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Abstract

The “Amyloid Cascade Hypothesis” has dominated the Alzheimer’s disease (AD) field in the 

last 25 years. It posits that the increase of amyloid-β (Aβ) is the key event in AD that triggers 

tau pathology followed by neuronal death and eventually, the disease. However, therapeutic 

approaches aimed at decreasing Aβ levels have so far failed, and tau-based clinical trials have 

not yet produced positive findings. This begs the question of whether the hypothesis is correct. 

Here we have examined literature on the role of Aβ and tau in synaptic dysfunction, memory loss, 

and seeding and spreading of AD, highlighting important parallelisms between the two proteins in 

all of these phenomena. We discuss novel findings showing binding of both Aβ and tau oligomers 

to amyloid-β protein precursor (AβPP), and the requirement for the presence of this protein for 
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both Aβ and tau to enter neurons and induce abnormal synaptic function and memory. Most 

importantly, we propose a novel view of AD pathogenesis in which extracellular oligomers of 

Aβ and tau act in parallel and upstream of AβPP. Such a view will call for a reconsideration of 

therapeutic approaches directed against Aβ and tau, paving the way to an increased interest toward 

AβPP, both for understanding the pathogenesis of the disease and elaborating new therapeutic 

strategies.
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Alzheimer’s disease (AD) is a neurodegenerative disorder clinically characterized by 

dementia, defined as a deficit of memory function and at least one other cognitive domain 

(language, praxis, gnosis, executive function, judgment, and abstract thought) as well as 

functional impairment, without alteration of the state of consciousness. In the last decades, 

AD has gained rising attention for its growing prevalence in aging populations, with 46.8 

million people affected by the pathology worldwide, a number expected to increase up to 

74.7 million in 2030 and 131.5 million in 2050. Besides representing a serious health and 

social problem, the disease causes exorbitant costs for the healthcare system estimated as 

604 billion dollars in 2010 that represented a 35.4% increase in only 5 years [1, 2]. Despite 

the numerous efforts to counteract the disease, no therapies have so far proven to prevent AD 

onset or progression.

To date, data from thousands of basic, pre-clinical, and clinical studies have identified 

amyloid-β peptide (Aβ and tau protein as the key actors in the patho-physiology of AD, 

mainly because of their deposition in the characteristic histopathological brain lesions, the 

senile plaques for Aβ and the neurofibrillary tangles (NFTs) for tau, and the increase of 

their soluble forms in the brain of AD patients. However, therapeutic approaches aimed 

to decrease Aβ levels that have been attempted so far, have failed. Similarly, tau-based 

clinical trials have not yet produced positive findings. The overall goal of this review is to 

provide a critical assessment of the literature on mechanisms underlying disease occurrence 

and progression. Specifically, we will revisit studies on Aβ and tau, as well as on their 

interaction, challenging the amyloid hypothesis that has dominated the AD field in the last 

25 years. This hypothesis establishes Aβ as the primum movens in a cascade of pathological 

events that places tau downstream of Aβ. According to this hypothesis, once tau pathology 

has ensued, therapies against Aβ would no longer work because the disease would progress 

independently [3]. We propose rearranging the intricate puzzle of AD pathogenesis by 

placing soluble forms of Aβ and tau in parallel and upstream of amyloid-β protein precursor 

(AβPP), which would permit the peptides to exert their toxic functions. Such a view will 

call for a reconsideration of the reasons for the failure of anti-Aβ therapies, no longer 

attributable to the fact that they were started after triggering of tau pathology, necessarily 

changing the approach to studies on the etiopathogenesis of AD and paving the way for new 

therapeutic strategies.
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AMYLOID-β PEPTIDE AND ALZHEIMER’S DISEASE: MORE THAN ONE 

CENTURY OF RESEARCH

Aβ derives from a complex cleavage of AβPP, a type I single-pass transmembrane protein 

constituted by 639–770 amino acids in humans, and highly expressed in the central 

nervous system where it exerts a variety of physiological functions [4]. AβPP is initially 

cleaved by α-secretase or β-secretase, generating soluble and carboxyterminal fragments 

(CTF). α-secretase activity leads to the formation of sAβPPα and CTF83, whereas β

secretase generates sAβPPβ and CTF99. Then, γ-secretase intervenes, further cleaving 

CTF83 and CTF99, generating the intracellular peptide AICD/AID (amyloid intracellular 

domain) and a small p3 peptide from CTF83, and AICD/AID and Aβ from CTF99. 

Based on this biochemical processing, the cascade initiated by α-secretase has been 

considered neuroprotective when compared with the β-secretase cleavage, leading to the 

amyloidogenic cascade and the formation of Aβ [5]. Based on the γ-secretase site of cutting, 

different isoforms of Aβ can be generated, composed of 38—43 amino acids. Aβ40 is the 

predominant species, whereas Aβ42 is present at lower concentrations but has received more 

attention in the AD field due to its high propensity to form aggregates. However, in the 

brain of AD patients, Aβ38 and truncated forms at N-terminal region, i.e., Aβ15, Aβ16, and 

Aβ17, have been also detected [6]. Aβ is undoubtedly the most studied protein in AD and its 

putative role in the pathogenesis of the disease has oriented drug development and clinical 

trials for several decades. But how and why did the AD amyloidogenic theory emerge?

From a historical perspective, it was at the beginning of the last century when Alois 

Alzheimer and other European neuropsychiatrists, e.g., Gaetano Perusini, attributed a 

nosographic identity to a form of “mental” disorder characterized by memory loss, 

hallucinations, and disorientation. At that time, the most influent personalities in psychiatry, 

Sigmund Freud and Emilin Kraeplin, fervently disputed on the origin of psychiatric illness, 

respectively emphasizing the role of the psyche or of organic and genetic factors. The mind/

brain diatribe led several scientists to seek for the “material” causes of mental diseases. 

In this context, Alzheimer and Perusini, strongly supported by Kraeplin, observed that the 

psychiatric symptoms of dementia could be correlated to peculiar histological lesions in 

postmortem brains. In the autopsy of the first described AD patient, Auguste Deter, cortical 

atrophy, neurons filled with neurofibrils, and extracellular miliary foci of an unknown 

substance were observed. After Alzheimer’s death, research studies on the disease were 

few until the 1980 s, when epidemiological studies revealed an increase of patients affected 

by primary dementia. It was during these years that key discoveries were made, fated to 

influence research in the field until today. Based on Alzheimer’s histological descriptions, 

Aβ and tau were recognized as the main components of extracellular foci (senile plaques) 

and intracellular neurofibrils (NFTs), respectively [7–9]. In the same period, the first genetic 

mutation linked to dementia was identified on chromosome 21 coding for the AβPP [10]. 

This autosomal dominant disease was responsible for early onset AD (EOAD) characterized 

by high levels of Aβ. Other genetic mutations were identified in Familiar Alzheimer’s 

disease (FAD), involving genes responsible for Aβ production such as presenilin 1 (PS1) 

on chromosome 14, which mutation is the most common cause of EOAD, and presenilin 2 

(PS2) on chromosome 1. Consistent with these findings, the presence of AD-like pathology 
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in patients affected by Down’s syndrome, due to a trisomy of chromosome 21, reinforced 

the idea that the increase of Aβ played a major role in AD pathogenesis. Based on these 

data, in 1995 the first mouse model of AD carrying an AβPP mutation was engineered [11] 

and, over time, different models for pre-clinical studies have been generated based on the 

most common mutations observed in FAD [12].

