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Abstract

The role of the mammalian auditory olivocochlear efferent system in hearing has long been the 

subject of debate. Its ability to protect against damaging noise exposure is clear, but whether 

or not this is the primary function of a system that evolved in the absence of industrial noise 

remains controversial. Here we review the behavioral consequences of olivocochlear activation 

and diminished olivocochlear function. Attempts to demonstrate a role for hearing in noise have 

yielded conflicting results in both animal and human studies. A role in selective attention to 

sounds in the presence of distractors, or attention to visual stimuli in the presence of competing 

auditory stimuli, has been established in animal models, but again behavioral studies in humans 

remain equivocal. Auditory processing deficits occur in models of congenital olivocochlear 

dysfunction, but these deficits likely reflect abnormal central auditory development rather than 

direct effects of olivocochlear feedback. Additional proposed roles in age-related hearing loss, 

tinnitus, hyperacusis, and binaural or spatial hearing, are intriguing, but require additional study. 

These behavioral studies almost exclusively focus on medial olivocochlear effects, and many 

relied on lesioning techniques that can have unspecific effects. The consequences of lateral 

olivocochlear and of corticofugal pathway activation for perception remain unknown. As new tools 

for targeted manipulation of olivocochlear neurons emerge, there is potential for a transformation 

of our understanding of the role of the olivocochlear system in behavior across species.
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1. Introduction

1.1 OC system overview

Our ability to effectively perceive and interact with the environment integrates the activity of 

efferent pathways that can modulate the signals transmitted by the afferent sensory systems. 

In the auditory system, the efferent pathways form a neural network comprised of several 

feedback loops with numerous subcortical nuclei, including the thalamus, inferior colliculus, 

superior olivary complex, and cochlear nucleus (Malmierca and Ryugo, 2011). The auditory 

efferent pathways extend from auditory cortex to the peripheral sensory organ via the 

olivocochlear (OC) system (Figure 1). The OC system, originally described by Rasmussen 

(1946), is formed by two neuronal groups: (i) the medial olivocochlear neurons (MOC) and 

(ii) the lateral olivocochlear neurons (LOC) (Warr and Guinan, 1979).

Even though the precise anatomical location of these two groups varies depending on the 

species, in general MOC neurons can be found in the medial periolivary regions, while the 

LOCs originate in or around the lateral superior olive (Brown, 2011). The MOC synapses 

are organized along a tonotopic gradient in the periphery, with greater density in the 

middle regions of the cochlea (Guinan, 1996; Maison et al., 2003). In addition, most of 

the MOC neurons send collaterals that reach the CN of the same side as the target cochlea 

(Benson & Brown, 1990). MOC neurons primarily release acetylcholine, leading to the 

hyperpolarization of the OHCs and, consequently, a reduction of the gain of the cochlear 

amplifier (Blanchet et al. 1996; Dallos et al. 1997; Evans et al. 2000).

LOC neurons are on average smaller and more numerous than MOCs and are characterized 

by having fine, non-myelinated fibers (Guinan, 1996). As with the MOCs, they also project 

via the vestibular nerve, but synapse with the dendrites of type I cochlear afferents just 

below the inner hair cells (Guinan, 1996). These projections are tonotopically organized 

and almost all of them (95-100%) are ipsilateral (Schofield, 2010). LOC neurons express 

a greater diversity of neurotransmitters than MOCs. While the majority of LOC neurons 

are cholinergic, they have been observed to express other neurotransmitters within the 

same synaptic terminal including dopamine (DA), calcitonin gene-related peptide (CGRP), 

GABA and opioid peptides such as enkephalin (Ciuman, 2010; Eybalin, 1993; Reijntjes and 

Pyott, 2016; Wu et al. 2020). Furthermore, in mice there is some evidence of subgroups of 

dopaminergic LOC neurons that are not cholinergic (Darrow et al., 2006b).

