
Phenograph did not significantly change (average of 50% ± 6.6% change in the KNN region). Next, 
FlowSOM was tested both on UMAP axes and original features using an optimized cluster number, 
as determined by RAPID (Leelatian et al., 2020). RAPID cluster optimization (testing 0–90 clusters) 

https://doi.org/10.7554/eLife.64653
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ran in 0.93 hr and identified an optimal value of 66 clusters. FlowSOM did not identify regions of 
change using either UMAP or original features (average of 50% ± 5%) and did not identify clusters 
with >5% tetramer+ cells. Finally, we used 10 subsamples of each day to test Citrus on RV001 as Citrus 
requires two groups and several samples per group. This test of Citrus required 3 hr and found 156 
total clusters, with >30 being significantly associated with either day 0 or day 7 abundance. Of these 
significant clusters, only one had >5% tetramer+ cells. This cluster also closely matched the T-REX 
tetramer+ cell phenotype (MEM label: ▲ CD45RO+10 CD38+8 ICOS+7 CD25+7 Ki67+7 CD27+6 CCR5+6 
PD1+6 Tcf-1+6 CCR6+5 CD95+5 CCR7+5 CXCR3+4 CXCR5+4 CD127+3 Tbet+2). Importantly, phenotypes 
were comparable for all methods that identified at least one hotspot of >85% change, as quantified 
by RMSD analysis of MEM labels (Greenplate et al., 2019) (ranged from 97.1 to 98.7, with 100 being 
the highest degree of similarity).

Finally, as an additional test of T-REX stability, sample RV001 was subsampled into 10 groups, 
each containing 10 % of the cells. T-REX was then run using both the same original (common) UMAP 
(Figure 7—figure supplement 1) and subsample-specific (unique) UMAPs. In all cases of subsam-
pling, T-REX consistently identified tetramer+ hotspots based on ≥90 % or ≥ 95 % change across the 

Figure 7. Tracking Responders EXpanding (T-REX) using Uniform Manifold Approximation (UMAP) rapidly identified regions of change and tetramer+ 
hotspots and contrasted with other algorithms. (A) Data analysis methods were compared using on RV001 day 0 and day 7 data. Methods identifying 
at least one cluster with >85% change from day 0 to day 7 are shown. Cells are plotted on UMAP or t-SNE axes (red for expanding cells from day 7, 
blue for contracting from day 0). Time per method is shown in the purple bar above each UMAP/t-SNE plot. For methods not using UMAP, clusters 
and hotspots have been redrawn on the UMAP axes to compare to the original T-REX method. Numbers of tetramer+ cells within the cell’s k-nearest 
neighbors (KNN) region captured in these areas of phenotypic change are denoted. (B) Marker Enrichment Modeling (MEM) labels are shown per 
method for clusters with significant change. A root mean square deviation (RMSD) score is included in the lower right of each MEM label box for 
comparison to the original T-REX method MEM labels. (C) All clusters on the UMAP axes are shown for methods that did not identify regions of 
significant change. Runtimes for these are included above each plot in purple.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Tracking Responders EXpanding (T-REX) consistently identified tetramer+ hotspots based on ≥90% or ≥95% change across 10 × 
10 % subsamples on a single common Uniform Manifold Approximation (UMAP).

https://doi.org/10.7554/eLife.64653
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10 subsamples. To summarize, T-REX using either UMAP or t-SNE performed the best at identifying 
regions of change that were greatly enriched for rare tetramer+ cells, and T-REX with UMAP was faster 
than T-REX with t-SNE (Figure 7). Thus, T-REX with UMAP and MEM provides an automated approach 
to quickly reveal and quantitatively characterize cells in regions of great expansion or contraction.

Materials and methods
Experimental rhinovirus infection model
Healthy adult volunteers (ages 18–40) were enrolled in an experimental rhinovirus infection study. 
All subjects were judged to be seronegative to the challenge virus strain (RV-A16; serum neutralizing 
antibody titer ≤1:2). Subjects were inoculated with 100 TCID50 of RV-A16 (FDA IND 15162) on study 
day 0 and were judged to be infected if they seroconverted to the challenge virus by study day 28 
(≥4  -fold increase in titer) and/or shed virus in nasal wash specimens during the first   five days of 
infection, according to standard protocols (Muehling et al., 2018). Peripheral blood specimens were 
obtained sequentially over the course of infection to capture pre-infection immune fluctuations (days 
–14 and 0), the adaptive phase of infection (day 7), and convalescence (day 28). PBMCs were isolated 
using density gradient centrifugation and viably cryopreserved for later analysis.