These findings contributed to the excitement around the “Amyloid Cascade Hypothesis” 

[13–15], recognized as the pathogenic mechanism underlying AD. Because insoluble fibrils 

of Aβ were present in AD plaques, and could be formed in vitro from synthetic Aβ, 

they have dominated the scene until a fundamental breakthrough confirmed by several 

in vitro and in vivo studies indicated that soluble forms of Aβ were also present in 

the brain [16, 17]. Aβ soluble aggregates range from monomers to oligomers (molecular 

aggregates consisting of a few monomer units) and pre-clinical studies confirmed that 

dimers, trimers, tetramers, dodecamers, and high molecular weight oligomers were all able 

to induce neurotoxic effects as well as to induce an immediate impairment of synaptic 

plasticity, and in particular of hippocampal long-term potentiation (LTP), thought to be the 

electrophysiological correlate of memory (for a review on the role of Aβ oligomers, see 

[18]). Moreover, Aβ oligomer presence in human cerebrospinal fluid (CSF) could be already 

recognized decades before AD onset [19]. These data led to the formulation of another 

theory, the “Oligomer Hypothesis” [20, 21], according to which Aβ oligomers but not 

monomers or fibrils were responsible for synaptic dysfunction and memory loss in AD [22, 

23]. This further influenced AD drug discovery so that new therapies aimed at specifically 

targeting Aβ oligomers were developed in addition to those clearing Aβ plaques.

Unfortunately, while the “Oligomer Hypothesis” is still a matter of investigation, and data 

are being gathered to test the grounds of its premises, the clinical failure of most of the 

anti-Aβ drugs has strongly destabilized this concept. Clinical trials to date show that, despite 

successful results obtained in animal models of AD, anti-Aβ drugs have not yet been 

shown to modify cognition in humans although they might be able to reduce plaque or 

amyloid burden. So far (based on Medline database search and Clinical-Trials.gov): 1) active 

immunization (i.e., AN-1792, CAD-106, and vanutide cridificar) have not proven effective 

and several side effects were reported; 2) passive immunization with monoclonal antibodies 

bapineuzumab, solanezumab, crenezumab, and gantenerumab have not yet succeeded, and 

although a recent clinical trial with aducanumab has shown a dose-dependent reduction 

of Aβ plaques, the study was not sufficiently powered to detect clinical changes and the 

drug is undergoing further investigation [24]; and 3) a number of clinical trials with drugs 

aimed at preventing Aβ formation by inhibiting β- or γ- secretases have also failed or were 

interrupted; among these, the γ-secretase inhibitors semagacestat and avagacestat did not 

show efficacy, and actually induced mild worsening in cognition and severe side effects, 

whereas the EPOCH trial with the newest β-secretase inhibitor verubecestat was stopped for 

the lack of any positive effect. Notwithstanding these discouraging results, several scientists 

are still developing anti-Aβ therapies, convinced that the failure of Aβ tailored drugs might 

relate to the particular drugs chosen, inadequate dosage, or the fact that treatment was started 

in a late phase of the disease when Aβ-induced damage cannot be reversed.
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This review is written, in turn, with the belief that a careful evaluation of the knowledge in 

the AD field is due prior to further investing resources with anti-Aβ therapies. Evidences 

that have been underestimated for a long time are now gaining ground, questioning the way 

in which the actual role of Aβ in AD pathogenesis is currently thought. First, late onset 

AD (LOAD), representing 95% of AD cases, is not linked to genetic anomalies leading to 

a direct overproduction of Aβ, as in FAD, although the phenotype might be comparable. 

However, pre-clinical studies on AD mouse models have been almost entirely performed 

on mice presenting FAD-like mutations leading to an increase of Aβ. Second, we know 

since the 1990 s that there is no correlation between Aβ deposition and clinical degree 

of dementia among affected individuals [25–28], and plaques might occur in the brains 

of individuals with no sign of dementia [27, 29, 30]. Third, recent studies have suggested 

that plaque formation might be a reactive process [31] with a protective role by decreasing 

oligomer levels [32]. Fourth, a vast literature claims that Aβ exerts a physiological role in 

the CNS interfering with neuronal growth, neurotransmitter release, synaptic function, and 

memory formation [33, 34]. Indeed, our group and others have previously demonstrated 

that administration of low concentration of oligomeric Aβ positively modulate synaptic 

function [35–37] and, conversely, blocking endogenous Aβ in the healthy brain resulted in 

an impairment of synaptic plasticity and memory [36, 38]. Finally, even Aβ concentration 

per se has become a relative concept, as the persistence of a low picomolar Aβ concentration 

in extracellular fluids provides for detrimental outcomes in synaptic plasticity [39]. In 

conclusion, taking into account almost one century of research, it emerges that the Aβ model 

of AD is insufficient [40, 41] and needs to be reconsidered [34].

A REVALUED PLAYER IN ALZHEIMER’S DISEASE PATHOGENESIS: TAU 

PROTEIN

As described above, the intricate story of Aβ and tau began with the brain of Auguste Deter, 

but most of the research efforts have been directed toward Aβ. Recently, the discontent 

generated by too many anti-Aβ therapy failures has induced several groups to re-focus on 

tau.

Tau is a microtubule-associated protein originally described as a heat stable protein essential 

for microtubule assembly and stabilization [42]. It is present in the human brain in six 

main isoforms, deriving from the alternative splicing of exons 2, 3, and 10 of microtubule

associated protein tau (MAPT) gene. This process appears to be of particular interest for 

exon 10 splicing which determines the presence of tau isoforms containing 3- (3R) or 

4-repeats (4R) of a ~32 amino acid sequence in the microtubule binding domain (MBD) 

[43]. Moreover, the splicing process of exons 2 and 3 determines the number of 29-residue 

near-amino-terminal inserts which results in isoforms containing 0,1, or 2 inserts (0N, 1N, 

2N) [44]. Both R and N repeats are capable of microtubule-binding and assembly-promoting 

activity, whereas the flanking regions are more likely involved in binding processes [45,46]. 

In the last decades, many studies have demonstrated tau physiological involvement at 

different subcellular localizations: 1) at axonal level, by regulating axonal elongation, 

maturation and transport [47–50]; 2) in dendrites, participating in synaptic plasticity [51, 
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52]; and 3) in nucleus, maintaining the integrity of genomic DNA, cytoplasmic and nuclear 

RNA [53,54].

From a functional point of view, tau can be divided in four different regions consisting 

of a N-terminal domain, a proline-rich domain, a MBD, and a C-terminal domain [3, 55, 

56]. The N-terminal domain is rich with negative charges devoted to separation of different 

microtubules by electrostatic repulsion when tau is bound to a certain microtubule [46, 57, 

58], Interestingly, the C-terminal domain, besides its key role in regulation of microtubule 

polymerization induction and interaction with plasma membranes [59–62], creates an overall 

asymmetry in the molecule contributing to this microtubule spacing function thanks to 

its neutral charge. The proline-rich domain and the MBD with their multiple aminoacidic 

acceptor residues are more involved in interactions with different signaling proteins, which 

can be scaf-folded by tau or can modify tau conformational status and activity itself [3].

The presence of multiple binding sites confers to tau many interaction possibilities 

in regards to cell signaling. The flanking region of MBD contains the majority of 

phosphate acceptor residues, and the phosphorylation of these sites is relevant for 

regulating microtubule polymerization [63–66], regulation of axonal transport [67] and 

neurotransmitter receptors [68, 69], interference with vesicles trafficking [70] and 

apolipoprotein E [71], interaction with Src-family kinases [62, 72–75], and many others 

[3, 55, 56].