The physiological effects of activating the OC system have been reviewed in detail in 

recent reviews (e.g., Terreros and Delano 2015; Guinan 2018; Lopez-Poveda 2018; Fuchs 

and Lauer 2018). In spite of the fact that the OC system is composed of both MOC and 

LOC neurons, most of the knowledge about OC physiology has been obtained by electrical 

stimulation of MOC fibers (e.g., Galambos 1956; Fex 1959; Gifford and Guinan 1988, 
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Cooper and Guinan, 2006; Elgueda et al., 2011). The electrical activation of MOC fibers 

at the floor of the fourth ventricle reduced the amplitude of auditory nerve responses 

(Galambos, 1956) and increases the magnitude of cochlear microphonics (CM) potentials 

(Fex, 1959; Elgueda et al., 2011). MOC neurons can be reflexively activated by ipsilateral 

and contralateral sounds (Buño, 1978; Liberman, 1989) through a brainstem circuit that 

includes auditory nerve, cochlear nucleus and MOC neurons (Thompson and Thompson 

1991; DeVenecia et al., 2005). In contrast to the middle ear muscle reflexes (stapedius and 

tensor tympani), the MOC reflex can be elicited by lower level sounds (< 60 dB), producing 

a suppression of cochlear responses that can be measured non-invasively with otoacoustic 

emissions or with electrocochleography (Liberman and Guinan, 1998; Aedo et al., 2015). 

One important caveat is that this reflex is highly variable among different individuals, 

ranging from large suppressions (up to 10 dB of effective attenuation) to no effect or 

even enhancements, although most studies show a limited range of otoacoustic suppression 

effects within only 1-2 dB in humans (Puria, 1996; Maison and Liberman, 2000). This 

may be due to the relatively weak innervation of outer hair cells by MOC neurons in 

humans compared to common laboratory species (Liberman and Liberman 2019). The inter-

individual variability has been correlated with levels of resistance to acoustic injury and to 

different capacities to suppress auditory distractors during selective attention (Maison and 

Liberman 2000; Bowen et al., 2020). Otoacoustic suppression effects may underestimate the 

true size of the effect. Some studies measuring MOC-induced CAP suppression in humans 

show much larger effects (Smith et al. 2017), whereas other studies have only shown small 

suppressive effects only after many hours of testing (Lichtenhan et al. 2016). The size of the 

observed effects likely depends on the specific testing parameters used (Verschooten et al. 

2017).

Much of what we know about how the OC system affects behavior comes from studies 

of its dysfunction. Conflicting results have sometimes been reported in behavioral studies 

performed in humans and animals. Here we focus on the behavioral effects of OC efferent 

activation, de-efferentation, and genetic manipulation. We include evoked potential studies 

in cases where little or no behavioral evidence is available, as these data are useful in 

making predictions about behavioral function.

2. Medial Olivocochlear effects

2.1 Detection and discrimination of sounds in quiet and noisy backgrounds

Physiological effects of OC bundle stimulation in animals suggest that the system 

should enhance detection and discrimination of sounds in noise and enhance frequency 

discrimination (Geisler 1974; Dolan and Nutall 1988; Winslow and Sachs 1987, 1988; 

Kawase and Liberman 1993; Kawase et al. 1993; Seluakumaran et al. 2008; Smalt et al. 

2014). An early study in guinea pigs showed that the electrical stimulation of MOC fibers at 

the floor of the fourth ventricle increases auditory nerve responses to clicks in background 

noise, a result that was later confirmed in cats (Nieder and Nieder 1970; Winslow and 

Sachs 1987; Kawase and Liberman, 1993). Tuning curves determined with forward and 

simultaneous masking of tone-evoked CAPs in the presence of a tonal masker show an 
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elevation of the ‘tip’ of the curve, with greater effects observed for the forward masking 

stimuli, after crossed OC bundle sectioning in guinea pigs (Bonfils et al., 1986).

Direct evidence that the olivocochlear system contributes to perception of sounds in noise, 

at least under certain conditions, comes primarily from animal studies in which the OC 

bundle is surgically lesioned. The lesions are typically made at the floor of the fourth 

ventricle along the midline, which leaves the ipsilateral OC projections intact. Lesions of 

the crossed OC bundle result in small and nonsignificant increases in tone in noise detection 

thresholds in cats under some testing conditions (Trahiotis and Elliott, 1970; Igarashi et al. 

1972). These results are surprising in light of the hypothesized role of the olivocochlear 

system in enhancing detection of transient signals in noise, as described above, and 

evidence in humans that stimulation of the MOC system with contralateral noise shifts both 

tone-in-noise detection thresholds (Micheyl and Collet 1995). Several animal studies have 

reported diminished frequency discrimination for pure tones or vowel formats presented 

in quiet or noisy backgrounds in subjects with OC bundle lesions (Capps and Ades 1968; 

Dewson 1968; Hienz et al. 1998), whereas other studies have not (Igarashi 1979a). Intensity 

discrimination does not appear to be diminished with OC bundle lesions (Igarashi 1979b), 

despite evidence in humans that the OC system affects intensity discrimination (Micheyl et 

al. 1997; Roverud and Strickland 2015). Together, these results in different animal models 

and humans suggest that the OC system is relevant for detection and discrimination of 

sounds in noisy environments. The major caveats to all these studies are, unsurprisingly, the 

potential for non-specific effects of lesions, overly large lesions affecting other pathways, 

or incomplete lesions. Small sample sizes and variability in performance across subjects 

are also characteristic of these studies. Nevertheless, with the emergence of more refined 

neurostimulation and silencing tools that can, in theory, specifically target OC neurons, the 

discrepancies in the role of the OC system in sound discrimination may be resolved.

