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The role of PTPRT in breast cancer was not comprehensively explored and well analyzed. Our study comprehensively
searched available databases to analyze the clinical role of PTPRT in breast cancer. We found PTPRT was an antioncogene
and could be used to distinguish different stages, age groups, molecular types, and grades for breast cancer. PTPRT might
be primary resistance biomarkers for taxane, anthracycline, and ixabepilone but not be acquired resistance biomarkers.
Higher PTPRT expression levels were associated with longer overall survival and recurrence-free survival. PTPRT was
negatively associated with Ki67 and CDK4/6 but positively associated with BCL-2. PTPRT might be associated with cell
cycle and microtubule, and tumor infiltration in B cell and macrophage cell. PTPRT could predict chemotherapy
effectiveness and prognosis for breast cancer patients. PTPRT might inhibit tumor growth via disrupting the microtubule

dynamics and cell cycle in breast cancer.

1. Introduction

PTPRT belongs to the type IIB RPTP subfamily, which con-
sisted of an extracellular domain (a meprin/A5/PTP u
domain, an Ig domain, and four fibronectin type III repeats),
a transmembrane domain, a juxtamembrane region, and two
phosphatase domains (D1 and D2) [1]. PTPRT plays in sup-
pressing tumor growth and cell adhesion in various cancers,
including colorectal cancer [2], hepatocellular carcinoma
[3], prostate cancer [4], lung squamous cell carcinoma [5],
esophageal squamous cell carcinoma [6], and glioma [7].
Previous review showed PTPRT as a tumor suppressor might
be involved in cell cycle and cell adhesion [1]. Five missense
mutations in the most commonly altered PTPRT were found
to reduce phosphatase activity, and expression of wild-type
but not a mutant PTPRT in human cancer cells inhibited cell
growth [8]. Zhang et al. showed deletion of the fibronectin
type III repeats (FNIII) of PTPRT result in defective cell-
cell aggregation, which suggest the inactivation of PTPRT
might lead to cancer progression by disrupting cell-cell adhe-
sion [9]. Available studies about the PTPRT were limited,
and about 66 studies were found in Pubmed. Few studies

were conducted about the PTPRT signaling pathway. Zhang
et al. identified signal transducer and activator of transcrip-
tion 3 (STAT3) as a substrate of PTPRT. They showed
PTPRT specifically dephosphorylated STAT3 at a tyrosine
at amino acid Y705 and overexpression of normal PTPRT
in colorectal cancer cells reduced the expression of STAT3
target genes [10]. Other studies identified miR-532-3p [3],
miR-218 [6], miR-215 [11], and miR-888 [12] might regulate
and mediate the expression of PTPRT. Schettini et al. used a
novel methodology to detect surface antigen to develop ADC
and CAR-T against breast cancer already and identified
PTPRT as a novel potential target for molecular Luminal A
or immunohistochemical HR+/HER2-negative BC [13]. In
order to analyze the clinical role of PTPRT in breast cancer,
we comprehensively searched available databases to summa-
rize the treatment predictive and prognostic values of
PTPRT.

2. Materials and Methods

No Institutional Review Board (IRB) approval was needed
for this study. Available databases based on TCGA and
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GEO data were searched using PTPRT and breast cancer.
Three databases based on TCGA data including GEPIA
(http://gepia.cancer-pku.cn/), UALCAN (http://ualcan.path
.uab.edu/analysis.html), and Linkedomics (http://www
Jinkedomics.org/login.php) were used to analyze the differ-
ences of PTPRT expression in different age groups, stages,
and molecular types, as well as the prognostic value of PTPRT
in breast cancer. Three databases based on GEO data includ-
ing bc-GenExMiner v4.3 (http://bcgenex.centregauducheau
fr/BC-GEM/GEM-requete.php), ROCPLOT (http://www
.rocplot.org/user/login), and KMPLOT (http://kmplot.com/)
were used to analyze the differences of PTPRT expression in
different age groups, stages, and molecular types, as well as
the predictive values of different drugs and the prognostic
value of PTPRT in breast cancer.

Three databases based on TCGA data about DNA
methylation including UALCAN (http://ualcan.path.uab
.edu/analysis.html), Wanderer (http://maplab.imppc.org/
wanderer/), and Methsurv (https://biit.cs.ut.ee/methsurv/)
were used to retrieve the CpG sites of PTPRT and their
prognostic roles. GEO datasets (https://www.ncbi.nlm.nih
.gov/gds/) were also searched to obtain the PTPRT expression
in different acquired resistance cell lines and the relationships
between PTPRT and ESRI, PGR, ERBB2, KI67. Other genes
that might be associated with PTPRT were explored using
Cytoscape based on available public databases.

