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Load and hold conical indentation responses
calculated for materials having creep stress
exponents of 1.15, 3.59 and 6.60 are regarded as
input ‘experimental’ responses. A Bayesian-type
statistical approach (Zhang et al. 2019 |. Appl. Mech.
86, 011002 (doi:10.1115/1.4041352)) is used to infer
power-law creep parameters, the creep exponent and
the associated pre-exponential factor, from noise-free
as well as noise-contaminated indentation data. A
database for the Bayesian-type analysis is created
using finite-element calculations for a coarse set of
parameter values with interpolation used to create the
refined database used for parameter identification.
Uniaxial creep and stress relaxation responses using
the identified creep parameters provide a very
good approximation to those of the ‘experimental’
materials with stress exponents of 1.15 and 3.59.
The sensitivity to noise increases with increasing
stress exponent. The uniaxial creep response is
more sensitive to the accuracy of the predictions
than the uniaxial stress relaxation response. Good
agreement with the indentation response does not
guarantee good agreement with the uniaxial response.
If the noise level is sufficiently small, the model of
Bower et al. (1993 Proc. R. Soc. Lond. A 441, 97-124
(doi:10.1098 /rspa.1993.0050)) provides a good fit
to the ‘experimental’ data for all values of creep
stress exponent considered, while the model of
Ginder et al. (2018 J. Mech. Phys. Solids 112, 552-562
(doi:10.1016/j.jmps.2018.01.001)) provides a good fit
for a creep stress exponent of 1.15.
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1. Introduction

The serviceability and reliability of a variety of engineering components, as for example, in
turbines used for electricity generation and in vehicle and aeroplane engines, are limited by
continuing deformation at relatively low stress levels, i.e. creep. Instrumented indentation
is attractive for identifying creep properties as it is non-destructive, requires a relatively
small specimen, and has been used for the identification of mechanical properties of a broad
range of materials. However, indentation involves a complex deformation field, and extracting
material properties from experimentally measured indentation quantities can be complex and
non-unique.

The creep deformation of polycrystalline structural metals often can be characterized
appropriately by an isotropic power-law creep constitutive relation and there is a large literature
on modelling the indentation response of power-law creeping materials using analytical methods,
numerical methods or a combination of these (e.g. [1-6]). In particular, studies have been carried
out using such analyses to extract power-law creep parameters from indentation responses,
including, for example, [7-14]. Specifically, in [2,10-12] experimental creep indentation data were
related to uniaxial power-law creep properties using analytical results from Bower et al. [1] and
from the expanding cavity model of Ginder ef al. [2].

Here, the Bayesian statistics-based approach of Zhang et al. [15] is used to extract power-
law creep parameters from the indentation depth versus time response and the residual
surface profile. Finite-element solutions for three materials with very different power-law creep
properties are considered to be the ‘experimental” responses. The power-law creep parameters
identified via indentation, using noise-free as well as noise-contaminated data, are compared
with the corresponding uniaxial creep and stress relaxation responses of the input ‘experimental’
materials.

The questions addressed include:

(i) Can very different power-law creep parameters give nearly the same responses
in load and hold indentation creep? There are sets of rate-independent plastic
material parameters that have indistinguishable force versus depth responses in conical
indentation but very different uniaxial responses [15-17].

(ii) Does using the residual surface profile in addition to or instead of the indentation depth
versus time data improve the quality of the prediction?

(iif) How sensitive is the predicted creep response to noise in the ‘experimental” indentation
data?

(iv) How do the power-law creep properties obtained using the analytical steady-state creep
results of Bower et al. [1] and Ginder et al. [2] compare with those predicted from the
Bayesian-type statistical approach?

2. Problem formulation

Indentation into an isotropic elastic power-law creep solid by a conical indenter is modelled
as sketched in figure 1. Quasi-static loading conditions are presumed. The dimensions of the
region analysed are taken to be large enough to approximate indentation into a half-space and
the deformations are restricted to be axisymmetric.

Calculations are carried out for an indenter angle y =70.3°, which is the equivalent conical
indenter angle to a Berkovich indenter assuming the same projected area on contact at a given
indentation depth [18]. The indentation force in the z-direction is a prescribed function of time,
the nominal indentation depth magnitude is denoted by / and the corresponding nominal contact
radius is rnom = htan y (figure 1).

The calculations are carried out using a quasi-static Lagrangian implementation in the
commercial finite-element program ABAQUS [19] standard. Elastic deformations are presumed
small but finite creep strains are accounted for.
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Figure 1. Sketch of the indentation configuration analysed with h the indentation depth magnitude, ry the actual contact
radius and r,o,, the nominal contact radius.

(a) Initial/boundary value problem

The magnitude of the indentation force in the z-direction, P, is a prescribed function of time, f(t),
so that

P=|  Tds=fo) @1)
Scontact
where T is z-component of the traction vector, T, on the contact surface Scontact-
As described in the ABAQUS [19] manual, the remaining conditions imposed on Scontact are

Ty = T, and min “ (Aiy)? ds:|. (2.2)
S

contact
Here, T} and T, are the components of T in the directions tangent and normal, respectively, to the
indenter, and Aii, is the difference in displacement rate components normal to the indenter, with
() denoting the time derivative.

The coefficient of friction is taken to be u =0.4, leading to very little slip along the contact
surface and the contact boundary conditions in normal direction of equation (2.2) are termed
‘hard contact’ in the ABAQUS [19] standard manual.