Psychoacoustic measurements of sound detection and discrimination performed in mouse 

strains with genetic alterations affecting the olivocochlear system have primarily focused on 

mouse models of MOC-induced outer hair cell inhibition via alpha-9 nicotinic acetylcholine 

receptor subunit deletion (alpha9-knockout) or enhancement (alpha9 knockin) (Elgoyhen 

and Katz 2012). Alpha9-knockouts show normal detection of tones in quiet and noise and 

normal intensity discrimination in quiet and noise when tested with an operant conditioning 

task (Prosen et al. 2000; May et al. 2002). Alpha9-knockout mice also show abnormal 

temporal processing and responses to tones in quiet when tested using acoustic startle-based 

prepulse inhibition measures, whereas alpha9-knockin mice with a point mutation in the 

alpha-9 receptor that enhances outer hair cell inhibition show enhanced prepulse inhibition 

by tones in quiet backgrounds (Lauer and May 2011; Luebke and Allen 2017). Interestingly, 

neither mutant model shows abnormal prepulse inhibition to tones in noise background, 

although alpha-CGRP knockout mice do show deficits in this behavior, possibly due to LOC 

dysfunction (Luebke and Allen 2017).

It must be recognized that the central auditory pathways in the alpha-9 mutant strains, and 

probably the CGRP mutants, are abnormally developed. Thus, it is impossible to parse 

out the effects of abnormal organization of central circuits from the specific effects of OC 

activity in these models. In addition, LOC synapses show some evidence of disorganization 
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in alpha9 knockout mice (Vetter et al. 1999). Models with conditionally expressed gene 

mutations or optogenetic activation or silencing of OC neurons offer great potential for 

teasing out the specific contributions of OC activity to sound in noise perception and 

behaviors that are affected by sound, but such studies have not yet been reported in the 

literature.

It has proven difficult to establish a clear and consistent correlation between OC activity and 

speech perception or amplitude modulation detection in human listeners (Giraud et al. 1997; 

Wagner et al. 2008; deBoer et al. 2012, Guinan 2014; Mishra and Lutman, 2014; Marrufo-

Perez et al. 2018; Wojtczak et al. 2019). This may be due to the small (~1-2 dB) observable 

effects of contralateral noise suppression of OAEs, which remain the primary means of 

inferring MOC activation strength in humans. Other contributing factors may be related 

to task characteristics, other regions of the auditory system compensating for abnormal 

OC activity, that the OC system itself demonstrates experience-dependent plasticity that 

obscures the emergence of clear correlations between behavioral performance and indirect 

physiological measurements, or that redundant mechanisms in the central nervous system 

exist for maintaining acute performance in traditional psychoacoustic tasks (i.e., deBoer 

and Thornton 2008; Mishra and Lutman, 2014; Wojtczak 2014; Verschooten et al. 2017; 

Mertes et al. 2019). Importantly, these tasks may be affected by mechanisms that include 

descending projections from the auditory cortex, which in turn can modulate the OC reflex 

magnitude (Dragicevic et al., 2015; Aedo et al., 2016).

Some additional reasons that may explain the diversity of results in speech perception in 

noise and auditory efferent function in human listeners are: (i) there is still no consensus 

about a paradigm for specifically stimulating olivocochlear neurons with contralateral or 

ipsilateral sounds in humans (Boothalingam et al., 2018); (ii) it is well known that the 

olivocochlear reflex is highly variable among individuals, suggesting that for a group of 

listeners it may be important for improving speech recognition in noise, while for others 

it may add no further aid; (iii) studying OC-mediated perception only in adults misses 

developmental effects such as development of listening in noise during childhood (Mishra 

2020); (iv) OC function is associated with the slope of the psychometric function for speech 

recognition in noise, and most studies only glimpse behavior at one or two signal-to-noise 

ratios (Mertes et al., 2018). In summary, the role of OC activation in noise in humans is still 

debated. Standardized protocols to study the OC reflex in humans among different research 

groups are needed.