The most correlated coexpressed genes were retrieved
based on linkedomics database (r > 0.4 or r < —0.4, p < 0.05).
These genes were then submitted to Gprofiler (https://biit.cs
.ut.ee/gprofiler/gost) for GO enrichment analysis and Kobas
(http://kobas.cbi.pku.edu.cn/anno_iden.php) for KEGG anal-
ysis. TIMER (https://cistrome.shinyapps.io/timer/) is a com-
prehensive resource for the systematical analysis of immune
infiltrates across diverse cancer types.

3. Results

3.1. The Expression of PTPRT in Breast Cancer. Using TCGA
data, the expression level of PTPRT in breast cancer tissue is
lower than that in adjacent normal breast tissue (median 2.24
vs. 4.41 TPM (transcript per million), p < 0.001). The expres-
sion level of PTPRT in stage 1 to 4 breast cancer tissues was
lower than that in adjacent normal breast tissue (stage 1 vs.
stage 2 vs. stage 3 vs. stage 4: 3.68 vs. 2.01 vs. 1.92 vs. 0.83).
The expression level of PTPRT decreased from stage 1 to
stage 4, and there were statistical significances between stage
1 and 4, stage 2 and 4 (p < 0.05). Interestingly, the expression
level of PTPRT increased with age from 1.80 TPM in patients
aged 20 to 40 years to 2.41 TPM in patients aged 61 to 80
years. Luminal A/B breast cancer patients have higher
PTPRT expression level than that in adjacent normal breast
cancer tissues (5.21 vs. 4.41, p<0.001), while HER2+
(median 0.16 vs. 4.41, p <0.001) and TNBC (median 0.09
vs. 441, p<0.001) patients have lower PTPRT expression
than that in adjacent normal breast cancer tissues (Figure 1).

Based on TCGA data, PTPRT was higher in pT1 breast
cancer patients (RNA-Seq by Expectation-Maximization
(RSEM), log2, median 9.46, IQR 6.42-11.02) than those in
pT2 (median 8.41, IQR 5.40-10.60) and pT4 (median 7.45,
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IQR 5.18-9.85), and similar to that in pT3 breast cancer
patients (median 8.92, IQR 5.58-10.46). However, there were
statistical significances in the PTPRT expression levels
between pathologic NO (median 2.30, IQR 0.27 9.03),
N1(median 2.43, IQR 0.36 11.31), N2 (median 1.80, IQR
0.34 8.98), and normal (median 4.41, IQR 2.38 7.70); no sig-
nificance was found between N3 (median 2.42, IQR 0.23
7.76) and normal (Figure 1). Based on GEO data, the expres-
sion level of PTPRT decreased with the increase of Scarff-
Bloom-Richardson (SBR) grade (SBR1 > SBR2 > SBR3, p <
0.001, 6810 patients). Those patients with lymph node
metastases were of lower PTPRT levels (p <0.0001, 7474
patients). The PTPRT expression levels in patients with dif-
ferent ages were similar to that in TCGA databases. The older
the patients, the higher the PTPRT expressions (7434
patients, 70 —97 >40—-70>21-40, p <0.05). Luminal A
breast cancer patients were of the highest level of PTPRT,
which was higher than that in normal-like breast cancer
(p < 0.05). HER2+ and basal-like breast cancer were of lower
PTPRT level than that in normal-like breast cancer, and
basal-like breast cancer was of the lowest PTPRT expression
level. There was no statistical significance between luminal B
and normal-like breast cancer (Figure 2).

3.2. The Promoter Methylation Level of PTPRT in Breast
Cancer. Based on TCGA data, the promoter methylation
level of PTPRT was higher in breast cancer tissues than those
in adjacent normal breast tissue (0.067 vs. 0.039, p=1.62E
—12). The promoter methylation level of PTPRT increase
from stage 1 to stage 4 (0.06 vs. 0.07 vs. 0.08 vs. 0.09); how-
ever, there was a statistical difference between stage 1 and 2
(p=0.01). Also, this increased with the age (21-40 vs. 41-60
vs. 61-80: 0.06 vs. 0.06 vs. 0.07); however, statistical differ-
ences were only found between patients age 21 and 40 years
old with 41-60, 61-80, or 81-100 years old. Only CpG site
cg23357198 could predict survival (high vs. low: HR = 2.38,
p =0.04) (Figure 3).