The multiple roles of tau in neuronal physiology have been widely studied and, undoubtedly, 

a fine regulation is needed to maintain tau structure and function. Accordingly, a wide 

range of neurodegenerative disorders known as tauopathies have been recognized and 

classified with respect to the predominant species of tau that accumulates: 1) 3R tauopathies 

(i.e.. Pick’s disease); 2) 4R tauopathies (i.e., corticobasal degeneration and progressive 

supranuclear palsy); and 3) 3R + 4R tauopathies (i.e., AD) [43].

Biochemical studies have demonstrated that deposition of insoluble tau aggregates in NFTs 

depends upon a dysregulated phosphorylation process of the flanking regions of tau. In 

fact, while two phosphates per molecule of tau are normally present [76], analysis of tau 

from AD brains has revealed the presence of about eight phosphates per molecule of tau 

[77]. For this reason, tau phosphorylation abnormalities have been linked to misfolding and 

deposition of the protein in the diseased brain [78]. Although tau has been defined as a 

“natively unfolded” protein with a low tendency to aggregation [79], phosphorylation of 

certain residues or detachment from microtubules [79–81] might change its conformational 

status and consequently its aggregation propensity. However, the undefined structure of 

tau in solution has precluded crystallographic analyses leaving a lack of knowledge about 

the protein structure [82]. Moreover, notwithstanding electron microscopic visualization of 

tau bound to microtubules demonstrated a linear alignment lengthwise to the protofilament 

ridges, the protein structure keeps holding a disordered state [83, 84]. Interestingly, when 

in a solution, tau spontaneously tends to modify its conformation in favor of a paperclip

like structure that might prevent its aggregation [55, 82], unlike Aβ that has a high 

tendency to aggregate in a solution due to its biochemical properties. Thus, alterations 

of tau (i.e., hyperphosphorylation, truncated forms) could inhibit the constitution of the 
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paperclip-like structure leading to paired helical filament (PHF) and NFT formation [85]. 

In this context, tau hyperphosphorylation has been widely studied and the sequence 

hyperphosphorylation→PHFs→NFTs linked to AD, even if it is unlikely to represent by 

itself the main pathogenic event for several reasons. First, tau phosphorylation has been 

demonstrated to be responsible for aggregation only when occurring at certain residues [86], 

whereas in other sites it has the opposite effect thus preventing aggregation [80]. Moreover, 

tau hyperphosphorylation is not a prerogative of AD, since it occurs in several other 

conditions such as hypothermia [87], starvation [88], chronic stress [89], and anesthesia 

[90, 91].

Interestingly, the amount of PHFs and NFTs is slightly related to the severity of neuronal 

damage and cognitive impairment in humans. Experiments on regulatable mouse models 

of tauopathy demonstrated that a variant of human tau with the pro-aggregant mutation 

ΔK280 developed synaptic and memory impairment as well as tau hyperphosphorylation 

and pre-tangle formation. However, when the pro-aggregant tau was turned off, synaptic 

deficit was rescued even if insoluble tau was still present [92]. Other studies on 

transgenic mice expressing mutant tau (P301L mutation), which could be suppressed with 

doxycycline, demonstrated that behavioral impairment and neuronal loss were recovered 

when suppressing transgenic tau, whereas NFTs accumulation continued [93]. Moreover, 

in the P301S model of tauopathy, synaptic damage and cognitive impairment occurred 

before the emergence of NFTs [94]. Some authors also reported that, in vitro, abnormally 

phosphorylated tau can sequester normal tau into tangles of filaments, leading to the 

hypothesis that tau accumulation into PHFs might initially be neuroprotective until it starts 

compromising neuronal function as a space-occupying lesion [95].

The observations that synaptic and memory impairment is not mediated by NFTs, and 

that insoluble deposition of tau might be a compensatory protective mechanism suggested 

that synaptic failure might be sought in soluble oligomeric species of tau, resembling the 

“Oligomeric Hypothesis” already formulated for Aβ. Soluble tau was found to be most 

acutely toxic in animal models of tauopathy [93, 94, 96]. Most importantly, increases 

in granular tau oligomer levels occur before NFTs form and before individuals manifest 

clinical symptoms of AD, suggesting that increases in tau oligomer levels may represent a 

very early sign of brain aging and AD [97]. We have recently demonstrated that an acute 

exposure to tau oligomers (but not monomers) both in vitro and in vivo is detrimental to 

LTP and memory [98]. Noteworthy, this toxic effect was exerted by a different preparation 

of oligomeric tau, i.e., recombinant tau 4R/2N, tau derived from AD patients, tau derived 

from hTau mice [98]. These results are in agreement with other observations reporting that 

tau oligomers 1) impair synaptic function and memory in wild type mice [99], 2) correlate 

with cognitive impairment in rTg4510 mice [100], and 3) accelerate pathology in hTau mice 

[101].

Pre-clinical findings have been confirmed by studies on humans showing the increase of 

oligomeric forms of tau in the brain of AD patients compared to controls, occurring before 

NFT formation and clinical symptoms [97]. Interestingly, tau oligomers have been also 

found in other tauopathies such as progressive supranuclear palsy, dementia with Lewy 

bodies, and Huntington’s disease [101–103]. In AD brain, homogenates of tau dimers are 
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also markedly elevated, suggesting that tau aggregation might be a hierarchical process that 

passes through distinct phases, i.e., monomers, dimers, oligomers, pre-tangles, and tangles 

[104]. Notably, the time-course leading from monomers to insoluble deposits is comparable 

to that already described for Aβ, with soluble forms of the peptide increasing in an initial 

phase of the disease.

Based on the findings described above and considering the urgent need to find more valuable 

biomarkers for an early diagnosis, the possibility of detecting tau oligomers in CSF of 

living patients is appealing. Hence, we have conducted a pilot study to verify that soluble 

aggregated forms of tau are detectable outside neurons in the CSF of living people and 

therefore they are not necessarily the byproduct of pathological alterations occurring in 

postmortem evaluations. We characterized tau immunoreactivity by western blot in CSF 

samples [105] from a cohort of 11 patients with probable AD and 11 healthy control (HC) 

individuals at the time of harvesting CSF (Table 1). High molecular immunoreactive species 

for total tau were observed in all the samples (Fig. 1A, B). However, a significant change in 

intensity of different bands was found, with an increase in the high molecular weight bands, 

presumably corresponding to oligomers, coincident with a decrease at 31–38 kDa in AD 

patient CSF compared to HC (Fig. 1A, B).

Interestingly, when we dissociated tau by treating the CSF samples with the reducing agent 

beta-mercaptoethanol (βME) to disrupt the thiol bonds between tau molecules, the signal 

intensity of high molecular weight tau immunoreactivity became undetectable, whereas a 

clear signal was present for monomeric tau, suggesting that the presence of oligomers was 

linked to disulfide bridges involving tau molecules (Fig. 1C). This study leads to important 

considerations. First, the possibility to evaluate the presence of extracellular oligomeric 

tau in clinical lumbar CSF specimens could be useful as a possible early biomarker of 

the disease, in agreement with other findings [102, 106]. Second, the observations that tau 

oligomers are also present in HCs and that monomers/oligomers are differently distributed in 

AD and control CSF suggest that the biological significance of tau species should be further 

investigated. These aspects should be taken into account when designing new drugs targeting 

tau to avoid the same issues already experienced with anti-Aβ treatments.

Notwithstanding the increase of tau oligomers in the AD brain and CSF, drugs aimed at 

inhibiting tau aggregation or dissolving existing aggregates, i.e., methylthioninium chloride 

and its second-generation derivatives such as TRx0237, have not been proven efficacious 

in clinical trials. A Phase II study with TRx0237 was terminated after a few months 

for “administrative” reasons, whereas Phase III studies have reported negative results on 

cognitive improvement (see clinicaltrials.gov for details). However, it is not clear whether 

these drugs actually inhibit tau aggregation in humans. Also, this makes us wonder whether 

the increase of tau oligomers in AD patients should be better considered as a pathogenic 

marker of the disease rather than a target of therapeutic strategies.