2.2 Selective attention

The biological filtering of sensory distractors is one of the proposed mechanisms for 

selective attention. The neural circuits comprising top-down networks are essential to 

accomplish this function. In line with this, the circuitry of the auditory efferent system 

allows the brain to filter the most peripheral auditory responses through OC neurons. A 

seminal work by Hernandez-Peon proposed that corticofugal pathways of the auditory 

system can suppress neural responses to irrelevant auditory stimuli when animals attend to 

visual or olfactory stimuli (Hernandez-Peon 1956). Later, in the 1970’s, Oatman implanted 

cats at the round window of the cochlea, showing that during attention to visual stimuli there 
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is a reduction in amplitude and increase in latency of the N1 component of auditory nerve 

compound action potentials (CAP) to unattended clicks and tones (Oatman 1971; Oatman 

1976). A similar experiment performed in cats showed evidence of increased susceptibility 

to auditory distractors during a visual task in subjects with OC bundle lesions (Igarashi et 

al., 1974).

Experiments also showed suppression of the auditory frequency following response during 

a visual task, particularly in the middle frequency range, as well as enhancement of the 

theta component of cortically-evoked EEGs (Oatman and Anderson 1980; Oatman 1982). 

These early works inspired new experiments with a similar research question, but with faster 

computing and better temporal resolution performed in chinchillas (Delano et al., 2007). In 

this study, chinchillas were trained in a visual selective attention task with clicks and tones 

as auditory distractors, while simultaneously CAP and CM responses were recorded. Similar 

to the Oatman studies CAP amplitudes were reduced during visual selective attention, 

while CM amplitude was increased. These effects in CAP and CM are analogous to 

the physiological experiments using electrical stimulation of MOC fibers performed by 

Galambos (1956) and Fex (1959) in anesthetized animals (section 1.1). A recent study 

provides further evidence for a role of the MOC neurons in selective attention in the 

presence of natural sounds. Individual variability in the magnitude of the MOC reflex at a 

range of frequencies between 1 and 8 kHz is an important factor for predicting behavioral 

performance during visual attention with chinchilla distress vocalizations as distractors 

(Bowen et al., 2020). An important caveat is that the MOC system aids in ignoring irrelevant 

auditory distractors but is not required to perform selective attention behaviors in the alpha-9 

KO mice, showing that other neural circuits can compensate for the lack of MOC function 

(Terreros et al., 2016). Together, these works show that the auditory efferent system aids 

in the biological filtering of ecological auditory distractors, and that individual variability 

in MOC reflex magnitude can predict the effect of auditory distractors in a visual selective 

attention task.

The effects of OC activation during selective attention have been more difficult to 

demonstrate in experiments performed in human subjects. The auditory nerve component 

of the auditory brainstem response is reduced when auditory distractors are presented during 

performance of a visual attention task (Lukas 1980). Selective attention to visual stimuli 

can likewise reduce otoacoustic emission amplitudes (Puel et al. 1988). However, these 

suppressive effects are not observed consistently across individuals or studies, and they 

may be specific to visual attention in the presence of auditory distractors (Froehlich et 

al. 1990 a, 1990b, 1993; Michie et al. 1996; Srinivasan et al. 2012). Experiments using 

otoacoustic emissions as physiological readouts of OC activity are subject to a number 

of methodological and interpretation issues; therefore, studies that carefully control for 

middle ear muscle reflex activation, ipsilateral and contralateral OC stimulation, tonic versus 

transient OC activation, effects of task difficulty, and other factors are needed to resolve 

these discrepancies (Guinan 2014). In addition, most of the human studies of OC effects 

on selective attention analyzed the amplitude of otoacoustic emissions to search for an 

auditory efferent effect. This strategy is limited, and new types of analysis are needed. 

For instance, Dragicevic et al., (2019) found that switching between auditory and visual 

attention modulates the amplitude and latency of low-frequency oscillations obtained from 
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the envelope of the DPOAE amplitude. Other studies have demonstrated OC effects on 

otoacoustic emission fine structure and phase, and a similar analysis could be applied in 

the context of selective attention (e.g., Abdala et al. 2009; Deeter et al. 2009; Wagner et al. 

2007; Zhao et al. 2015. In order to find corticofugal effects, new types of analyses, perhaps 

incorporating artificial intelligence, should be encouraged in future studies.