3.3. The Predictive Values of PTPRT in Breast Cancer
Treatment. Based on rocplot.plot, among those patients
who received neoadjuvant taxane (AUC =0.59, p=3.1e - 7),
anthracycline (AUC=0.60, p=1.le—11), ixabepilone
(AUC=0.61, p=0.04), and FAC (AUC=0.6, p=6.6e—3),
the PTPRT expression level was higher in no-responders than
those in responders. PTPRT might not predict the effective-
ness of aromatase inhibitor (AUC = 0.54, p = 0.33), trastu-
zumab (AUC=0.56, p=0.09), lapatinib (AUC=0.59,
p=013), FEC (AUC=0.51, p=044), and CMF
(AUC =0.52, p=0.37).

Among those patients who received adjuvant CMF
(AUC=0.6,p=0.09), FAC (AUC =0.53, p = 0.4), aromatase
inhibitor (AUC =0.61, p =0.21), trastuzumab (AUC = 0.50,
p=048), taxane (AUC=0.51, p=0.14), and FEC
(AUC=0.56, p=0.33), PTPRT might not predict the
recurrence-free survival of the breast cancer patients. A high
level of PTPRT might be associated with more survivors
among those who received adjuvant tamoxifen (AUC = 0.59,
p=7.1le—4), but fewer survivors in those who received
anthracycline (AUC = 0.56, p = 2.9¢ — 2) (Figure 4).
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FIGURE 1: The expression of PTPRT in breast cancer in TCGA. (a) The expression of PTPRT between tumor and normal breast cancer tissue.
(b) The expression of PTPRT in breast cancer across different molecular types. (c) The expression of PTPRT in breast cancer across different
age groups. (d) The expression of PTPRT in breast cancer across different stages. (e) The expression of PTPRT in breast cancer across
different tumor sizes. (f) The expression of PTPRT in breast cancer across different node statuses.
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FIGURE 2: The expression of PTPRT in breast cancer based on GEO data. (a) The expression of PTPRT in breast cancer across different
molecular types. (b) The expression of PTPRT in breast cancer across different age groups. (c) The expression of PTPRT in breast cancer
across different SBR groups. (d) The expression of PTPRT in breast cancer between different node statuses.

3.4. The Prognostic Values of PTPRT in Breast Cancer. KM
plot showed that high PTPRT expression levels were associ-
ated with longer survivals in terms of overall survival (HR
0.6, 95% CI 0.48 0.75, p = 5.1E — 6) and recurrence-free sur-

vival (HR 0.6, 95% CI 0.54 0.68, p < 1E — 16). This was con-
sistent with the prognostic analysis results from TCGA and
Breast Cancer Gene-Expression Miner v4.3 data-sets, which
also confirmed the survival benefits of high PTPRT. The
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F1GURE 3: The methylation expression of PTPRT in breast cancer based on TCGA data. (a) The methylation expression of PTPRT between
tumor and normal breast cancer tissue. (b) The methylation expression of PTPRT in breast cancer across different stage groups. (c) The
methylation expression of PTPRT in breast cancer across different age groups. (d) The relationship of PTPRT methylation levels and

overall survival (cg23357198).

prognostic values of PTPRT were consistent across different
molecular types of breast cancer.

3.5. The Expression of PTPRT between Acquired Drug-
Resistant and Parental Cell Lines. PTPRT might not be
acquired resistance biomarkers for tamoxifen (MCEF,
GSE26459, logFC 0.57, p=0.09; GSE67916, logFC = -0.20,
p=0.13), epirubicin (MCF7, GSE54326, logFC=-0.64,
p=0.25; SKBR3, GSE54326, logFC =1.27, p=0.36; MDA-
MB-231, GSE54326, logFC=0.31, p=0.65), trastuzumab
(BT474, GSE15043, logFC=-0.01, p=0.92; BT474,
GSE119397, logFC=0.007, p=0.95), T-DMI1 (BT474,
GSE100192, logFC=-0.002, p=0.98), lapatinib (BT474,

GSE16179, logFC=-0.496, p=0.70; SKBR3, GSE38376,
logFC=0.18, p=0.14; SKBR3, GSE52707, logFC=0.26,
p=0.03; BT474, GSE84896, logFC = 0.29, p = 0.001), pacli-
taxel (MDA-MB-231, GSE90564, logFC=-0.42, p=0.07;
MDA-MB-231, GSE12791, logFC=0.87, p=0.29) and
BMS-554417 (MCF, GSE18912, logFC =-0.024, p=0.79).
However, PTPRT might be an acquired resistance biomarker
for doxorubicin among MCEF?7 cell lines (MCF7, GSE76540,
logFC =1.12, p=0.03).