Rhinovirus tetramer staining and flow cytometry
Rhinovirus tetramer staining was performed as previously described (Muehling et al., 2020; Mueh-
ling et al., 2016; Muehling et al., 2018). Briefly, PBMCs were thawed, and all timepoints analyzed 
together in single experiments. Cells were stained with up to three unique rhinovirus MHCII tetramers, 
selected to match each individual’s HLA type (Muehling et al., 2016), and counterstained for viability 
and surface markers (Supplementary file 4). An aliquot of tetramer-labeled cells was enriched using 
anti-PE magnetic beads for antigen-specific CD4+ T cell frequency calculation, as previously described 
(Muehling et al., 2020; Muehling et al., 2016; Muehling et al., 2018). Cells were fixed and perme-
abilized (True Nuclear Fixation and Permeabilization buffers; BioLegend, San Diego, CA, USA), and 
then stained for intracellular markers. Samples were analyzed using a 3-laser Aurora Northern Lights 
spectral flow cytometer (Cytek Biosciences, Fremont, CA, USA).

Generation of Dataset 1
Dataset 1 was a newly generated dataset of PBMCs obtained by longitudinal sampling of healthy 
volunteers who were challenged intranasally with RV-A16. The study was approved by the Univer-
sity of Virginia Human Investigations Committee, performed in accordance with the Declaration 
of Helsinki, and registered with ​ClinicalTrials.​gov (NCT02796001). Informed consent was obtained 
from all study participants. Data were collected and processed at the University of Virginia. Sample 
collection times were defined by established kinetics of memory effector T helper cell responses 
(Muehling et  al., 2020; Muehling et  al., 2018). Cells were stained with antibodies that target 
markers of naïve, memory and helper T cells (CCR6, ICOS, CXCR3, CD27, CCR5, TBET, CD45RA, 
CD45R0, CD95, CXCR5, TCF1, CCR7), and activation and proliferation (CD25, CD38, CD127, 
Ki-67, PD-1). The marker panel also included up to three MHCII/peptide tetramers to identify virus-
specific CD4+ T cells (Muehling et al., 2016). Data were collected using a 3-laser Aurora spectral 
flow cytometry instrument. Additional methodological details can be found on this article’s online 
supplement.

Data pre-processing
Before testing and evaluating the modular analysis workflow for rare cells, data preprocessing and 
QC of the data was done on all samples for all timepoints, which included spectral unmixing with 
autofluorescence subtraction, spill-over correction, and applying scales transformation. An arcsinh 
transformation was applied to the dataset with each channel having a tailored cofactor based on 
the instrument used to acquire the data as well as to stabilize variance near zero. Manual gating for 
clean-up of the data was done by an expert to exclude debris, doublets, and dead cells. As helper T 
cells were of interest for this RV study, the data analyzed was manually gated for CD3+ CD4+ T cells.

https://doi.org/10.7554/eLife.64653
https://www.clinicaltrials.gov/
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T-REX algorithm
A modular data analysis workflow including UMAP, KNN, and MEM was developed in R, and scripts 
for analysis of data in this article are available online (https://​github.​com/​cytolab/​T-​REX; Barone 
and Irish, 2021a; copy archived at swh:1:rev:5e7ae8d512b36bef58b9e0df2b36a6775e82f734). The 
dimensionality tool used included UMAP. The default parameter settings for UMAP as found in the 
uwot package in R were used. Since UMAP analyses were specific to a given individual and pair 
of samples, UMAP axes were labeled to indicate the individual and comparison being made, as in 
‘UMAP_RV001_07,’ which indicated a comparison of day 0 and day 7 for individual RV001. The KNN 
search from the fast nearest neighbors (FNN) package was used to find the nearest neighbors for a 
given cell. For this project, a KNN search was done for every cell using the low-dimensional projection 
of the data as an input for the neighborhood search. The value for k, or the number of nearest neigh-
bors, was determined by an optimization of tetramer enrichment within a neighborhood. Percent 
change per cell is then calculated based on the abundance of cells from the two samples in the KNN 
region. For regions expanding or contracting significantly (≤5 % and ≥95 % change), DBSCAN is used 
to cluster the cells and then MEM is used to quantitatively describe the phenotype.