2.3 Spatial hearing

In animal models, MOC system dysfunction is accompanied by deficits in the spatial 

localization of sounds. For example, acute lesions of the OC bundle in cats, primarily 

affecting the MOC neurons, are accompanied by an increase in MAAs for sound localization 

in the vertical plane in background noise (May et al., 2004). Intriguingly, MAAs returned 

to normal after about a week of consecutive test sessions, indicating that compensatory 

pathways can make up for deficits associated with OC bundle lesions. In addition, alpha9-

knockout mice trained to identify the location of a sound azimuth showed impaired MAAs 

compared to WT mice (Clause et al., 2017). In ferrets, MOC lesions, but not LOC lesions, 

prevented learning of altered binaural cues in the horizontal plane in ear plugged ferrets 

(Irving et al., 2011). The reasons underlying the discrepancy between learning effects in the 

vertical and azimuthal sound localization experiments remain unclear.

Supplementing this loss of function evidence, studies in healthy humans have described a 

correlation between MOC feedback strength and the ability to discriminate sound location in 

noise. Listeners with stronger MOC reflexes showed lesser effects of noise on the capacity 

to accurately locating a sound in the vertical plane (Andeol et al., 2011). Application of 

an olivocochlear-inspired processing strategy can enhance inter-aural level differences and 

improve lateralization of virtual sound sources in cochlear implant users (Lopez-Poveda et 

al. 2019). On the other hand, other data indicate that the MOC function does not influence 

the location of sounds in the horizontal plane (Boothalingam et al., 2016). The reasons for 

these discrepancies between the vertical and horizontal planes are still unknown. Further 

studies are needed to examine these effects in detail and to determine how specific they are 

regarding the task or the animal species used.

3. LOC effects

The perceptual/behavioral effects of LOC efferent activation are completely unknown. At 

present, there is no assay that provides a specific measurement of LOC activity in an 

awake, behaving organism. We do not even have much of an understanding of how these 

neurons function at the cellular level because of the technical difficulty of performing 

recordings from unmyelinated axons. Because LOC neurons are unmyelinated, any effects 

on the perception of sounds presumably occur on a slow scale. Given the diverse array 

of neurotransmitters and neuroactive substances in LOC neurons (Eybalin, 1993; Reijntjes 

and Pyott, 2016; Vetter et al., 1991), perceptual effects could manifest as increased or 

decreased hearing sensitivity. We know that LOC neurons show plasticity in response to 

acoustic experience and hearing loss (Liberman et al. 2015; Wu et al. 2020; Kobrina et 

al. 2020). Thus, perceptual effects may prove difficult to detect if the system is constantly 

adapting to the acoustic environment. In fact, this may be one of the primary functions 
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of the system—to modulate the set point of auditory nerve fibers to adapt to changing 

acoustic environments and hearing loss. An additional hypothesis is that the LOC system is 

responsible for balancing activity from the two ears; however, studies of these effects are 

limited and contradictory (Darrow et al. 2006a; Larsen et al. 2010). Much remains to be 

discovered in this area.

4. Mixed MOC/LOC effects and indeterminate effects

4.1 Vestibular neurectomy/Meniere’s patients

Animal studies have shown that the OC bundle is routed from brainstem to the cochlea 

through the inferior vestibular nerve, crossing to the auditory nerve in the Oort anastomosis 

located in the internal ear canal (Liberman and Brown, 1986; Warren and Liberman, 1989). 

The Oort anastomosis has also been found in human temporal bones (Arnesen 1984), 

however it is important to highlight that a histological demonstration of the brainstem 

origin of olivocochlear neurons crossing through the human Oort anastomosis is still lacking 

(Labrousse et al., 2004; Tian et al., 2008).

In neurotology clinics, surgical sectioning of the vestibular nerve (vestibular neurectomy) is 

used in a group of selected cases with refractory vertigo, usually in patients with Meniere’s 

disease (Kitahara, 2018). Several researchers have taken advantage of this surgical technique 

which can be used as a clinical model of human auditory de-efferentation (Baguley et 

al., 2002). The study of patients with vestibular neurectomy provide functional evidence 

suggesting that the OC fibers run inside the Oort anastomosis, as the magnitude of 

contralateral noise suppression of otoacoustic emissions is reduced in the ear with vestibular 

neurectomy (Williams et al., 1994; Giraud et al., 1995, 1997).