3.6. The Relationship between PTPRT and ER, PR, HER2,
Ki67. According to bc-GenExMiner v4.3, estrogen receptor
or progesterone receptor-positive (IHC) breast cancer
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F1GURE 4: The predictive values of PTPRT in breast cancer for different drugs. (a) The predictive values of PTPRT for anthracycline response
in the neoadjuvant setting. (b) The predictive values of PTPRT for taxane response in the neoadjuvant setting. (c) The predictive values of
PTPRT for ixabepilone response in the neoadjuvant setting. (d) The predictive values of PTPRT for FAC response in the neoadjuvant
setting. (e) The predictive values of PTPRT in RES for those who received tamoxifen in the adjuvant setting. (f) The predictive values of
PTPRT in RFS for those who received anthracycline in the adjuvant setting.

patients were with higher PTPRT levels, while HER2+ (IHC)
breast cancer patients were with lower PTPRT level. Accord-
ing to TCGA data, PTPRT was positively associated with
ESRI (R=0.5, p=3.9¢e-69), PGR (R=0.64, p=3.1e — 128);
however, PTPRT was negatively associated with ERBB2
(R=-0.09, p=0.004), KI67 (R=-0.26, p = le — 18). Mean-
while, PTPRT was positively associated with BCL-2
(R=0.54, p=1.6E - 83). Based on GEO datasets, estrogen
receptor alpha knockdown (GSE37473, logFC=0.06, p=
0.61) and HER2 siRNA (GSE71347, logFC = 0.22, p = 0.09)
did not influence the expression of PTPRT (Figure 5).

3.7. PTPRT Might Inhibit Tumor Growth via Disrupting the
Microtubule Dynamics and Cell Cycle. According to the
KEGG and GO enrichment analysis of the genes that were

associated with PTPRT (r>0.4 or r<-0.4, p <0.05), we
found PTPRT might be associated with cell cycle and
microtubule-based process. For biological process, PTPRT
might be associated with the mitotic cell cycle, microtubule-
based process, mitotic cell cycle process, cell cycle, cell divi-
sion, microtubule cytoskeleton organization, and cell cycle
process. For cellular component, PTPRT was associated with
the microtubule cytoskeleton, while for molecular function,
PTPRT was associated with microtubule motor activity,
protein binding, and motor activity (Figure 6).

Among the genes in microtubule motor activity (biolog-
ical process, GO:0007017, microtubule-based process;
molecular function, GO:0003777, microtubule motor
activity; cellular component, GO:0015630, microtubule cyto-
skeleton), 14 genes (BBS4, DNAHS5, DNAH7, DYNC2H]1,
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FIGURE 5: The relationship between PTPRT and ER, PR, HER2, Ki67, and BCL-2. (a) The expression of PTPRT between ER+ and ER- breast
cancer. (b) The expression of PTPRT between PR+ and PR- breast cancer. (c) The expression of PTPRT between HER2+ and HER2- breast
cancer. (d) The relationship between PTPRT and ER. (e) The relationship between PTPRT and PR. (f) The relationship between PTPRT and
HER2. (g) The relationship between PTPRT and Ki67. (h) The relationship between PTPRT and BCL-2. (i) The genes that might be

associated with PTPRT.

DYNLRB2, KIF13B, KIF16B, KIF18B, KIF20A, KIF2C,
KIF4A, KIF5C, KIFC1, WDR78) were in all these three cate-
gories. All these genes were significantly associated with
PTPRT. Among them, BBS4 (R=0.54, p <0.001), DNAH5
(R=0.45, p<0.001), DNAH7 (R=0.54, p<0.001),
DYNC2H1 (R=0.55, p<0.001), DYNLRB2 (R=0.46,
p <0.001), KIF13B (R=0.55, p<0.001), KIF16B (R=0.5,
p<0.001), KIF5C (R=0.5, p<0.001), and WDR78
(R=0.44, p <0.001) were positively associated with PTPRT,
while KIF18B (R=-0.3, p<0.001), KIF20A (R=-0.3,
p <0.001), KIF2C (R=-0.41, p <0.001), KIF4A (R=-0.3,
p<0.001), and KIFC1 (R=-0.37, p=p < 0.001) were nega-
tively associated with PTPRT (Figure 7).