MEM analysis of enriched features
Marker Enrichment Modeling from the MEM package (https://​github.​com/​cytolab/​mem; Barone 
et al., 2021b; copy archived at swh:1:rev:fc72a290c706c1268678b6300007eb59183af2f9) was used 
to characterize feature enrichment in KNN region around each cell. MEM normally requires a compar-
ison of a population against a reference control, such as a common reference sample (Diggins et al., 
2017), all other cells (Diggins et al., 2018; Leelatian et al., 2020), or induced pluripotent stem cells. 
Here, a statistical reference point intended as a statistical null hypothesis was used as the MEM refer-
ence. For this statistical null MEM reference, the magnitude was zero and the IQR was the median IQR 
of all features chosen for the MEM analysis. Values were mapped from 0 enrichment to a maximum 
of +10 relative enrichment. The contribution of IQR was zeroed out for populations with a magnitude 
of 0.

A putative FACS gating strategy based on T-REX results
In order to assess the applicability of the T-REX algorithm in the development of follow-up FACS 
experiments, a sorting strategy was devised based on the results of T-REX and then tested computa-
tionally using Datasets 1 and 2 (Figure 2—figure supplement 3, Figure 6—figure supplement 2). 
To accomplish this, aggregate MEM scores of T-REX hotspots of ≥95 % expansion were generated 
for each dataset. Cells were sequentially gated in the order of decreasing MEM feature enrichment, 
ending with a maximum set of 12 markers, reflecting common capabilities for cell sorting. In Dataset 1, 
the enrichment of tetramer+ cells was assessed in the populations resulting from putative sort gates, 
as compared with the total CD4+ T cell population. In Dataset 2, the enrichment of CD4+ T cells was 
assessed within the total cell population after similar gating using putative sort gates designed algo-
rithmically based on the results of T-REX and MEM.

Data availability and transparent analysis scripts
Datasets analyzed in this article are available online, including at FlowRepository (Spidlen et al., 2012). 
COVID-19 Dataset 2 (Rodriguez et al., 2020) (https://​ki.​app.​box.​com/​s/​sby0​jesy​u23a​65cb​gv51​vpbz​
qjdmipr1), melanoma Dataset 3 (Greenplate et al., 2016b) (https://​flowrepository.​org/​id/​FR-​FCM-​
ZYDG), and AML Dataset 4 (Ferrell et al., 2016) (https://​flowrepository.​org/​id/​FR-​FCM-​ZZMC) were 
described and shared online in the associated manuscripts. Rhinovirus Dataset 1 is a newly gener-
ated dataset created at the University of Virginia available on FlowRepository (https://​flowreposi-
tory.​org/​id/​FR-​FCM-​Z2VX). Transparent analysis scripts for all four datasets and all presented results 
are publicly available on the CytoLab GitHub page for T-REX (https://​github.​com/​cytolab/​T-​REX) and 
include open-source code and commented Rmarkdown analysis walkthroughs.

Discussion
A signature feature of the immune system is the ability of rare cells to respond to a stimulus by 
activating and proliferating, leading to rapid expansion of highly specialized cells that may share 
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both a distinct phenotype and a clonal origin. Here, we report the design of a new algorithm that 
can identify and reliably phenotype biologically relevant cell types, including very rare cells, which 
respond in human disease. The T-REX algorithm was designed to capture phenotypic regions where 
significant change was occurring between a pair of samples from one individual. The fact that T-REX 
was able to identify the phenotype of cells whose regions were greatly enriched for virus-specific T 
cells in rhinovirus Dataset 1 highlighted its ability to pinpoint rare cells responding to infection and 
closely matches what would be expected based on a current understanding of rhinovirus immunology 
(Muehling et  al., 2020; Muehling et  al., 2018). Specifically, after rhinovirus challenge, expanded 
regions displayed molecular signatures consistent with activated memory (CD45RO + CD38+) and 
tissue trafficking (e.g., CCR5 enrichment in the MEM labels) that aligned with our previous findings for 
rhinovirus-specific CD4+ T cells using manual gating methods and a limited marker panel (Muehling 
et al., 2020; Wisniewski et al., 2018). The algorithm also reliably identified memory phenotypes 
of cells responding to rhinovirus infection, thereby revealing its potential to track the evolution of 
memory responses in vivo, in addition to defining candidate signatures that might be probed in func-
tional assays. Although comparative phenotyping across time was beyond the scope of this study, it 
will be of high interest in the future to determine whether the vector of change in specific subsets 
correlates with additional aspects of disease or complicating host factors, such as allergy and asthma.