With r and z denoting the positions of material points in the initial configuration, the remaining
boundary conditions are

T,=T.=0 onr=Lpand z=0, S# Scontact, (2.3a)
=0, T,=0o0onr=0, (2.3b)
i, =0, T,=0o0nz=-Z2. (2.3¢)

(b) Constitutive relation

The elastic-creep constitutive relation of ABAQUS [19] standard is used so that the (small) elastic
strain—stress relation has the form
€= 1+4+v)
E
where 7 =Jo is the Kirchhoff stress (o is the Cauchy stress and | is current volume/reference
volume), €€ is the elastic strain (based on the logarithmic strain), E is Young’s modulus and v is
Poisson’s ratio. Also, tr() denotes the trace and I denotes the identity tensor.

T — %tr(r)l, (2.4)
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The creep part of the rate of deformation tensor, D = sym(i—" “F1),is

3.7 3

D¢ = Egca—e = angflr’, (2.5)
with
oe\"
éc=¢) (—) =ao." (2.6)
00
and
, 1 3
t'=1— gtr(r)l and o= ET/ 1T/, (2.7)

where 7 is the creep exponent, ¢ is a reference strain rate, oy is a reference stress and a = éy/0y)
is the power law creep pre-exponential factor. Also, the effective creep strain €. is given by
€c= fé éc.dt and t is time.

3. Bayesian-type statistical approach

The equations of the Bayesian-type statistical approach used to infer the creep parameters 1, oy
and ¢y from an indentation depth versus time response, from a residual surface profile or from
a combination of these are presented here. A more complete presentation, background on the
methodology and references are given in [15].

The ‘experimental” indentation data consist of: (i) a vector characterizing the residual surface
profile, s™; and (ii) a vector characterizing the indentation depth versus time response, h™. The
components of the vector s7*, k=1, ..., Ks are values of the normalized surface coordinate, zj//yef
(hyef is a conveniently chosen reference length) at specified values of normalized radial coordinate
7t/hres. The components of the vector Ijf', k=1, ..., K} are values of the normalized indentation
depth hy /hyf at specified values of normalized time ty /tef.

Finite-element solutions for a normalized residual surface profile, denoted by s', and for
a normalized indentation depth versus time response, denoted by hi, are used to construct a
coarse database of indentation responses, with i=1,2,..., Kiota] and Koty is the total number
of indentation response pairs (s',/i') in the database. In practice, it is expected that there will be a
delay between unloading and measuring the surface profile. The measured surface profile will,
at least to some extent, depend on this delay which, if specified, can be incorporated into the
formulation. However, for simplicity and because a standard delay time remains to be established,
the database here is constructed using the surface profile immediately after unloading.

Treating the indentation depth versus time data and the surface profile data as being
independent, the posterior probability p(s’, h'|s™, h™) associated with the ‘experimental’ data
(s™,h™) is given by
p(s'|s™)p(' K™

s H|s™, h™) = ,
p = Er

(3.1)

where o
) PEIp(E)
Zs
In equations (3.1) to (3.2), there is no sum on 1.
The constants Zg, Z}, and Zg},, which ensure that the posterior probability values lie in the range
0to 1, are given by

p(s'ls and p(h'|h™) = pUHI)p(H) (3.2)
Zy

Ktotal Ktotal Ktotal
Zs= Yy p(s™sp(s), Zn="Y_ p("™ K )p(), Zgn =) p(s'ls™)p(H'|™). (3.3)
i=1 i=1 i=1

The likelihood functions, which measure the difference between the ‘experimental” data and
the predicted responses in the database, are (see Zhang et al. [15])

Kq Kn
my iy _ 1 k _ & my,i — 1 _ &
p(s™s) = (éé@) exp ( > ) and p(h™|K) (éﬁ«/ZTT) exp ( > ), (3.4)
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Table 1. Constitutive parameters characterizing the three input ‘experimental’ materials.

E(GPa) v n op(MPa) &) a(Pa="s™")
Se (35°0) 9.2 033 115 8.740 1.0 x 10~ 1.04 x 1077
s Lo o o e e oo i
oo w o e L vor 0

where Kj is the number of data points on the residual surface profile curve, K}, is the number of
data points on the indentation depth versus time curve and the variances (£/)? and (5}11)2 are given
by the maximum likelihood estimates

K Ky
~ 1 & . - 1 .
€= D 6F -5 and (&)= 5 >t -, (3.5)
S k=1 k=1

where the subscript k denotes the kth component of each vector. If one of the variances in equation
(3.5) is equal to 0, its corresponding likelihood in equation (3.4) is infinite and the corresponding
posterior probability is set to 1.

For all sets of creep parameters in the database, a uniform prior is used for both p(s’) and
p(hi) in equation (3.2). Outside the range of values in the database, p(si) =0 and p(hi) =0. The
posterior probabilities are evaluated by substituting the prior values and the likelihood values
from equation (3.4) into equation (3.2).

4. Material parameters

The ‘experimental” materials considered are : (i) amorphous selenium (Se) at 35°C; (ii) solid acid
CsHSOy at 145°C; and (iii) tin (Sn) at 129°C. The values of the material parameters characterizing
these materials are given in table 1.

For Se, the values of E, n and « are taken from [10], and the value of Poisson’s ratio v is from
[20]. For CsHSQOy, the values of n and « are taken from table 1 of [21]. The value of E is obtained
by a linear fit to the uniaxial data at a strain rate of 1072 s~! up to a stress of 6.0 MPa in fig. 1(a) of
[21]. For Sn, the value of n is taken from [22] and the value of « is obtained by a fit to data in fig.
2(b) of [22]. The value of E is taken to be 45 GPa [23] and the value of v is taken from [24].