Gulisano et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov


Aβ AND TAU OLIGOMERS: A GAME AT THE SYNAPSE RESULTING IN 

MEMORY IMPAIRMENT

How do Aβ and tau induce memory loss? According to most of the studies, the answer 

should be sought at the synapse. Although cortical atrophy and synaptic loss have been 

reported in AD brains, mainly due to a structural damage imputable to plaques and tangles 

in a later stage of the disease, a subtle effect exerted by soluble forms of Aβ and tau 

at the synapse seems to be the earlier event underlying memory loss [98, 99, 107, 108]. 

Several studies have demonstrated that administration of different preparations of oligomeric 

Aβ and tau (synthetic, from transgenic mice, from AD brains) impaired synaptic plasticity 

and memory. The role of soluble oligomers also emerged in studies performed on AD 

mouse models, since synaptic and memory dysfunction was present before the appearance of 

plaques or tangles [18,109].

In vitro and in vivo studies have shown that Aβ and tau derange molecular signaling 

pathways crucial for synaptic plasticity atbothpre- and post-synaptic sites. Both Aβ and tau 

interfere with the transcription factor cAMP response element-binding protein (CREB), 

whose phosphorylation at Ser133 is thought to be one of the fundamental events in 

memory formation [110–112]. In particular, Aβ inhibits the physiological increase of 

CREB phosphorylation during LTP [113–115], causing a downregulation of both the 

NO/cGMP/PKG and the cAMP/PKA pathways, two cascades converging on CREB. Tau 

overexpression and hyperphosphorylation was also found to be accompanied by a reduction 

of CREB phosphorylation at Ser133, mediated by a decrease of phosphorylation of NR2B 

(Tyr1472) [116]. Moreover, synaptic plasticity and memory impairment caused by h-tau 

overexpression was reported to be related to nuclear dephosphorylation/inactivation of 

CREB [117]. Interestingly, these findings were validated in humans affected by AD showing 

a decrease in CREB and phospho-CREB levels in hippocampus [118–122].

Aβ and tau also target other molecules upstream of CREB, among which the Ca2+/

calmodulin-dependent protein kinase II (CaMKII), another key molecule needed for LTP 

and memory formation [123]. CaMKII is dysregulated in the hippocampus of AD mouse 

models and patients (for a review, see [124]) and it has been demonstrated that Aβ 
oligomers interfere with its phosphorylation leading to AMPA receptor dysfunction [125–

127]. On the other hand, evidences for the interaction tau-CaMKII have been reported 

since the late 1980 s in works analyzing the ability of CaMKII to induce an AD-like tau 

phosphorylation [128, 129]. CaMKII phosphorylates tau at different sites and this might 

prevent tau binding to microtubule [130] and modify tau structure leading to PHFs formation 

[131]. Indeed, CaMKII colocalizes with tau mRNA, PHFs, NFTs in AD brains (for a review, 

see [124]). Recently, in a drosophila model of tauopathy, suppression of tau phosphorylation 

at Ser262/356 inhibited tau toxicity through a mechanism involving calcium homeostasis 

dysregulation driven by CaMKII [132].

The deleterious effects of Aβ and tau also involved BDNF, a critical factor linked to 

neuronal survival and function that is needed for synaptic plasticity and memory. A decrease 

of BDNF levels in serum and brains of AD patients correlates with cognitive impairment, 

and BDNF polymorphisms have been proposed to be involved in AD pathogenesis [133]. 
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Moreover, several in vitro and in vivo studies have confirmed that Aβ-induced LTP and 

cognitive dysfunction are associated with a reduction of BDNF levels [133]. Recently, a loss 

of BDNF has been also reported in THY-Tau22 and P301L mouse models of tau pathology 

[134, 135].

Taken all together, these findings suggest that restoring synaptic-related molecules and 

second messenger systems regulating memory mechanisms might be a viable therapeutic 

strategy to counteract AD [115]. Most importantly, these data point at common synapse

related mechanisms affected by both Aβ and tau during memory impairment.

Aβ AND TAU ACTIVITY-DEPENDENT SECRETION, NEURONAL UPTAKE, 

AND SPREADING OF THE DISEASE

Because Aβ and tau interfere with the synaptic machinery, another relevant subject of 

investigation has been to determine whether they act via extracellular or intracellular 

mechanisms. Based on the localization of insoluble deposits, for several years Aβ has been 

considered an extracellular protein and tau an intracellular one. However, it is now clear 

that this rigid vision is no more applicable, since both Aβ and tau can be found inside and 

outside neurons. Notwithstanding most of the studies have been performed on models of 

disease, the extra- and intracellular presence of Aβ and tau is the result of a physiological 

dynamic process in which the two proteins are secreted at the synapse and internalized 

by neurons. A relevant body of data has supported the hypothesis that neurons are able to 

secrete Aβ in an activity dependent fashion. In vitro studies performed by applying drugs 

that decrease (i.e., tetrodotoxin or high magnesium) or increase (i.e., picrotoxin) neuronal 

activity have shown a concomitant decrease or increase of Aβ secretion in organotypic 

slices overexpressing human AβPP Swedish mutation [136]. An in vivo approach by 

using microdialysis also revealed an increase of Aβ levels in the brain interstitial fluid 

concomitant to the increase of synaptic activity [137] or paralleling the neurological 

status [138]. An increase of Aβ secretion has also been found during learning in healthy 

wild-type mice [38]. Based on the fact that synaptic activity stimulates Aβ secretion, 

and that extracellular Aβ is known to reduce synaptic plasticity, it has been proposed a 

theory according to which an increase of synaptic (and cognitive) activity is linked to AD 

pathogenesis. However, although an increase of brain activity in AD could be supported 

by data indicating hyperexcitability in transgenic mice and human AD patients [139, 140], 

this activity-dependent role of Aβ should be better viewed as a physiological mechanism 

occurring within the healthy brain, especially because levels of Aβ secreted during activity 

are in the picomolar range and are not neurotoxic [35, 38, 141]. Thus, the high increase 

of extracellular Aβ during AD might be due to a derangement of this physiological loop 

or it could be a consequence of degeneration of neurons that have previously accumulated 

Aβ at intracellular level (for a review, see [142]). Whether the impairment of synaptic 

function is directly mediated by these high extracellular Aβ levels or by Aβ accumulated 

inside neurons, is still a matter of debate. Surely, these two pools are strictly interconnected, 

since extracellular Aβ induced the accumulation of intracellular Aβ by stimulating AβPP 

processing [143] or by a direct AβPP-mediated internalization [144]; in turn, intracellular 

Aβ disrupts synaptic transmission and plasticity [145].
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Interestingly, tau also undergoes the same dynamic flux characterized by activity-dependent 

secretion and neuronal internalization. Indeed, application of KCl or glutamate to cultured 

neurons resulted in an increase of tau secretion [98, 146] mediated by AMPA receptor 

activation [146]. In vivo studies reported an increase of tau in brain interstitial fluid when 

stimulating neurons with high K+ perfusion, or after stimulation of the N-Methyl-d-aspartic 

acid (NMDA) receptors, or picrotoxin administration [147]. An increase of tau secretion 

also paralleled the increase of glutamate release induced by an antagonist of metabotropic 

glutamate receptors 2/3 [147]. The phenomenon was further confirmed in different cultured 

neural cell lines where extracellular tau levels were modified proportionally to synaptic 

activity [148]. On the other hand, several pre-clinical studies have demonstrated that 

exogenously applied tau can be internalized by neurons [98, 149–152] and glial cells [153–

155] with different mechanisms involving bulk endocytosis [152], binding to heparan sulfate 

proteoglycans [156] or to AβPP [144].