Scharf et al. (1994, 1997) measured performance on an array of psychoacoustical tasks 

in Meniere’s patients before and after vestibular neurectomy. Performance on the majority 

of the psychoacoustic tests did not change after surgery. The only significant difference 

that they found was that after surgery individuals were unable to filter unattended tones 

in an auditory attention task. Regarding the other psychoacoustic tasks, there were no 

differences in the detection and discrimination of tonal signals, frequency selectivity, 

and loudness adaptation. A later study reported that vestibular neurectomy patients show 

minimal perceptual deficits in quiet, but variably showed abnormal loudness perception, 

masking, and hearing in noise after surgery (Zeng et al. 2000). Some patients show 

improved hearing and speech discrimination after surgery (Rosenberg et al. 1996). Caveats 

to these experiments include nonspecific or incomplete effects of surgery, nonspecific effects 

of the disease necessitating the surgery, and difficulty parsing out the effects of hearing loss 

from the effects of sectioning the OC bundle.

Another research group studied 14 patients (12 Meniere’s) with vestibular neurectomy 

and found that tinnitus loudness was reduced in nearly 80% after surgery (Kubo et al., 

1995). The amplitude ratio of the summating potential to the action potential of the 

electrocochleogram also increased somewhat, which they speculated could be an effect 

of OC section. Importantly, it is still not known whether Meniere’s disease itself affects 
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olivocochlear function, and it would be important to study a greater number of cases with 

vestibular neurectomy.

4.2 Suppression of self-vocalizations

The generation of self-vocalizations presents significant challenges to the auditory system. 

Among these are: (i) being able to differentiate the self-generated signal from exogenous 

stimuli, (ii) to protect the sensory system from potential acoustic trauma, and (iii) to 

maintain sensitivity to the external auditory signals. The ability to selectively attenuate the 

cochlear response to self-generated vocalizations contributes to addressing these issues. In 

this context, the OC system, along with the middle ear muscles, may be involved in both 

suppressing the cochlear response to self-vocalizations and in preventing desensitization 

to the other stimuli (Goldberg and Henson 1998). Chronic electrode recordings in bats 

have observed a decrease in cochlear gain during their vocalizations (Goldberg and Henson 

1998). Such an effect could be explained by the action of the MOC system. Furthermore, 

single unit recordings in awake, behaving, and vocalizing squirrel monkeys identified 

neuronal populations of the OC system capable of integrating audio-vocal signals (Hage 

et al. 2006). Within these populations, distinct patterns of activity between MOC and LOC 

neurons were identified. Audio-vocal MOC neurons appear to be involved in protecting the 

cochlea from overstimulation by own sounds, while audio-vocal LOC neurons are likely to 

be modulating the activity of cochlear nerve fibers (Hage et al. 2007). Thus, the LOC system 

may be participating in preserving sensitivity to exogenous acoustic signals.

5. Neurological, psychological, developmental, and sensory disorders

The knowledge about the involvement of the auditory efferent system in neuropsychiatric 

conditions is largely limited to the use of the available non-invasive tool for assessing MOC 

reflex function in humans: contralateral sounds with otoacoustic emissions. Again, most of 

what it is known is about MOC reflex function, while the involvement of LOC function and 

of the corticofugal projections in neuropsychiatric disorders is largely unknown.

5.1 Neurodevelopmental disorders, migraine, and traumatic brain injury

Olivocochlear effects on perception have not been investigated systematically in 

neurodivergent versus neurotypical listeners; however, a number of studies indicate that 

these effects might differ from average for people with a number of neurological 

and psychiatric conditions. The associations between efferent function and several 

neuropsychiatric and neurological disorders may be related to the diversity of 

neurotransmitters affecting the MOC and LOC systems (acetylcholine, dopamine, GABA, 

serotonin, neuropeptides) or to the influence of top-down networks on the cochlear function. 

A number of studies have shown weaker or abnormal asymmetry of MOC reflexes estimated 

as suppression of otoacoustic emissions by contralateral noise in children and adults with 

autism spectrum diagnoses and selective mutism (Collet et al. 1993; Khalfa et al. 2001; Bar-

Haim et al. 2004; Danesh and Kaf 2012; Muchnik et al. 2013; Wilson et al. 2017). A variety 

of auditory processing differences in listeners on the autism spectrum have been reported in 

the literature, including increased reactivity or intolerance to loud sounds, which is regarded 

as a form of hyperacusis (Danesh et al 2015; Stefanelli et al. 2020). In one study, medial 
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olivocochlear efferent suppression strength was positively correlated with hyperacusis scores 

in children with autism spectrum disorders, and those with the most severe autism spectrum 

disorders had the strongest MOC reflexes (Wilson et al. 2017). People with Williams 

Syndrome, a developmental disorder associated with hyperacusis, show hyperactive MOC 

reflexes, abnormal auditory evoked potentials, reduced loudness discomfort levels, abnormal 

acoustic reflexes, and evidence of high frequency hearing loss. In general, these studies 

suggest systemic auditory system dysregulation in which olivocochlear hyperfunction is one 

symptom (Gothelf et al. 2006; Attias et al. 2008).