5. Indentation responses

(a) Constantload and hold indentation creep

The imposed loading history models a constant load and hold indentation creep test, with the
magnitude of the applied force on the indenter, f(f) in equation (2.1), prescribed to be

th? oot /t, 0<t<th
fi= {h%efﬂo, h<t<ty (5.1)

th2o0(ts —1)/(t3 — 1), ta<t=<t3

where the rise time is t1ég =104, the hold time is frég = 1.0, the load release time, t5 — o, is
given by t3ég = trép + 10~ and the normalizing length is taken to be ff =3.43 x 10~%Lg in all
calculations. The value of og used in equation (5.1) for each material is given in table 1. The value
of the non-dimensional factor ¢ is selected, so that the indentation depth & is large compared
with the finite-element size near the indenter but with the large strain gradients confined to the
region with the finest finite-element resolution. The values of ¢ used in the calculations are given
in appendix A.
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For power-law creep with elastic strains neglected, equation (2.6), Bower et al. [1] derived a
relation for normalized indentation depth rate:

1 dhep

: _ — Bp"
A T Bp (52)
with
p— f(®) (5.3)
nh%rp tan?y’

where écrp is indentation strain rate, p is the nominal contact pressure (contact force/contact area)
(see figure 1), and B is an indentation creep parameter.
For f(t) = fconst, integration of equation (5.2) with respect to t gives

1/2n fCOﬂSt 1z 1/2n
herp = (21) L), (5.4)
7 tan‘ y

Note that since the force magnitude is prescribed constant, both the indentation pressure, p, and
the indentation strain rate, é.rp, vary with time.

For an elastic solid, the relation between indentation depth & and indentation force feonst in the
axisymmetric Boussinesq problem is given by Sneddon [25]:

1/2
ﬂfconst
hela = | =———— , 5.5
ela (QE* tan y ) (5.5)

with E* = E/(1 — v?).

As exploited by Su et al. [10], the indentation depths induced by a constant load for a power-
law creeping solid, equation (5.4), and for an elastic solid, equation (5.5), are each proportional to
Vfeonst so that in the power-law creep regime

Bew _ gyt (Ek)mtm"' 5.6)
Hela 72tany

Hence, the ratio /1/h., is independent of feonst both at the beginning of indentation when #,,
dominates and at steady-state creep when ficrp dominates. Thus, hie|, provides a natural choice
of reference length [10]. Attention here is confined to scaling relations associated with load and
hold indentation, but we note that scaling relations for other loading histories have been given in
[5,10].

The values of hig|, are heja e = 7.88 x 10~4Ly for Se, hela,cstso, = 3.43 x 10~4Ly for CsHSO,4 and
helasn =1.18 x 10~3Lg for Sn. If we take feonst = 100 mN, then /g, is 2.33 pm, 6.46 pm and 1.06 um
for Se, CsHSO4 and Sn, respectively. For each of the three materials its value of kg, is used as the
reference length.

In their experiments Su et al. [10] found that the /i/hy, versus t response for amorphous
selenium at 35°C under various applied indentation forces collapsed onto a single curve even in
the transient regime. Here, calculations with indentation forces of 1/3 and 2 times the f(t) value
in equation (5.1) were carried out for Se (1 =1.15), CsHSO4 (n = 3.59) and Sn (1 = 6.60), and the
calculated curves of Ii/hg), versus t collapsed onto a single curve.

(b) Finite-element implementation

The reference finite-element mesh for the configuration in figure 1 consists of 8100 nodes,
corresponding to 7921 four-node bilinear axisymmetric quadrilateral elements. In a 0.1Ly x 0.1Lg
fine mesh region near the indenter tip, 60 x 60 elements are used with a uniform square element
size (1.7 x 1073)Lg x (1.7 x 1073)Lg. Thus, the element size in the fine mesh region is 2.2k, se
for Se, 5.0 hela,cstso, for CsHSOy and 1.4 higla s for Sn. The element size is gradually increased
outside the uniform meshed region. Reduced integration with hourglass control is used. Also,
the error tolerance in ABAQUS [19] standard is set to 1072, More details on the ABAQUS [19]
indentation implementation used are given in [26].
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Figure 2. The indentation responses of the three ‘experimental’ materials, Se, CsHSO4 and Sn, in constant load and hold
indentation; see equation (5.1). The material parameters are given in table 1. (a) Normalized indentation depth h/helase
versus time t for Se. The points are data taken from Su et al. [10]. (b) h/heia versus t/tees. () 10G10(h / heta) Versus 10y (t / tref).
(d) Normalized surface profiles near the indenter after unloading. The values of hej, and ter = 1/€q in (b—d) are specific to each
material. (Online version in colour.)

Convergence was investigated using a refined mesh with 1/4 the element sizes of the
reference mesh, giving 31 684 quadrilateral elements and 32 041 nodes. For all three materials, the
indentation depth versus time responses calculated with the two meshes essentially coincided.
The differences between indentation depths when tég > 10~* were less than 2.7%, 0.2% and 0.1%
for Se, CsHSO4 and Sn, respectively. The residual surface profile for Se involved sink-in with
a maximum profile difference of 0.4%, while the surface profiles for CsHSO4 and Sn involved
pile-up with a maximum pile-up height difference of 1.8% between the two meshes. Also, the
maximum indentation depths at non-dimensional time téy = 1.0 differed by less than 0.1%. All
results to be presented subsequently were obtained using the reference finite-element mesh.