Activity dependent secretion and neuronal uptake of Aβ and tau have been related to the 

spread of the disease throughout the brain, a process known as spreading which refers to 

the capability of neurotoxic proteins to diffuse from a neuron to another, expanding the 

disease from a restricted area to the entire brain. This type of dissemination, defined as 

“trans-synaptic spreading”, is thought to occur among different brain areas functionally 

connected [157, 158] and is supported by observations on postmortem AD brains as 

well as by clinical studies exploiting computerized x-ray tomography (CT) and magnetic 

resonance imaging (MRI) techniques, that allow tracing different neuropathological markers 

such as atrophy of certain brain areas, brain ventricles enlargement, and deposition of 

amyloid plaques and NFTs (for a review, see [78]). However, it should be pointed out 

that imaging biomarkers like fluorodeoxyglucose in PET scans are associated to discrete 

difficulties in data interpretation, as they are also positive in Suspected Non-Alzheimer 

Disease Pathophysiology (SNAP) [159].

Evidence for AD spreading and progression throughout the cortex was reported more 

than 30 years ago, based on tangle distribution in the proximity of the same pyramidal 

neurons that give connectivity to other brain areas [160]. At the present day, neither the 

cause that initiates spreading nor its underlying mechanisms have been identified, but 

useful information has come from pre-clinical studies. Notwithstanding tau has been under 

the spotlight for many years, one of the first evidence of spreading in AD dates back 

to the 1990 s and involves Aβ [161, 162]. When trying to unravel the causes of Aβ 
diffusion, studies have often focused on the first area affected in AD, the medial temporal 

lobe, and in particular, the entorhinal cortex (EC). EC superficial layer is susceptible 

to Aβ-dependent neurodegeneration, and this can negatively affect its primary afferent 

regions resulting in a disruption of the whole circuitry in both mouse models and AD 

patients [163, 164]. Consistently, an increase of mutant AβPP in layer II/III neurons of 

EC has been shown to elicit a molecular and functional disruption in the CA1 area of 

the hippocampus with presence of soluble Aβ in the dentate gyrus, Aβ deposits in the 

performant pathway, and epileptiform activity in the parietal cortex [165]. Further studies 

in mutant human AβPP (mhAβPP) mice have reported an age-dependent progressive 

deterioration of synaptic plasticity and memory spreading from the EC to the hippocampus 

[166], a phenomenon mediated by microglial RAGE activation and subsequent increase 
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in p38MAPK phosphorylation [166]. Consistently, other studies reported the capability of 

reactive microglia in secreting Aβ through micro vesicles, which in turn would promote 

Aβ toxicity to neurons through their axons [167–169]. Accordingly, other supporting 

evidences indicate that after administration of fluorescent oligomeric Aβ to neurons, a 

higher percentage of the protein was found surrounding neurons, and this process needed 

the presence of differentiated neuritis to occur [170]. Cell-to-cell transfer mechanism 

has been reported for different Aβ species (i.e., oAβ1–42 TMR, oAβ3(pE)—40TMR, 

oAβ1—40TMR, and oAβ11–42TMR), and this prion-like spreading was attributed to an 

insufficient activity of cellular clearance degradation systems [171]. Another mechanism 

proposed for Aβ spreading relies on the presence of tunneling nanotubes (TNTs) consisting 

of cellular membrane extensions creating a direct connection between cells [172]. TNTs 

have been demonstrated to mediate high-speed transfer of Aβ among neurons, through a 

p53/EGFR/Akt/PI3K/mTOR pathway that, in turn, would trigger F-actin polymerization 

promoting TNTs formation [173]. However, Aβ has been shown to be secreted by neurons 

through exosomes [174] that could be internalized and stored from the acceptor neuron as 

lysosomal vesicles through a macroautophagy mediated mechanism [170, 175]. In any case, 

despite these numerous evidences, there is not a uniform consensus about the causes or 

mechanisms underlying Aβ spreading.

On the other hand, a growing body of evidence refers to tau spreading as a prion-like 

propagation, which fascinatingly occurs in different directions among the many forms 

of tauopathies [176]. Also, tau pathology is likely to begin in EC then move to the 

hippocampus, and ultimately invading the cortex, following an overlapping path existing 

among functionally connected areas [55, 157, 158, 177]. These evidences are consistent with 

data coming from studies on non-human primates in which bilateral lesions of EC induce a 

functional impairment of declarative memory accompanied by long-lasting hypometabolism 

in temporal and parietal lobes, demonstrating a functional connection starting from EC 

[178]. Accordingly, in a transgenic mouse model differentially expressing pathological 

human tau in EC (EC-tau), the localization of tauopathy was investigated at different time 

points, demonstrating a progression of the pathology through anatomically and functionally 

connected brain areas [158]. Interestingly, in vivo chemogenetic stimulation of EC in 

EC-tau mice induced additional pathology in synaptically connected areas (e.g., dentate 

gyrus) [148]. Consistent with this finding, tau has been found in exosomes that might lead 

to its diffusion to adjacent cells [106, 179]. Further work demonstrated that cell-to-cell 

contact was not necessarily needed for tau spreading in vitro given that the administration 

of neuronal-derived tau media to neuronal cultures was sufficient for tau transfer and 

internalization, even though it is not known whether tau in the media was vesicle bound or 

free [148]. Other studies suggested that pathologic tau requires TNTs to be transferred from 

a neuron to another one [180]. However, whether the mechanism underlying tau propagation 

is mediated by TNTs, non-vesicular direct translocation or through secretory lysosomes into 

extracellular space [106, 162, 181, 182] is still under investigation. Another interesting 

feature of tau transmission is the possibility that it can move both anterogradely and 

retrogradely, meaning that it can be internalized both at the somatodendritic compartment 

and axon terminals, and can be transported in either direction to disseminate tauopathy [152, 

162].
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While spreading is involved in the progression of the disease among functionally connected 

brain areas, the transition from oligomers to insoluble deposits has been described as 

a “nucleation-dependent protein polymerization” and explains the pattern of aggregate 

formation [183] for proteins with high tendency to organize in β-sheet conformation as for 

Aβ, tau, or α-synuclein [184]. This process, known as seeding, involves a nucleation phase 

and a growth phase. In the nucleation phase, the nucleus formation requires the assembly 

of misfolded monomers, a thermodynamically unfavorable process remarkably dependent 

on protein concentration [161, 185, 186]. The latter influences the lag time defined as the 

period before aggregates detection. In fact, supersaturated solutions can drastically shorten 

the nucleus formation time from years to microseconds [161]. After the nucleus formation, 

the critical concentration is reached, and a further addition of monomers occurs leading to 

polymerization, representing the growth phase. Interestingly, if a preformed nucleus, or seed, 

is added to a solution containing normally folded monomers, an immediate polymerization 

occurs. This phenomenon is defined as seeding [161, 183] and can be distinguished as 

homologous or heterologous [183, 187], While homologous seeding involves monomers of 

the same type, heterologous seeding or cross-seeding takes place when a nucleus formed 

by a certain misfolded protein promotes polymerization of a different protein [183, 187]. 

A large body of evidence supports this cross-seeding among tau, α-synuclein and TDP-43 

[188]. Some studies in which spreading of tau pathology was significantly accelerated by 

injecting pre-aggregated Aβ into mouse brain [189, 190] suggested the possibility of Aβ and 

tau cross-seeding. Consistently, a protein interaction study by surface plasmon resonance 

demonstrated an affinity constant of tau for Aβ which was almost 1000-fold higher than 

for tau toward itself [191]. Moreover, confocal immunohistochemical imaging of AD brains 

showed intracellular aggregates in which Aβ and tau coexisted in the same structure [191]. 