The T-REX algorithm also revealed potential new research directions, as there were cells that one 
might predict would be virus-specific, based on the T-REX enrichment analysis, but which were not 
enriched for the specific tetramers available here (e.g., Figure 3, RV007). Genetic analysis for the 
clonal origin of cells in such regions might help to determine whether these cells correspond to a 
clonal response for which a tetramer was not available, or else another type of CD4+ T cell response 
that may or may not be related to rhinovirus infection, such as a ‘bystander’ response. Additionally, it 
will be important to test whether this type of finding holds true for other well-studied viruses for which 
tetramers are available, such as influenza (Turner et al., 2020), and whether these findings extend to 
MHC class I tetramers and CD8 T cells. It was also striking that in the comparisons of day 7 to either 
day 0 (Figures 2 and 3) or day 28 (Figure 5), only the expanding cells (red) were in regions that were 
also tetramer hotspots. However, despite the focus on expansion in the T-REX acronym, contracting 
cells will likely also be of biological significance in different disease settings (as with AML) or poten-
tially at different timepoints during the course of an infection, for example, as a result of egress from 
the circulation in the acute phase, or else transitions in memory and tissue-homing subsets that occur 
later. This aspect would also be expected to translate to different disease settings such as AML.

Extending the use of T-REX algorithm beyond rhinovirus further highlighted its ability to identify 
responding cells in a consistent manner across different subjects and different disease settings. 
Indeed, it is notable that regardless of the disease context the patient served as an effective 
baseline for comparison and allowed T-REX to find phenotypically similar cells in individuals with 
different starting immune profiles. A central question in systems immune monitoring is to place 
newly emerging diseases into the context of other well-studied diseases and immune responses. In 
working to compare COVID-19 and rhinovirus, it became clear that a summary of change indicating 
both the direction and magnitude of shifts was needed (Figure 6). This framework represents a 
way to summarize both broad populations of immune cells, like all CD45+ leukocytes, and key cell 
subpopulations, like CD4+ T cells. The striking changes observed in patients with moderate and 
severe COVID-19 were far beyond the subtle changes observed in individuals with rhinovirus and 
more closely matched the immune reprogramming observed in melanoma patients receiving check-
point inhibitor therapy (Figure 6). A primary finding of T-REX analysis of Dataset 2 from the blood 
of COVID-19 patients was that some patients experienced very large changes in the blood, and that 
these changes were typically associated with more decreases than increases (Figure 6). This finding 
closely matches reported findings from others who observed a systematic reprogramming in many 
immune cell populations in severe COVID-19 patients (Mathew et al., 2020). Also observed were 
T cell subsets with enrichment of CD38, PD-1, and CD95, as has also been reported. While disease 
severity is not available for individual patients from Dataset 2, it is known that all these cases were 
at least moderate or severe (Rodriguez et al., 2020). It will be of interest to test the hypothesis 
that the more severe cases will be one of the two groups, either the patients with very little change 
and just expansion of cells, or those with more marked change and a general decrease of cells 
(Figure 6).

https://doi.org/10.7554/eLife.64653
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Notably, CD147/Basigin was highly expressed on many cells that changed during infection and was 
observed to change greatly on some populations over time. CD147 has been proposed in pre-prints 
as both a binding partner for SARS-CoV-2 spike protein and a potential mechanism of cellular entry, 
although evidence is needed to support this controversial hypothesis (Shilts and Wright, 2020). In 
the study of Dataset 2, the authors noted that immune responses were dominated by cells expressing 
CD38 and CD147 (Rodriguez et  al., 2020). In the T-REX analysis of the same Dataset 2, for the 
cells that were changing greatly, CD147 was sometimes present on cells from day 0 that decreased 
greatly and was lower or absent on cells that emerged only at later times (Figure 6). An example of 
this was seen in cells from patient COV40, for which the authors noted CD147 expression on effector 
subsets at 1 week and onwards. The cells pinpointed by T-REX as emerging at day 6 included B cells 
that expressed CD147 (e.g., CX3CR1+8 CD9+8 CD29+8 CD147+5 IgD+3 CD99+3 CD33+1 CD11c+1 HLA-
DR+1 CD24+1, Supplementary file 3), but the level of enrichment was lower than on myeloid cells 
from day 0 that decreased over time (e.g., CD147+8 CD29+6 CD55+5 CD38+5 CD99+4 CD64+3 CD62L+2 
CD45+1 CD33+1 CD14+1, Supplementary file 3). This pattern of decreased enrichment of CD147 on 
cells emerging after day 0 was seen on other patients (Supplementary file 3) and is consistent with 
multiple explanations. Overall, there was a strong downward trend in many of the markers and cell 
subsets in COVID-19 patients, suggesting either selection against cells expressing a high level of 
proteins, downregulation of expression of key surface markers like CD147, expansion of immature 
or abnormal cells, or extreme trafficking of cells into tissues. These potential outcomes cannot be 
distinguished from each other with the analysis here. The utility of the T-REX algorithm is primarily in 
generating these hypotheses automatically and in pinpointing cells with extreme behavior within the 
context of the patient as their own baseline. Given the large amounts of change (Figure 6) and the 
generally lower numbers of T cell subsets observed in COVID-19 than in healthy individuals (Supple-
mentary file 3), it may be the case that therapeutic stabilization of the immune system will be needed 
before virus-specific T cells will be identifiable with the T-REX method. It will be especially interesting 
to explore more mild cases of COVID-19 with this approach and determine whether the hotspots of 
change are truly virus-specific, analogous to the scenario with rhinovirus.