(c) ‘Experimental’ indentation responses

Figure 22 shows the computed normalized indentation depth, /1/hej, se, Versus time, ¢, response
obtained using material parameters for Se in table 1. The points are experimentally measured data
from fig. 6(b) of Su et al. [10] and show that the experimental and computed responses are in very
good agreement.

Figure 2b shows h/hej, Versus t/tyf responses for three sets of material parameters in table 1,
Se, CsHSO4 and Sn, when f,f = 1/ép and /g, is taken to be the specified value for each of the three
materials. Figure 2c shows a log;,—log;, plot of the data in figure 2b. Note that the value of 11/hj,
at which each material enters steady-state creep differs. The unloading parts of the responses are
not shown in figure 2a—c, and are not used for identifying the power-law creep parameters.

In the early stages of indentation, the plot of indentation depth & versus time ¢t is not smooth
because when a new node comes into contact with the indenter, the contact length increases by
the length of one-element. This discrete change in contact length occurs in the early stages of
indentation when both t and & are small. In contrast to [15], the finite-element output responses
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Figure 3. Distributions of effective creep strain, €., and mean normal stress, oy, in the vicinity of the indenter at téy = 1.0
(where € is the value in table 1 for each material). The indentation depths are 23.4h¢ s, 70.5h¢1a cshiso, and 13.5he1,5n for
Se, (sHSO, and Sn, respectively. (a) Distribution of € for Se. (b) Distribution of €, for CsHSO4. (c) Distribution of €. for Sn.
(d) Distribution of oy, / o for Se. (e) Distribution of oy, / o for CsHSO4. (f ) Distribution of oy, / o for Sn.

are not smoothed, since only the differences between the ‘experimental” input response and the
responses of sets of material property values in the database matter, as described in §3.

Figure 2d shows the normalized surface profiles near the indenter after unloading for the
three materials. The residual surface profile of CsHSO,4 (dashed line) has a larger normalized
indentation depth than those for Se (solid line) and Sn (dash dot line). The residual surface profile
for Se exhibits sink-in while those for CsHSO4 and Sn exhibit pile-up.

Figure 3 shows distributions of effective creep strain, €., and mean normal stress, om,
for the ‘experimental’ materials subject to constant load and hold loading in the vicinity
of the indenter at t)ép=1.0 in equation (5.1). The size scale of the regions shown is
material dependent, being 100/g]a se, 300/e1a cstso, and 100k, sy for Se, CsHSO4 and Sn in
figure 3a—c, respectively. For each of the three materials, the state of deformation shown is
at the maximum indentation depth hmax for each material just before unloading is initiated.
For Se hmax =0.0185Ly =23.4heja 5., for CsHSO4 hmax =0.0241Lg = 70.5he15 csHs0, and  for
Sn himax = 0.0159L¢ = 13.5k], 5n-

The extent, in terms of hej, cspso, Of the region with relatively large values of €. for CsHSOy is
much larger, ~ 300/, csHS0,, than is the extent of the corresponding regions in terms of g, for
Se and Sn. This is because the ratio og/E for CsHSO4 is more than one order of magnitude smaller
than for the other two materials (table 1). The creep deformations for Sn are more localized under
the indenter than for Se and CsHSO4 because Sn has a larger value of n and a smaller value of «.

Figure 3d—f shows the contours of the corresponding mean normal stress oy, /o for Se, CsHSOy4
and Sn. The mean normal stress is given by

Om = %tr(a), (5.7)

where ¢ is the Cauchy stress tensor (since the materials are nearly incompressible there is little
difference between the mean normal stress values based on Cauchy stress and based on Kirchhoff
stress). The peak magnitude of om /0p is much smaller for Se than for CsHSO4 and Sn. For Se, the
value of 7 is the smallest for the three materials and the value of « is the largest.
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(d) Construction of the databases

The creep exponent 1 and associated pre-exponential factor « in equation (2.6) define the power-
law creep response. However, since the dimensions of « are stress™" /time, it is not convenient to
base the databases needed for the Bayesian analysis on «. Hence, for each material, the databases
are constructed for the parameters 1, oy and ép.

For each of the three ‘experimental’ materials in table 1, one database was constructed
consisting of indentation depth versus time responses and residual surface profiles directly
calculated from finite-element simulation. All the database indentation responses, I with Ky, =64
data points and s with K =56 data points, where i=1,..., K1, are evaluated at specified
values of €yt and r/hg, that are obtained by interpolation of the computed responses. The
specified values of égt and r/he, are distributed in a material dependent nonuniform manner
because of the large variation in time scales and length scales between the three materials. For the
calculation of the likelihood functions, equations (3.4), and of the variances, equation (3.5), the
‘experimental’ indentation responses, i and s™, are evaluated at the same points.

In all three databases, the creep exponent 1 € [1.0,7.0] with step size 0.1 (61 points) and éptr €
[0.1,1.0,10.0,100.0] (4 points). For Se and Sn, op/E € [1 x 1074, 1.1 x 10~3] with step size 1 x 10~
(11 points) while for CsHSOy, op/E €[1 x 1075,1.1 x 1074] with step size 1 x 1075 (11 points).
Thus there are Kioy = 2684 sets of parameter values in each of the three databases. For each set
of parameter values, one finite-element calculation was carried out.