Intriguingly, people with migraine headaches and vestibular migraines, which are often 

associated with decreased tolerance of loud sounds, sometimes show weakened contralateral 

suppression of otoacoustic emissions (Murdin et al. 2010; Joffley et al. 2016). Some 

studies have also shown reduced otoacoustic emission amplitudes in migraineurs without 

contralateral stimulation (Bolay et al. 2008; Hamed et al. 2012). This could indicate an 

underlying cochlear deficit or tonically activated MOC suppression, which would limit the 

ability to detect an effect of contralateral noise suppression on already reduced responses.

People with traumatic brain injury often present with a constellation of auditory symptoms, 

including hyperacusis, tinnitus, and difficulty listening in noise—despite having normal or 

near-normal audiograms. A higher prevalence of spontaneous otoacoustic emissions, larger 

sound-evoked otoacoustic emissions, and reduced contralateral suppression of otoacoustic 

emissions have been reported in these listeners (Ceranic et al. 1998; Attias et al. 2005). 

Nevertheless, the relationship between auditory symptoms and OC dysfunction in this 

population remains unclear. It is possible that the hearing in noise difficulties reported by 

many of these patients is due to reduced MOC strength.

Other disorders affecting the nervous system that have been associated with abnormal 

auditory function and probable OC dysfunction include multiple sclerosis, Parkinson’s 

disease—reduced contralateral suppression, increased or decreased otoacoustic emission 

amplitude without dopaminergic medication (Coelho et al 2007; Pisani et al. 2015; De 

Keyser et al. 2019), schizophrenia—lack of suppression asymmetry in left versus right 

ears (Veuillet et al. 2001), and type 2 diabetes (Jacobs et al. 2012), as well as in animal 

models of diabetes (Wu et al. 2010).; De Keyser et al. 2019). In all of these cases, it 

is unclear if the effects are specific to auditory brainstem-mediated reflexes or reflect 

systemic differences in peripheral auditory or brain function. That such a diverse assortment 

of diseases and disorders may affect OC system activity indicates that OC dysfunction 

may be more widespread in the population than previously realized. Associations between 

additional disorders linked to both auditory perceptual deficits and abnormal OC reflex 

strength will likely emerge over time and may provide a useful screen for brainstem lesions 

or dysfunction that is not revealed with brain imaging techniques or traditional audiometric 

tests. A more complete characterization of OC dysfunction in these patient groups is 

important because chronically reduced MOC suppression of outer hair cell activity could 

lead to accelerated hearing loss as well as hearing in noise deficits.
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5.2 Auditory processing disorders in children

Children with normal hearing thresholds, but with listening difficulties and learning 

impairments can be classified as having auditory processing disorders (Moore et al. 2018). 

Dysfunction of the auditory efferent system has been proposed as a possible contributor 

to auditory processing disorders in children (Mishra et al 2014.) Some studies have shown 

that children with auditory processing disorders and specific language impairment had a 

reduced suppressive effect of contralateral noise on otoacoustic emissions compared to 

normal hearing controls (Muchnik et al. 2004; Sanches and Carvallo 2006). However, other 

authors have failed to replicate these findings. For instance, Clarke et al., (2006) found no 

differences in the magnitude of contralateral noise suppression on otoacoustic emissions 

between a group of children with and without specific language impairments. Smart et al. 

(2019) compared olivocochlear and middle ear reflex function in a group diagnosed with 

auditory processing disorders and controls. They found no differences on MOC suppression, 

while they reported a significant elevation of middle ear reflex thresholds at 2 kHz in 

children with auditory processing disorders. There is still an ample field to study whether 

efferent dysfunction is an important factor in the acquisition of auditory skills in children 

with auditory processing disorders. As with other otoacoustic emission suppression studies 

in humans, further studies controlling for middle ear muscle reflexes and using more robust 

OC reflex-eliciting stimuli are needed to clarify whether or not OC dysfunction is prevalent 

in this heterogeneous population (Mishra 2014; Boothalingam 2019). Additionally, possible 

differences in diagnostic criteria and disordered performance on specific auditory processing 

tasks should be taken into account in future studies.