For the melanoma and AML cases presented here, the cohort sizes were not large enough to allow 
robust statistical comparison of patient response to degree or direction of change, although this 
information is available in the original studies (Ferrell et al., 2016). Of the AML patients, those with a 
high magnitude of change (Figure 6) were also those that had a high blast count and were complete 
responders to induction therapy, suggesting that the change represents the overall ‘reset’ of the 
immune system following chemotherapy. It will be of high interest to ask whether the identification of 
virus-specific T cells extends to populations of cells on checkpoint inhibitor therapy. The dynamics of 
regulatory cells may also be of interest, especially for autoimmunity, and it is possible, but not known, 
whether these cells will follow the same pattern as the CD4+ T cells in rhinovirus infection.

A major strength of the algorithm is that once cell regions of change are identified, the key features 
highlighted by T-REX and MEM can be used in lower parameter flow cytometry or imaging panels 
to provide further information, confirm findings, and physically isolate cells by FACS (Figure  2—
figure supplement 3). Thus, low parameter cytometry approaches may rely more on manual analysis 
methods and cell signatures that are determined a priori, and T-REX may provide a useful tool for 
narrowing in on such features using exploratory high-dimensional data. The computational approach 
here emphasizes unsupervised UMAP and KNN clustering and uses statistical cutoffs to guide the 
analysis. Further optimization of the algorithm could include a stability testing analysis where the 
stochastic components of the algorithm are repeated to determine whether clusters or phenotypes 
are stable (Leelatian et al., 2020; Melchiotti et al., 2017). Overall, the unsupervised approach aims 
to diminish investigator bias and reveal novel or unexpected cell types. While unsupervised analysis 
tools have impacted high-dimensional cytometry for at least a decade (Davis et al., 2013; Becher 
et al., 2014; Bendall et al., 2011; Diggins et al., 2015; Saeys et al., 2016), T-REX is designed to 
capture both very rare and very common cell types and place them into a common context of immune 
change.   The extremely rare T cells identified here were overlooked by other tools, likely due to these 
tools typically seeking clusters of cells representing at least 1% and generally more than 5% of the 
sample. This observation was expected and is consistent with past tests of algorithms on detection of 
rare subsets, which found that over half the algorithms tested returned poor F1 accuracy scores for 
detecting known populations that were 0.8% or 0.03% of the cells in a sample (Weber and Robinson, 
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2016). Notably, FlowSOM was a better performing algorithm in those examples. Here, FlowSOM did 
not effectively detect the rare 0.02% of virus specific cells in analyses of original features or dimen-
sionality reduction results (Figure 7). An aspect of data structure in this study is the phenotypic simi-
larity within the CD4+ T cell population, which means that the 0.02% of target cells is connected to a 
larger population and thus less apparent in the raw data. Thus, it is the threshold of change in T-REX 
removing the vast majority of cells (i.e., the cells that did not expand or contract ≥95%) that makes the 
virus-specific cells appear as separate clusters and greatly simplifies the task of distinguishing cluster 
groups.