As in [15,26,27], databases obtained directly from the finite-element calculations are relatively
coarse and interpolation is used to populate finer databases. Here, linear interpolation between
nearby material parameters associated with database “points’ (each database “point” consists of
a vector of indentation depth versus time and a vector of surface profile points) in the coarse
databases was used to define the responses associated with the “points’ in the finer databases.
The interpolated finer databases have a step size of 0.02 in n and of 0.2 in log;,(éot2) for all
three materials, of 0.2 x 10™* in 09 /E for Se and Sn, and of 0.2 x 1075 in 09/E for CsHSOy. This
results in Kioty) = 245 616 points in the finer databases. The interpolated databases are used for the
predictions of creep parameters.

The accuracy of the interpolation was checked by carrying out a few finite-element calculations
using interpolated values of material parameters. The agreement between calculated and
interpolated responses was best for larger values of the creep stress exponent n and worse for
values of n near 1. However, as the results to be presented subsequently will show, the lack of
accuracy of the interpolated response for n ~ 1 does not adversely affect the ability to predict the
indentation creep response and the associated power-law creep parameters.

6. Identification of power-law creep properties from indentation

Values of the creep material parameters 1, oy and € are obtained from the indentation responses.
The predicted material parameters are then used to calculate the spatially uniform uniaxial creep
and relaxation responses from a one-element finite-element solution.

For uniaxial creep loading the prescribed stress o is

o,t
=, 0<t<tc

o={ta (6.1)
oq, tc1<t=tco,

where o0, =0.500 = 4.37 x 10° Pa, tc1 =10"*s, tcy =3000s for Se, o, =0.109 =0.1512 x 10* Pa,
tc1 =1077s, tcy =500 for CsHSO, and o, = 0.200 = 1.866 x 10° Pa, tc1 =102 s, tcp = 4000s for
Sn, giving the strain rate values o’ to be 4.51 x 1072571, 2.57 x 107#s~! and 2.44 x 10~ s~ for
Se, CsHSO4 and Sn, respectively. The value of oy is for each material given in table 1.

For an imposed o, at t =0 (i.e. with the rise time neglected),

€= % + ao't. (6.2)
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For uniaxial stress relaxation loading, the displacement rate is prescribed so that € =In(¢/¢)
is a constant, where ¢ is the current length and ¢y the initial length, and is given by
et
S, 0<t<ty
e= {11 (6.3)

€, IRl <ft=<IRy,

where ¢, =1 x 1077, tg; =1073s, trp =150s for Se, €, =5 x 1078, tg; =10~ s, tro =5005s for
CsHSO and €, =1 x 1072, tgy =10~ s, tgp = 2 x 10* s for Sn.
For an imposed ¢; at t =0, and withn > 1,

Ee, Oq
o= = .
[1+4 a(Ee)*(n — e HVO=D 14 acl(n — 1)e; 11/

Note that with n > 1, 0] /e, = (E€s)" /€ =0 for €, =0. Also, in both equations (6.2) and (6.4), the
response is governed by o x (stress quantity)”.

A significant difference between the indentation depth versus time response in equation (5.6)
and the uniaxial creep responses in equations (6.2) and (6.4) is that hcrp/hela is independent of
the load magnitude (i.e. sicrp and hej, have the same dependence on applied load) whereas the
uniaxial creep responses strongly depend on the applied load magnitude.

(6.4)

(a) Bayesian identification

For the three ‘experimental” materials in table 1, the set of values n, oy and ¢y with the largest
posterior probability is identified as the set of parameter values characterizing the creep response
of the ‘experimental’ material. The value of the pre-exponential factor « is then calculated using
equation (2.6).

Once the initial database is constructed, the computations for the interpolation and for the
statistical analysis are very light and are quickly carried out on a personal computer [26].

(i) Noise-free data

For each database, the posterior probability distribution is calculated from: (i) indentation depth
versus time data (HT); (ii) residual surface profile data (S); and (iii) both indentation depth versus
time data and residual surface profile data (HTS). The values of 1, op and éy associated with the
largest posterior probability value obtained from (i), (ii), (iii) and the responses based on these
values are denoted by HT, S, HTS, respectively.

For Se, the predicted values of 1, og, ég and therefore « using any of the three sets of data
(HT, S and HTS) coincide. Figure 4 shows the indentation responses (dashed lines and labelled
‘all cases’) obtained using these predicted parameter values. For comparison, the indentation
responses using the input properties of Se in table 1 (solid lines) are also shown. The indentation
responses of ‘all cases’ are nearly indistinguishable from the ‘experimental” indentation responses.

The predicted parameter values 1, og, ég, @ and associated largest posterior probability values
p1 using three types of data based on the noise-free ‘experimental” indentation responses of Se in
figure 2 are given in table 2.

The predicted parameter values of 2 and « are the same for all three cases and are close to the
input values but a direct comparison of the values of « is not meaningful unless the values of n
coincide since the units of « vary with n.

The uniaxial creep responses obtained from a one-element finite-element uniaxial solution
with the loading given by equation (6.1) for the “all cases” parameter values in table 2 are shown
in figure 51. The corresponding stress relaxation responses using equation (6.3) are shown in
figure 5b. In both figures, the predicted responses compare well with those obtained using the
input material parameter values for Se in table 1.