Further, we analyzed the relationships between PTPRT
and CDK4/6, and PTPRT was negatively associated with
CDK4 (r=-0.34, p<0.001), CDK6 (r=-0.25, p<0.001),
and MYC (r =-0.16, p < 0.001).

3.8. PTPRT in Tumor-Infiltrating Immune Cells. PTPRT was
positively associated with CD8+ T cell (r = 0.18), CD4+ T cell
(r=0.25), Neutrophil cell (r = 0.44), stem cell (r =0.47), and
M2 macrophage cell (r=0.30) infiltration but negatively
associated with B cell (r = —0.31), DC cell (r = —0.33), NK cell
(r=-0.18), monocyte cell (r=-022), M0 macrophage cell
(r=-0.21), and M1 macrophage cell (r =—0.35) (Figure 8).
High PTPRT independently predicts better outcome

(HR =0.91, 95% CI0.86 0.97, p = 0.002) in breast cancer cor-
rected for patient age, stage, and TIICs (Table 1).

4. Discussion

PTPRT is an antioncogene and plays important roles in var-
ious cancers, including colorectal cancer [2], hepatocellular
carcinoma [3], prostate cancer [4], lung squamous cell carci-
noma [5], and glioma [7]. Several studies showed overex-
pressed PTPRT might inhibit tumor cell growth acting as a
putative tumor suppressor in cancer cell culture [2-5, 7, 8].
Animal studies showed PTPRT knockout increases the size
of mouse colon tumors in the Apcmin+/- genetic back-
ground, suggesting that inactivation of PTPRT promotes
tumor progression [14] Our study analyzed the role of
PTPRT in breast cancer, and we found the PTPRT mRNA
level could be biomarkers for different stages, age groups,
molecular types, and grades for breast cancer, as well as prog-
nostic biomarkers for breast cancer. Based on our analysis, it
is obvious that a larger tumor was associated with a lower
PTPRT expression level. Meanwhile, breast tumor with high
PTPRT was associated with low proliferation rate (measured
by Ki67) and high apoptotic rates (measured by BCL-2). All
these data suggest PTPRT might inhibit tumor growth in
breast cancer as a tumor suppressor. The signal transducer
and activator of transcription 3 (STAT3) protein is a major
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transcription factor involved in many cellular processes, such
as cell growth and proliferation, differentiation, migration,
and cell death or cell apoptosis [15]. Plenty of evidence sug-
gested PTPRT might negatively regulate STAT3 activation
by dephosphorylation of the tyrosine residue [15-18].
STAT3 may be activated by loss-of-function of negative reg-
ulators of STATS3, including by promoter hypermethylation
of PTPRT [17]. This was confirmed in breast cancer, and
PTPRT was negatively associated with STAT3, while the pro-
moter methylation level of PTPRT was positively associated
with STAT3 based on TCGA data.

PTPRT might predict the effectiveness of primary resis-
tance biomarkers for taxane, anthracycline, and ixabepilone,
which all displayed better effectiveness in breast cancer dis-
ease control [19-21], but not be acquired resistance bio-
markers. Taxane were potent cytotoxic microtubule-
stabilizing agents, and they exert their action through induc-
tion of apoptosis through phosphorylation of bcl-2 and inhi-
bition of cell proliferation [22], as well as selectively
disrupting the microtubule dynamics, inducing mitotic arrest
that leads to cell death [23]. Anthracyclines, which belong to
cell cycle nonspecific agents, are a class of potent and widely
used cytotoxic drugs, derived from antibiotics that inhibit
DNA and RNA synthesis by intercalating between base pairs
of the DNA/RNA strand [24]. Ixabepilone bind to the f3-
tubulin subunit of the «, $ dimer of microtubules, inducing
microtubule polymerization, stabilization, and formation of
abnormal mitotic spindles, which in turn cause G2/M arrest
and apoptosis [25, 26]. The cell signaling pathways regulated
by PTPRT largely remain to be elucidated. Based on our GO
and KEGG analysis, we could find PTPRT might be associ-
ated with the cell cycle and microtubule-based process. It
was reported that microtubules are cytoskeletal structures

that play a pivotal role in cell division, locomotion, and intra-
cellular transport [27]. During mitosis, microtubules, which
consist of a- and S-tubulin, represent a major structural
component of the spindle apparatus, which is required for
the separation of sister chromatids [28]. Our analysis indi-
cated that PTPRT was significantly associated with several
genes that were involved in microtubule motor activity. This
might explain why PTPRT could be a primary resistance bio-
marker for taxane, anthracycline, and ixabepilone.