Also, a recent work showed that tau fibrillization can be induced in a cell-free assay by 

adding pre-aggregated Aβ, and that Aβ provide an efficient seed to induce tau cross-seeding 

and a consequent spreading of tau pathology in vivo [192].

In conclusion, seeding and spreading of Aβ and tau and their dynamic flux across the 

membrane characterized by activity-dependent secretion and neuronal internalization are 

crucial for the progression of the disease. Most importantly, the commonalities displayed by 

both Aβ and tau with respect to these phenomena are intriguing and suggest that soluble 

forms of the two molecules are involved in similar mechanisms of disease etiopathogenesis.

ALZHEIMER’S DISEASE: REARRANGING THE PUZZLE

As described above, Aβ and tau share several features leading to common mechanisms 

of toxicity, regardless of their different sequence (Table 2). This was predicted by a 

study showing that all of the soluble oligomers tested including β-synuclein, islet amyloid 

polypeptide, polyglutamine, lysozyme, human insulin, and prion peptide 106–126, display 

a common conformation-dependent structure that is unique to soluble oligomers [193], By 

now, a variety of studies have demonstrated that soluble oligomeric forms of Aβ and tau, 

more than their aggregates, are increased in the diseased brain, are detectable in the CSF, 

and are highly correlated with cognitive impairment. The deleterious effect of Aβ and tau 

occurs at the synapse, where they interfere with molecular pathways needed for synaptic 

plasticity and memory. The capability of neuronal and glial cells to release and internalize 
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Aβ and tau contributes to spread of the disease from specific areas, such as EC and the 

hippocampus, to the entire brain. Despite these studies have certainly clarified several 

aspects of AD onset and progression, the crosstalk between Aβ and tau in the diseased brain 

is still a matter of debate.

The most common view in the AD field is based on the “Amyloid Cascade Hypothesis” and 

suggests that the initial increase of Aβ induces amyloid and tau pathology over time (Fig. 2). 

This temporal sequence derives from studies in patients with FAD, where the genetic-driven 

increase of Aβ is followed by NFT accumulation [194], whereas the increase of tau, as in 

tauopathies, is not associated with Aβ deposition. Preclinical studies have confirmed that 

oligomers of Aβ can trigger tau pathology [195] and, conversely, when knocking down 

tau, Aβ toxic effects are prevented [196, 197]. Interestingly, recent work has demonstrated 

that Aβ acutely induces tubulin post-translational modifications and stabilizes dynamic 

microtubules promoting tau-dependent loss of dendritic spines and tau hyperphosphorylation 

[52]. Thus, Aβ has been thought to act upstream of tau in the pathogenesis of the disease. 

However, our recent works have challenged this scenario. We have demonstrated that 

oligomers of both Aβ and tau produce an immediate reduction of synaptic plasticity and 

memory when extracellularly applied and that these detrimental effects occur not only with 

high concentrations of Aβ or tau alone, but also when sub-toxic doses of oligomeric Aβ are 

combined with sub-toxic doses of oligomeric tau [98]. These observations suggested that: 

1) Aβ and tau might act at the same level or on different targets that later converge on a 

common molecular mechanism; 2) the two proteins are able to impair synaptic plasticity 

and memory per se, i.e., regardless of the presence of high concentrations of one another; 

and 3) elevated levels of Aβ are not needed to initiate the tau-mediated toxic events leading 

to synaptic dysfunction. Inspired by these data, we have recently focused on the possible 

common mechanism of action for extracellular Aβ and tau oligomers to impair LTP and 

memory. We found that both oligomers of Aβ and tau require AβPP to exert their deleterious 

effect at the synapse [144], in agreement with previous observations indicating that A(3PP 

mediates extracellular Aβ neurotoxicity [143, 198, 199], and a recent study showing that 

AβPP is required for binding of human brain-derived oligomers to synapses and disruption 

of synaptic plasticity [200]. Our findings are also consistent with the observation that AβPP 

is involved in AD hippocampal hyperactivity [140, 201–204]. Previous papers have already 

shown that oligomeric Aβ is able to bind AβPP [205], whereas AβPP and tau interaction 

was studied several years ago in the context of NFTs [206–208]. We have now provided 

evidence that soluble oligomeric tau is able to bind AβPP [144]. This binding might be 

related to the AβPP-mediated uptake of Aβ and tau, since AβPP influences accumulation 

of tau fibrils in cultured cells [209] and is needed for the entrance of oligomeric Aβ and 

tau into neurons [144] and astrocytes [155]. Based on these findings, we hypothesize that 

AβPP-mediated oligomer uptake plays a role in AD pathogenesis. Indeed, because Aβ 
and tau do not impair synaptic plasticity and memory in AβPP KO mice, AβPP binding 

and/or AβPP-mediated internalization of the two proteins should lead to LTP and memory 

reduction, even if one cannot exclude the possibility that Aβ and tau act on other targets, 

or that their intraneuronal accumulation does not directly inhibit the synaptic machinery. 

However, a previous observation indicating that blocking intracellular Aβ rescues the LTP 

impairment induced by administration of extracellular Aβ [145] supports the hypothesis that 
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Aβ intraneuronal uptake is critical for the impairment of synaptic plasticity. On the other 

hand, recent studies have evidenced that the AβPP-dependent accumulation of extracellular 

tau oligomers in astrocytes induces a disruption of calcium signaling which in turn disrupts 

synaptic function in neighboring neurons [155]. Interestingly, while it has been previously 

demonstrated that extracellular Aβ requires AβPP cleavage to permit intraneuronal Aβ 
accumulation [143], our results have excluded that the toxicity of extracellular Aβ and tau 

oligomers on LTP depends upon amyloidogenic processing of AβPP since BACE KO mice 

still present the impairment of LTP induced by the two oligomeric proteins [144].

The requirement for AβPP to lead to intracellular entrance of Aβ and tau oligomers to 

produce synaptic dysfunction and memory loss begs the question of how this occurs. 

Whether AβPP acts as a channel permeable to the oligomers [210, 211], or induces the 

formation of pores across the membrane to let oligomers enter the cell [212], or promotes 

endocytosis of the oligomers [213], is still under investigation. Another possibility is that 

when Aβ and tau oligomers bind AβPP, they lead to the activation of its intracellular 

portion, AID/AICD, triggering either a structural change, for example inducing a different 

AβPP conformation, or a functional effect, for example activating or inhibiting molecular 

cascades involved in synaptic plasticity and memory. Interestingly, it is known that AID/

AICD might stimulate transcription by forming a multimeric complex with the nuclear 

adaptor protein Fe65 and the histone acetyltransferase Tip60 [214]. It has been also shown 

that AβPP-dependent transcription mediated by Fe65 is blocked by the cell death mediator 

p75, which is able to bind AβPP altering its processing [215]. Another possible mechanism 

might involve AβPP phosphorylation at specific intracellular sites. For example, it has 

been demonstrated that AβPP phosphorylation of Thr668, which regulates docking sites for 

intracellular proteins that interact with AβPP, is increased in AD cases [216] and knock-in 

mouse bearing a Thr(668)Ala mutation preventing phosphorylation at this site protects 

against abnormal synaptic plasticity and memory when crossed with a mouse model of 

dementia [217].