Figure 6 shows the indentation responses calculated using the creep properties for CsHSO4
with the largest value of posterior probability p; compared with the ‘experimental” indentation
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Figure 4. Comparison of predicted and ‘experimental’ indentation responses for Se. The indentation responses with the largest
value of posterior probability for the indentation depth versus time data (HT), for the residual surface profile data (S) and for
both the indentation depth versus time data and the residual surface profile data (HTS) coincide and are denoted by ‘all cases’.
The associated values of n, o, €y and v are given in table 2. (a) Normalized indentation depth 1/ hei, se Versus normalized time
t/tres se Where tifse = 1/€gse. (b) Normalized surface profiles, z/heja se Versus r/hep se, near the indenter after unloading.
() logy,—logy, plot of (a). On the scales in this figure, the ‘all cases’ predictions are indistinguishable from the corresponding
‘experimental’ responses.

(a) 015 Se (b)
— — — allcases 1% 1077 Se
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€ Q6x108
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Figure 5. Comparison of the predicted uniaxial creep and stress relaxation responses using the “all cases’ parameter values in
table 2 with the corresponding ‘experimental’ responses for Se. (a) Uniaxial logarithmic strain, €, versus time, t. (b) Normalized
uniaxial Cauchy stress, o/E, versus time, t. On the scales in (a), the ‘all cases’ prediction is indistinguishable from the
corresponding ‘experimental’ response.

Table 2. Predicted values of n, oy, €q, o and the associated largest value of posterior probability p; for Se obtained based on
noise-free ‘experimental’ indentation responses. The predicted values obtained using the indentation depth versus time data
(HT), using the residual surface profile data (S) and using both the indentation depth versus time data and the residual surface
profile data (HTS) all coincide and are denoted by ‘all cases’.

n oo(MPa) &) a(Pa="s) I
all cases 116 8.648 10 x 10~ 0.898 x 107" 1.00

responses. As seen in figure 6a, for CsHSOy, the representation of the indentation depth versus
time response is improved by considering surface profile data. However, the improvement is
small and is negligible for the log;,—log;, plot in figure 6c.

Table 3 shows the predicted parameter values for CsHSO4 and the value of the associated
largest posterior probability obtained from the Bayesian analysis and figure 7 shows the
comparison between the uniaxial creep and uniaxial stress relaxation responses using the
predicted creep parameter values in table 3, for CsHSO4 and the ‘experimental” responses. For
CsHSOy, neither the parameter values based on fitting the indentation depth versus time response
(HT) nor the residual surface profile (S) gives a particularly good fit to the uniaxial creep and
stress relaxation responses but when both sets of data are used (HTS) an excellent fit is obtained.
We note that the predicted values of reference strain rate for the HTS fit is a factor of 100 times the
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Figure 6. Comparison of predicted and ‘experimental’ indentation responses for (sHSO,. The indentation responses are those
corresponding to the largest value of posterior probability for the indentation depth versus time data (HT), for the residual
surface profile data (S) and for both the indentation depth versus time data and the residual surface profile data (HTS). The
associated values of n, o, € and «v are given in table 3. (a) Normalized indentation depth /1 / heia cshso, versus normalized time
t/tref cshiso, Where tref cohso, = 1/€q,cstiso, - (b) Normalized surface profiles, z/heja cshso, versus r/helacstiso, . near the indenter
after unloading. (c) log;,—log,, plot of (a). On the scales in this figure, the predictions with S and HTS data are indistinguishable
from the corresponding ‘experimental’ responses.

(@) )
0.15F CsHSO, .
! — — — HT L
—_———— S p
—— HTS , _
0.10+ 7 e
7’ R
€ ot
e
0.05 7
277
7
0 100 200 300 400 500 0 100 200 300 400 500
1(s) 1(s)

Figure 7. Comparison of the predicted uniaxial creep and stress relaxation responses using the parameter values in table 3
with the corresponding ‘experimental’ responses for (sHSO,. See the caption of figure 6 for the meanings of HT, S and HTS. ()
Uniaxial logarithmic strain, €, versus time, t. (b) Normalized uniaxial Cauchy stress, o /E, versus time, t. On the scales in this
figure, the predictions with HTS data are indistinguishable from the corresponding ‘experimental’ responses.

Table 3. Predicted values of n, o, €o, o and the associated largest value of posterior probability p; for CsHSO, obtained based
on noise-free ‘experimental’ indentation responses. See the caption of figure 6 for the meanings of HT, S and HTS.

n op(MPa) &) a(Pa~"s™) P
HT 3.58 0.0312 15.8 12.9 x 107" 1.00
.............................. L
................................ e ame e e e e

input value of ¢y = 1s~!. Nevertheless, the predicted values of 7 and « are very close to the input
‘experimental’ values.

Figure 8 shows the indentation responses calculated using the creep parameter values for
Sn that have the largest value of posterior probability p;. As for CsHSOy, the prediction of the
indentation response of the ‘experimental” material is slightly improved by considering surface
profile data, figure 8a. For Sn, the creep parameter values in table 4 obtained using only surface
profile data (S) and those obtained using both indentation depth versus time data and surface
profile data (HTS) are identical. The HTS (or S) predicted value of € is a factor of 10 times the
‘experimental” input value of éy for Sn in table 1.
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Figure 8. Comparison of predicted and ‘experimental’ indentation responses for Sn. See the caption of figure 6 for the meanings
of HT, Sand HTS. The associated values of n, o, €y and « are given in table 4. (@) Normalized indentation depth /1 / heja sp versus
normalized time t/tref sn Where tref.sn = 1/€qsn. (b) Normalized surface profiles, z/heja s Versus r/heiasn, near the indenter
after unloading. (c) log;,—logy, plot of (). On the scales in (a) and (b), the predictions with S; HTS data are indistinguishable
from the corresponding ‘experimental’ responses. In (c), all three responses are indistinguishable.