Acquired drug resistance to chemotherapy and targeted
therapy treatment is unavoidable, creating a clinically chal-
lenging problem, which represents a major challenge in for
various types of cancers [29, 30]. Acquired resistance
develops after a significant initial response over the course
of several months [31]. Hammerlindl et al. [31] proposed
that treatment will initially facilitate cellular reprogram-
ming towards the slow-cycling drug-tolerant phenotype
and continuous drug exposure will eventually lead to reac-
tivation of transcriptional activity and regain of prolifera-
tive capacity. These will further stabilize their drug-
tolerant transcriptional profile to become permanent drug
resistant. According to their theory, PTPRT stays stable
during the acquired resistance process, which means the
expression of PTPRT did not change during the long drug
exposure. So PTPRT might be a good primary resistance
biomarker for taxane, anthracycline, and ixabepilone with-
out affecting by the drugs.

Based on our data, although PTPRT was coexpressed
with ESR1 and ERBB2, the status of ESR1 and ERBB2 did
not affect the expression of PTPRT. Whether PTPRT affects
the expression of ESR1 and ERBB2 was unclear. Based on
our study, higher PTPRT was associated with longer survival
in different molecular types based on KMplot data, and this
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TaBLE 1: Multivariable Cox proportional hazard model for PTPRT
in breast cancer.

Coef HR 915((3,2— gi:f)pcei_ p value
Age 0034 1034  1.019 105  <0.0001
g‘;‘jer’ 0.154 1167  0.159 8.561 0.879
Race: Black -04  0.67 0.196 2297 0.524
Race: White -0.58  0.56 0.173 1.812 0.333
Stage 2 0479 1615  0.848 3.075 0.145
Stage 3 1307 3.693  1.903 7.167  <0.0001
Stage 4 258 13201  5.845 29.817  <0.0001
Purity 0264 1302  0.448 3.788 0.628
B_cell 1393 0248 0.002 28446  0.565
CD8_Teell -1.735 0.176  0.012 2571 0.204
CD4_Teell 1.062 2891  0.053 156739 0.602
Macrophage 3.336 28.094  1.591 496.112  0.023
Neutrophil ~ 1.629 5.1 0.018 1441713 0572
Dendritic  -0.735 0.48 0.055 42 0.507
PTPRT 20.092 0912 0.86 0.968 0.002

was confirmed after adjusting several clinical factors based on
TCGA data.

Our study comprehensively analyzed the role of PTPRT
in breast cancer. In our study, not only TCGA but also
GEO data were included to explore the role of PTPRT in
breast cancer. We found PTPRT might predict the effective-
ness of taxane, anthracycline, ixabepilone, and the prognostic
values. We confirmed that PTPRT might inhibit tumor
growth in breast cancer, which might be due to microtubule
dynamics. However, our study still has its own limitations:
first, all of our analyses were based on RNA sequence data.
Our study was based on RNA sequence, whether q-pcr or
IHC results still have the predictive values for the effective-
ness of taxane, anthracycline, and ixabepilone and prognosis
or not. Second, population heterogeneity might exist in this
study across different datasets, although we used GEO data-
sets to validate the results in TCGA data. Third, PTPRT
might be an inhibitor of tumor growth via disrupting the
microtubule dynamics and cell cycle in breast cancer. This
lacked in vivo and in vitro experiments to validate our study
results. Future studies are needed about how PTPRT affects
the drug effectiveness and breast cancer prognosis, as well
as microtubule dynamics and cell cycle.

5. Conclusion

PTPRT expression was not affected by ER or HER2 expres-
sion, but PTPRT could distinguish Luminal A and TNBC,
HER2+ breast cancer. PTPRT could be used as biomarkers
to predict taxane, anthracycline, and ixabepilone effective-
ness and prognosis for breast cancer patients. PTPRT might
be an inhibitor of tumor growth via disrupting the microtu-
bule dynamics and cell cycle in breast cancer.
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