Our model placing extracellular Aβ and tau in parallel and upstream of AβPP does not 

exclude the possibility that the two proteins involve other molecules to produce detrimental 

effects in addition to synaptic plasticity and memory impairment, nor the possibility that 

some deleterious effects need the other protein for the effect itself to be present (i.e., Aβ 
might require tau for some of the pathologies to occur). Consistent with this scenario, 

AD is a complex plex condition involving multiple aspects in addition to memory, a 

phenomenon that is likely dependent upon synaptic activity and that has greatly influenced 

our critical analysis of the current literature because it represents the clinical hallmark 

of AD. Furthermore, as shown in Table 2, some of the physiological functions of the 

two proteins are different with Aβ playing a major role in neuronal growth and synaptic 

plasticity and tau in axonal elongation and microtubule assembly and stabilization. Then, in 

light of the different affinities that Aβ has towards its multiple targets, it is likely that as the 

concentration of the peptide increases with worsening of the pathology new pathways are 

affected bv the disease.

In any case, demonstrating that AβPP serves as a Trojan horse to mediate synaptic plasticity 

and memory impairment by extracellular oligomers of both Aβ and tau, challenges the 
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prevailing hypothesis in the AD field stating that Aβ triggers tau pathology. According 

to our findings, Aβ and tau do not act in series but in parallel, both through AβPP 

(Fig. 2). Now, it would be desirable to understand whether and how the involvement of 

AβPP is limited to Aβ and tau entrance into cells or also underlies the derangement 

of molecular mechanisms involved in synaptic plasticity and memory. In any case, this 

new player might be taken into consideration when studying the pathogenesis of AD. 

For example, further studies should be performed to understand the exact mechanisms of 

AβPP-mediated entrance of oligomers inside neurons and glial cells and whether this might 

initially represent a compensatory mechanism aimed at clearing toxic oligomers from the 

synaptic cleft.

The consequences of the model underlying AD pathology proposed in the current review 

are notable from a drug discovery point of view. The first thought is that therapies 

targeting tau might not work similarly to the failure of anti-Aβ therapies, as Aβ might still 

exercise its detrimental effects independent of tau and vice versa. Most important, given the 

convergence of Aβ and tau onto AβPP, a fascinating possibility is that therapies acting onto 

AβPP might be more efficacious than those acting solely against Aβ or tau. Furthermore, 

an approach directed against AβPP would have the advantage of overcoming obstacles 

offered by the physiological functions of Aβ and tau that might occur independently 

of their action onto AβPP and might still be present if one decides to simultaneously 

target Aβ and tau, an approach that is also suggested by our model. A strategy directed 

against AβPP will likely have its own drawbacks including physiological functions of 

full length AβPP [4]. Nevertheless, AβPP offers the flexibility of having multiple sites 

undergoing post-translational modifications that could be exploited as a tool to selectively 

affect a putative AβPP-dependent toxicity of Aβ and tau oligomers [218]. To this end, the 

AβPP phosphorylation at Thr668 is very interesting because it has been suggested that 

averting its noxious role in synaptic plasticity and memory might serve as a therapeutic 

strategy for human dementias [217]. Consistent with this finding it has been shown that 

overexpression of the protein phosphatase 2A (PP2A) methyltransferase, leucine carboxyl 

methyltransferase-1, leads to a decrease in AβPP phosphorylation at the PP2A-sensitive 

Thr-668 site and protects mice against Aβ-induced damage of synaptic plasticity and 

memory [219]. Certainly, our hypothesis paves the way to an increased interest toward 

AβPP, a molecule that has been taken into account mostly for its role as an Aβ generator, 

being, in our opinion, unfortunately overshadowed bv its own child, Aβ.

In conclusion, after more than one century of research in the AD field, several questions 

remain to be answered especially on the role of the two main actors, Aβ and tau, in the 

pathogenesis of the disease. It is certain that their interactions at the synapse need to be 

further elucidated and new players such as AβPP should enter the stage to get a clearer 

picture of this intricate disease.
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Fig. 1. 
Oligomeric tau is present in the CSF of AD patients and healthy individuals. A) Western 

blot showing total tau levels in CSF samples of healthy individuals (HC) and probable AD 

patients (higher magnification view of the lower molecular weight bands on the lower part 

of the panel. Different band intensity is quantified on the right graph (31–38 kDa: p = 0.009, 

50–54 kDa: p = 0.003, 74–78 kDa: p = 0.04, 100–104 kDa: p = 0.002 and 120–150 kDa: p = 

0.003). CSF specimens from subjects listed in Table 1 were thoroughly mixed, de-identified, 

and underwent one freeze-thaw cycle before standard aliquoting in 1.5 ml portions in 

polypropylene screw-cap tubes and storage at −80° C. To verify the oligomerization status 

of tau, we ran samples on western blots. Immunoreactivity toward total tau was measured 

in each of the CSF aliquots. Equal amounts of protein (8 μg) were fractionated by Tris

Acetate gradient gels (3–8%) and transferred to nitrocellulose membranes (Millipore). Tau 

immunoreactivity was detected using anti-total tau polyclonal antibody (1:2000; Epitomics). 

Immunoblot data were quantified by measuring the band intensity using imaging software 

(NIH ImageJ). Statistical analyses were performed by ANOVA plus post-hoc multiple 

comparisons test using Prism (GraphPad) software. B) Immunoreactivity for total tau in 

samples from probable AD patients reduced with β-mercaptoethanol (βME). βME zeroed 

the high molecular weight signal revealed by tau antibodies while intensifying the signals in 

the monomeric range.
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Fig. 2. 
Different views of Aβ and tau interaction in AD pathogenesis. The Amyloid Cascade 

Hypothesis has dominated the AD field for several years. This picture describes how it 

has been updated over time from the beginning (A), to the discovery of genetic mutations 

involving both Aβ and tau production (B), to a more complex vision recognizing oligomers 

as the toxic Aβ species (C). Notably, in A-C Aβ acts upstream tau. D) According to our 

novel vision, both oligomers of Aβ and tau exert a neurotoxic effect mediated by AβPP 

leading to synaptic and memory dysfunction. AβPP also mediates oligomers entrance into 
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neurons and glial cells, a mechanism probably contributing to the spreading of the disease 

throughout the brain.
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Table 1

Patients characteristics. The diagnosis of probable AD or control for healthy individual was done according to 

the NINCDS-ADRDA Alzheimer’s Criteria

Patients # Diagnosis Age Gender MMSE

13 HC 65 W 30

14 HC 64 W 27

15 HC 69 W 27

16 HC 57 W 27

17 HC 66 M 29

18 HC 55 M 28

19 HC 73 M 26

20 HC 58 W 30

21 HC 83 M 28

22 HC 73 W 28

24 HC 79 W 29

2 AD 76 M 18

3 AD 72 M 28

4 AD 58 M 23

5 AD 68 M 17

6 AD 66 M 25

7 AD 54 M 25

8 AD 81 M 26

9 AD 71 M 27

10 AD 69 M 24

11 AD 64 W 25

12 AD 68 M 26

Diagnosis was determined after full neurological history and examination including testing of mental status. All diagnoses were made by an 
experienced neurologist, psychiatrist, or a consensus conference including neurologists and neuropsychologists. Cerebrospinal fluid samples were 
banked at Columbia University, under protocols approved by the Columbia University and New York State Psychiatric Institute Institutional 
Review Boards. HC: range 55–83 years, average: 67.45 ± 2.72; probable AD: range: 54–81 years, average: 67.91 ± 2.29 years. MMSE, 
Mini-Mental State Examination.