(@) (b)
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Figure 9. Comparison of the predicted uniaxial creep and stress relaxation responses using the parameter values in table 4 with
the corresponding ‘experimental’ responses for Sn. See the caption of figure 6 for the meanings of HT, S and HTS. (a) Uniaxial
logarithmic strain, €, versus time, . (b) Normalized uniaxial Cauchy stress, o /E, versus time, .

Table 4. Predicted values of n, o, €q, o and the associated largest value of posterior probability p; for Sn obtained based on
noise-free ‘experimental’ indentation responses. See the caption of figure 6 for the meanings of HT, S and HTS.

n oo(MPa) &) a(Pa~"s™") P
HT 6.64 10.80 3.98 7.91 x 10=¥ 0.85
......................... S
S e me W e o

Figure 9 shows the uniaxial creep responses and uniaxial stress relaxation responses
predicted for Sn using the creep parameter values in table 4 compared with the corresponding
‘experimental” responses. Neither of the predicted responses for Sn in figure 9a provides a
particularly good representation of the ‘experimental” uniaxial creep response, although the
inclusion of surface profile data does improve the prediction. On the other hand, both the HT
and S; HTS relaxation responses in figure 9b do provide a fairly good approximation of the
‘experimental’ response. Interestingly, the HT response in figure 9b is actually slightly closer to
the “experimental” response than is the S; HTS response. Indentation creep responses are often
represented using log;,—log;, plots so that it is worth noting that although the predicted and
experimental indentation responses in figure 8c are indistinguishable on a log;,—log; scale, the
uniaxial creep responses in figure 9a differ significantly.
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Figure 10. lllustration of realizations of noise-contaminated indentation data with noise amplitudes n, = 0.01, n; = 0.01,
Ny = 0.10 and 1, = 0.10 superposed on the indentation data for Se. (a) Normalized indentation depth h/he, versus
normalized time ¢ /ts. (b) Surface profiles near the indenter after unloading. (c) logy,—logy, plot of (a).

For all three materials, predictions with a posterior probability p; = 1.00 have power-law creep
parameters that differ from those of the corresponding ‘experimental’ material. This is because
the ‘experimental” input parameters are not in the coarse database. Even if the ‘experimental’
input parameters are in the interpolated database, interpolation errors can preclude those material
parameters giving the largest value of posterior probability. For CsHSO4 and Sn, the predictions
using both the indentation depth versus time data and the residual surface profile data (HTS)
provide the best fit to the ‘experimental’” responses, while for Se (1~ 1), any of the three
considered datasets, HT, S and HTS, gives an identical prediction and have a posterior probability
p1=1.00.

The indentation responses for CsHSO4 and Sn obtained using the values of the HTS material
parameters give a very good fit to the ‘experimental” indentation responses with a posterior
probability p1 =1.00 even though the predicted values of ¢y are very different from the input
values. This shows that for constant load and hold indentation creep, different power-law creep
parameters can have very similar indentation responses.

(i) Noise-contaminated data

With the noise-free ‘experimental’ responses denoted by s™"Put and hi"P!, the noise-contaminated
data are obtained by superposing Gaussian noise on the noise-free data by

sM — Sinput + Snoise and ™M = hinput + hnoise. (6.5)

The noise is added to each indentation response, shoise and BOe via a call to the Matlab [28]
function normrnd(0,£,[1,K]), where 0 is the mean value, &£ =&, or & is the standard deviation
and K =Kj, or K; is the length of a 1 x K vector of random values with the specified mean and
standard deviation. Each call to normrnd provides a different vector of random values.

The standard deviation & is related to a reference length s, with noise amplitude ns and the
standard deviation &, is related to the maximum indentation depth with noise amplitude 7y, via

& =nssre and & = pmax(iy ), (6.6)

with k=1,2,...,Ky, ns >0 and 5y, > 0. The reference length s, is taken to be the indentation
depth of the noise-free surface profile after unloading.

Figure 10 shows examples of noise-contaminated indentation responses with values of the
noise amplitudes n, =0.01, n, =0.10 and with 5s =0.01, ns =0.10. The effect of noise on the
prediction of the power-law creep parameters, we consider two noise levels: (i) a low noise level
nh = ns = 0.01; and (ii) a high noise level i, = ns =0.10.

As in [15], calculations of the posterior probability distribution are carried out for 100
realizations with the same values of the noise amplitudes 7, and ns. For each of the 100
realizations, the values of 11, g and ég having the largest posterior probability p; are determined.
The arithmetic averages of these values are taken as the predicted power law creep parameter
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Figure 11. Comparison of predicted and ‘experimental’ indentation responses for Se. The associated values of n, o, € and o are
obtained from noise-contaminated HTS data (averaged over 100 realizations) and given in table 5. (a) Normalized indentation
depth h/heis se versus normalized time ¢ /t,ef se. (b) Surface profiles near the indenter after unloading. (c) log;y—log;, plot of (a).
On the scales in this figure, the predictions with 17, = ns = 0.01 are indistinguishable from the corresponding ‘experimental’
responses.