T-REX was designed for use on a pair of data files, such as the pairs of timepoints tested here, but it 
can also be used for other paired comparisons. In the rhinovirus examples here, T-REX revealed virus-
specific cells based on change over time only. However, the dataset timepoints in the rhinovirus study 
were selected carefully using prior knowledge to best reveal antigen-specific T cells (i.e., it was known 
that 7 days would be a good timepoint). In other disease settings, one may not know ideal timepoints 
and so it is not necessarily the case that T-REX will always reveal antigen-specific cells. It may also 
be the case that the level of change is so great that it obscures mechanistically significant rare cell 
subsets. This is an interpretation of the COVID-19 infection examples presented here, wherein a high 
degree of overall change was apparent in the immune system and many cells are changing that are 
not antigen-specific T cell subsets. This could potentially be due to timepoint selection or the natural 
history of the disease. However, we would hypothesize that COVID-19 vaccine responses might be 
more specific and localized to key cell subsets and, if this is the case, that T-REX would pinpoint key 
cell populations responding to the vaccine. For studies involving multiple timepoint tests, when it is 
possible to run a large common UMAP on a pool of the samples (i.e., there are not batch effects), 
T-REX can be used to do systematic paired comparisons of every individual against the pool. Data 
from different panels should not be used as the paired samples must have all channels in common. 
T-REX is also very sensitive to batch effects, and issues like these need to be addressed before analysis, 
or samples need to be analyzed in a batch-specific manner. We expect that one advantage of using 
MEM labels to summarize the phenotype of T-REX populations is that MEM labels have been shown 
to allow quantitative comparison across batches, instruments, and data types (Diggins et al., 2017). 
T-REX performance may depend on the number of cells and the algorithm was designed for studies 
with  hundreds of thousands to millions of cells. Analyses with fewer than 1000 cells are unlikely to 
be productive, and analyses with fewer cells may require testing and adjusting k more than analyses 
with >100,000 cells. In testing subsamples, tetramer+ hotspots were still detected with 100,000 cells 
per sample (Figure 7—figure supplement 1). While equal subsampling is part of the algorithm of 
T-REX, subsampling tested here did not significantly impact the results. So while sampling and rarity 
of cells may impact the ability of T-REX to find subsets, the method was stable with far fewer cells 
(10%) than were originally planned as needed in the original study (Figure 7—figure supplement 1). 
The parameters that are chosen by the user are the k-value, the markers used to create the UMAP, the 
markers used for MEM, and the DBSCAN settings. Additional optimization of the k-value and cutoffs 
based on a formal statistical test is something that should be explored in further study of T-REX and 
related algorithms.

It is a central goal of systems immunology to map people with vastly contrasting immune system 
changes onto a common plot of change (as in Figure  6). The approach here goes beyond prior 
single measures of systematic change, such as Earth Mover’s Distance (Greenplate et  al., 2019; 
Orlova et al., 2016), by including both direction and magnitude of change in one view of an individ-
ual’s immune response. This improvement proved useful for comparing settings with great change in 
many cell types (COVID-19 infection, AML chemotherapy responders) to settings with rare cells that 
specifically expanded or contracted (rhinovirus infection, melanoma checkpoint inhibitor therapy). 
This sensitivity of T-REX for extremely rare cells allowed the algorithm to reveal virus-specific CD4+ T 
cells without prior knowledge of their phenotype. T-REX should now be tested further to determine 
whether cells identified in SARS-CoV-2 also share a clonal origin. In addition, it is likely that T-REX will 
be useful beyond immunology settings in paired comparisons of quantitative single cell data, such as 
discovery screening or paired analysis of tumor cells.
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Barone SM 2020 Rhinovirus data from: 
Unsupervised machine 
learning reveals key 
immune cell subsets in 
COVID-19, rhinovirus 
infection, and cancer 
therapy

https://​flowrepository.​
org/​id/​FR-​FCM-​Z2VX

FlowRepository, FR-FCM-
Z2VX

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Rodriguez L 2020 COVID-19 data 
from: Systems-Level 
Immunomonitoring from 
Acute to Recovery Phase 
of Severe COVID-19

https://​ki.​app.​box.​
com/​s/​sby0​jesy​
u23a​65cb​gv51​vpbz​
qjdmipr1

COVID-19_project 
Brodin lab accession, 
sby0jesyu23a65cbgv51vpbzqjdmipr1

Greenplate AR 2016 Melanoma data from: 
Mass Cytometry of 
Peripheral Blood from 
Melanoma Patients 
Receiving anti-PD-1

http://​
flowrepository.​org/​
id/​FR-​FCM-​ZYDG

FlowRepository, FR-FCM-ZYDG

Ferrell PB 2016 AML data from: High-
Dimensional Analysis of 
Acute Myeloid Leukemia 
Reveals Phenotypic 684 
Changes in Persistent 
Cells during Induction 
Therapy

http://​
flowrepository.​org/​
id/​FR-​FCM-​ZZMC

FlowRepository, FR-FCM-ZZMC
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