5.3 Tinnitus, hyperacusis, and sensorineural hearing loss

The role between sensorineural hearing loss, central auditory disorders such as tinnitus and 

hyperacusis, and OC function is complex to sort out because of the interplay between these 

conditions. Cochlear damage can lead to changes in the central auditory system, such as the 

loss of inhibition and central gain compensation purported to underlie tinnitus, hyperacusis, 

and loudness recruitment (Auerbach et al. 2019; Lauer et al. 2019; Sheppard et al. 2020). 

This in turn could lead to abnormal OC activation. Reduced OC suppression of the auditory 

periphery could then render the ear more susceptible to noise exposure, which could in turn 

increase susceptibility to or severity of sensorineural hearing loss, tinnitus, and hyperacusis.

Further complicating effort to tease apart these relationships are heterogeneity in patients 

reporting tinnitus and hyperacusis, the possibility of subclinical cochlear impairment in 

these patients, variable methodologies, and the relatively small MOC reflex effects observed 

(Geven et al. 2014; Riga et al. 2015). It stands to reason that the MOC reflex cannot function 

normally if outer hair cells and auditory nerve fibers are damaged and afferent drive to the 

olivocochlear pathway is reduced with peripheral damage. An additional complication is 

that LOC neurons may contribute to tinnitus and hyperacusis in yet to be understood ways. 

Nevertheless, several papers have reported either weakened (Chery-Croze et al. 1993,1994), 

hyperactive (Knudson et al. 2014), or no change (Cheng et al. 2020) in contralateral 

suppression of otoacoustic emissions in listeners with tinnitus. Increased MOC strength may 

also be related to reduced loudness tolerance in tinnitus sufferers, though not to self-reported 

hyperacusis, and the MOC enhancement may simply be a byproduct of decreased central 
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inhibition (Knudson et al. 2014). Much remains to be discovered regarding the role of OC 

function/dysfunction in tinnitus, hyperacusis, and hearing loss.

An additional consideration in the context of these studies is that the OC system shows 

age-, noise-, and hearing loss-related synaptic reorganization (Kraus and Illing 2004; Lauer 

et al. 2012; Liberman et al. 2015; Radtke-Schuller Zachary and Fuchs 2015; Liberman 

and Liberman 2019; Suthakar and Ryugo 2017; Jeng et al. 2020; Kobrina et al. 2020; 

Wu et al. 2020). These studies show that peripheral OC synapses, OC neuron cell bodies, 

and their central inputs change with age and atypical acoustic experience, but how this 

reorganization affects perception is not known for certain. Most likely, these changes 

contribute to diminished hearing in noise capability that is commonly experienced by 

listeners with hearing loss, but further studies are needed to confirm this hypothesis. 

Additionally, strengthened OC feedback appears to protect against peripheral hearing 

damage, and, consequently, may protect against hyperacusis and tinnitus (Boero et al. 

2018, 2020). However, strengthened OC feedback may have unintended consequences for 

perception that have yet to be revealed.

6. Conclusions and areas for future investigation

Despite sometimes conflicting evidence, the OC system seems to play a role in optimizing 

hearing under a number of challenging conditions and in selective attention to sensory 

stimuli. In some cases, these effects may not be apparent because compensatory or 

redundant processes are likely in play. A more complete understanding of OC-mediated 

effects on behavior is important in light of emerging hearing regenerative and reparative 

therapies, since normal OC connectivity may be required for normal perception of sounds 

with restored hair cells and auditory nerve fibers.

As modern circuit manipulation tools are brought online for specific and conditional 

manipulation of the OC neurons, the precise role of this system in behavior will become 

less murky. There is also much to learn about species diversity in the role of the OC 

system in hearing. Such studies not only provide important information about biological 

auditory specialization, but also may yield insights into potential strategies for augmenting 

hearing through OC-inspired processing strategies. There are many exciting areas for future 

investigation into the effects of plasticity of the system on behavior, how developmental 

and natural aging affect OC-mediated perception, and how acquired damage from noise or 

ototoxic substances affect these processes.
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Highlights

• Efferent auditory pathways reach the cochlea through the olivocochlear (OC) 

system.

• The OC system plays a role in hearing in noise and selective attention.

• Methodological limitations and compensatory processes limit observed 

effects.

• Additional studies of the effects of the OC system on behavior are necessary.
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Figure 1. 
Schematic diagram of the descending auditory pathways from cortex to cochlea in 

mammals. Inset shows olivocochlear pathways.
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