J Alzheimers Dis. Author manuscript; available in PMC 2021 August 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gulisano et al. Page 34

Ta
b

le
 2

Si
m

ila
ri

tie
s 

an
d 

di
ff

er
en

ce
s 

be
tw

ee
n 

A
β 

an
d 

ta
u

A
m

yl
oi

d-
β 

P
ep

ti
de

Ta
u 

P
ro

te
in

Is
of

or
m

s
• 

A
β 4

0,
 A

β 4
2,

 o
th

er
 f

ra
gm

en
ts

• 
3R

-4
R

, 0
N

-1
N

-2
N

Se
co

nd
ar

y 
st

ru
ct

ur
e

• 
β-

sh
ee

t
• 
β-

sh
ee

t

Ph
ys

io
lo

gi
ca

l f
un

ct
io

ns
• 

N
eu

ro
na

l g
ro

w
th

• 
M

ic
ro

tu
bu

le
 a

ss
em

bl
y 

an
d 

st
ab

ili
za

tio
n

• 
N

eu
ro

tr
an

sm
itt

er
 r

el
ea

se
• 

A
xo

n 
el

on
ga

tio
n

• 
Sy

na
pt

ic
 tr

an
sm

is
si

on
 a

nd
 p

la
st

ic
ity

• 
Sy

na
pt

ic
 p

la
st

ic
ity

• 
M

em
or

y 
fo

rm
at

io
n

N
uc

le
ar

 f
un

ct
io

n

• 
Im

m
un

e 
re

sp
on

se

• 
A

nt
i-

ox
id

an
t p

ro
pe

rt
ie

s

A
gg

re
ga

tio
n 

se
qu

en
ce

M
on

om
er

s 
→

 O
lig

om
er

s 
→

 F
ib

ri
ls

 →
 S

en
ile

 p
la

qu
es

Ta
u 

hy
pe

rp
ho

sp
ho

ry
la

tio
n 
→

 P
H

Fs
 →

 N
FT

s

In
so

lu
bl

e 
an

d 
so

lu
bl

e 
fo

rm
s

• 
N

o 
co

rr
el

at
io

n 
be

tw
ee

n 
se

ni
le

 p
la

qu
es

 a
nd

 c
og

ni
tiv

e 
im

pa
ir

m
en

t
• 

Po
or

 c
or

re
la

tio
n 

be
tw

ee
n 

N
FT

s 
an

d 
co

gn
iti

ve
 im

pa
ir

m
en

t

• 
O

lig
om

er
s 

in
du

ce
 s

yn
ap

tic
 d

ys
fu

nc
tio

n 
an

d 
m

em
or

y 
lo

ss
• 

O
lig

om
er

s 
in

du
ce

 s
yn

ap
tic

 d
ys

fu
nc

tio
n 

an
d 

m
em

or
y 

lo
ss

• 
O

lig
om

er
s 

in
cr

ea
se

 in
 b

ra
in

s 
an

d 
C

SF
 o

f 
A

D
 p

at
ie

nt
s 

ve
rs

us
 c

on
tr

ol
s

• 
O

lig
om

er
s 

in
cr

ea
se

 in
 b

ra
in

s 
an

d 
C

SF
 o

f 
A

D
 p

at
ie

nt
s 

ve
rs

us
 c

on
tr

ol
s

G
en

et
ic

 m
ut

at
io

ns
A
βP

P,
 P

S1
 a

nd
 P

S2
 li

nk
ed

 to
 F

A
D

M
A

PT
 li

nk
ed

 to
 F

T
D

P-
17

, P
SP

, C
B

D

Sy
na

pt
ic

 ta
rg

et
C

R
E

B
, C

am
K

II
, B

D
N

F 
am

on
g 

ot
he

rs
C

R
E

B
, C

am
K

II
, B

D
N

F 
am

on
g 

ot
he

rs

E
xt

ra
- 

an
d 

in
tr

ac
el

lu
la

r 
dy

na
m

ic
• 

A
ct

iv
ity

 d
ep

en
de

nt
 s

ec
re

tio
n

• 
A

ct
iv

ity
 d

ep
en

de
nt

 s
ec

re
tio

n

• 
N

eu
ro

na
l a

nd
 g

lia
 u

pt
ak

e
• 

N
eu

ro
na

l a
nd

 g
lia

 u
pt

ak
e

• 
E

xt
ra

ce
llu

la
r 

to
xi

ci
ty

• 
E

xt
ra

ce
llu

la
r 

to
xi

ci
ty

• 
In

tr
ac

el
lu

la
r 

to
xi

ci
ty

• 
In

tr
ac

el
lu

la
r 

to
xi

ci
ty

Sp
re

ad
in

g
E

C
 →

 H
ip

po
ca

m
pu

s 
→

 C
or

te
x

E
C

 →
 H

ip
po

ca
m

pu
s 
→

 C
or

te
x

A
βP

P-
de

pe
nd

en
t m

ec
ha

ni
sm

• 
A
βP

P 
bi

nd
in

g
• 

A
βP

P 
bi

nd
in

g

• 
N

eu
ro

na
l a

nd
 g

lia
l u

pt
ak

e
• 

N
eu

ro
na

l a
nd

 g
lia

l u
pt

ak
e

• 
Sy

na
pt

ic
 p

la
st

ic
ity

 im
pa

ir
m

en
t

• 
Sy

na
pt

ic
 p

la
st

ic
ity

 im
pa

ir
m

en
t

• 
M

em
or

y 
im

pa
ir

m
en

t
• 

M
em

or
y 

im
pa

ir
m

en
t

PH
Fs

, p
ai

re
d 

he
lic

al
 f

ila
m

en
ts

; N
FT

s,
 n

eu
ro

fi
br

ill
ar

y 
ta

ng
le

s;
 C

SF
, c

er
eb

ro
sp

in
al

 f
lu

id
; A

βP
P,

 a
m

yl
oi

d-
β 

pr
ot

ei
n 

pr
ec

ur
so

r;
 P

S,
 p

re
se

ni
lin

; F
A

D
, f

am
ili

ar
 A

lz
he

im
er

’s
 d

is
ea

se
; M

A
PT

, m
ic

ro
tu

bu
le


as

so
ci

at
ed

 p
ro

te
in

 ta
u;

 F
T

PD
-1

7,
 f

ro
nt

ot
em

po
ra

l d
em

en
tia

 w
ith

 p
ar

ki
ns

on
is

m
-1

7;
 P

SP
, p

ro
gr

es
si

ve
 s

up
ra

nu
cl

ea
r 

pa
ls

y;
 C

B
D

, c
or

tic
ob

as
al

 d
eg

en
er

at
io

n;
 C

R
E

B
, c

A
M

P 
re

sp
on

se
 e

le
m

en
t b

in
di

ng
 p

ro
te

in
; 

C
aM

K
II

, C
a2

+
/c

al
m

od
ul

in
-d

ep
en

de
nt

 p
ro

te
in

 k
in

as
e 

II
; B

D
N

F,
 b

ra
in

-d
er

iv
ed

 n
eu

ro
tr

op
hi

c 
fa

ct
or

; E
C

, e
nt

or
hi

na
l c

or
te

x.

J Alzheimers Dis. Author manuscript; available in PMC 2021 August 18.


	Abstract
	AMYLOID-β PEPTIDE AND ALZHEIMER’S DISEASE: MORE THAN ONE CENTURY OF RESEARCH
	A REVALUED PLAYER IN ALZHEIMER’S DISEASE PATHOGENESIS: TAU PROTEIN
	Aβ AND TAU OLIGOMERS: A GAME AT THE SYNAPSE RESULTING IN MEMORY IMPAIRMENT
	Aβ AND TAU ACTIVITY-DEPENDENT SECRETION, NEURONAL UPTAKE, AND SPREADING OF THE DISEASE
	ALZHEIMER’S DISEASE: REARRANGING THE PUZZLE
	References
	Fig. 1.
	Fig. 2.
	Table 1
	Table 2