Table 5. Predicted values of n, oy, €, o and the associated averaged largest posterior probability p; for Se obtained from
averaging the predicted values over 100 realizations with 1, = 7, = 0.01(subscript 0.01) and with 1, = 1, = 0.10 (subscript
0.10). See the caption of figure 6 for the meanings of HT, S and HTS.

n oo(MPa) (s aPa"s™) P
115 538 0.6 x10~* 1.09 x 10"

values associated with the specified noise amplitudes and the value of « is calculated from the
resulting averaged values of 1, og and éy. We note that no additional finite element calculations
are required to determine these averaged values.

Figure 11 shows the indentation responses predicted using noise-contaminated HTS data for
Se compared with the corresponding noise-free ‘experimental” responses. The responses for a low
noise level (y, = s = 0.01) are indistinguishable from the experimental responses while those for
a high noise level (n, = ns = 0.10) still provide a good representation.

The material parameters and associated posterior probability obtained based on indentation
depth versus time data (HT), residual surface profile data (S) and on both indentation depth
versus time data and residual surface profile data (HTS) are given in table 5. In contrast to the
noise-free case where the HT, S and HTS predictions coincided, the predictions based on different
indentation data differ for noise-contaminated data. With a low noise level (subscript 0.01), the
values of 7 and « obtained using HT data are closest to the ‘experimental” values in table 1 even
though the posterior probability value is the smallest. On the other hand, the HT( ¢ value of
€p is 60% of the input value. The posterior probability is significantly increased when surface
profile data are used in the identification analysis, increasing to p; = 0.93 for the HTS based creep
parameters. The values predicted for data with a high noise level (subscript 0.10) have much
larger differences from the input values and have very low values of p1, indicating a lack of
confidence in them. Although the value of p1 for the HTSy 19 set of parameter values is low, it
is much larger than those for the HT 19 and Sp 19 predictions.

The predicted uniaxial creep and stress relaxation responses for Se obtained from one-
element finite-element calculations (giving homogeneous stress and strain fields) using the creep
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Figure 12. Uniaxial creep and stress relaxation responses using the averaged predicted parameter values over 100 realizations
for Se obtained with noise-contaminated HTS data in table 5. The solid lines show the corresponding ‘experimental’ responses.
(a) Uniaxial logarithmic strain, €, versus time t. (b) Normalized uniaxial Cauchy stress, o /E, versus time, t. On the scales in (a),
the prediction with , = n; = 0.01is indistinguishable from the corresponding ‘experimental’ response. In (), the prediction
with n, = ns = 0.01is indistinguishable from the prediction with 7, = n, = 0.10.
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Figure 13. Comparison of predicted and ‘experimental’ indentation responses for CsHS0,. The associated values of n, oy, €
and « are obtained from noise-contaminated HTS data (averaged over 100 realizations) and given in table 6. (a) Normalized
indentation depth h/helacshso, Versus normalized time t /et cshso, . (b) Surface profiles near the indenter after unloading.
(c) logyy—logyq plot of (). On the scales in (a) and (b), the predictions with 1, = 1, = 0.01 are indistinguishable from the
corresponding ‘experimental’ responses. In (c), all three responses are indistinguishable.

properties in table 5 are shown in figure 12. For comparison, the corresponding responses for the
‘experimental’ material are shown. The creep parameters obtained using the low noise HTSg o1
indentation data provide a good fit to the uniaxial creep and stress relaxation responses. The high
noise level HTSy 19 data also provide a rather good fit to the stress relaxation data but a much
poorer fit to the uniaxial creep data. As will also be seen subsequently, the uniaxial creep response
is more sensitive to the values of the creep parameters than is the stress relaxation response.

For CsHSOy, figure 13 compares the indentation responses predicted using noise-
contaminated HTS data and the ‘experimental” indentation responses. The responses predicted
with low noise provide a very good representation of the ‘experimental” indentation responses
while the indentation depth versus time response predicted with the high noise level differs
somewhat from the corresponding ‘experimental” response.

The creep parameters and associated posterior probability values obtained for CsHSO4 from
noise-contaminated data are given in table 6. The values of creep exponent n and associated pre-
exponential factor o obtained based on HTSg; are in good agreement with the ‘experimental’
creep parameters in table 1 and the posterior probability is p; = 0.80. However, the value of &,
as for the prediction based on noise-free data, is 100 times that for the ‘experimental” material.
The values of « obtained using the HT( g1 and the Sp; are significantly different from the input
value for CsHSOj in table 1 and the posterior probability values for these predictions are much
smaller than p; for the HTSp o1 prediction. The creep parameters obtained for CsHSOy from the
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Figure 14. Uniaxial creep and stress relaxation responses using the averaged predicted parameter values over 100 realizations
for CsHSO, obtained with noise-contaminated HTS data in table 6. The solid lines show the corresponding ‘experimental’
responses. (a) Uniaxial logarithmic strain, €, versus time t. (b) Normalized uniaxial Cauchy stress, o /E, versus time, t. On the
scales in (b), the prediction with n, = ns = 0.01is indistinguishable from the corresponding ‘experimental’ response.

Table 6. Predicted values of n, o, €, o and the associated averaged largest posterior probability p; for (sHSO, obtained from
averaging the predicted values over 100 realizations with 1, = 7, = 0.01(subscript 0.01) and with 1, = 1y, = 0.10 (subscript
0.10). See the caption of figure 6 for the meanings of HT, S and HTS.

n oo(MPa) &™) aPa"s™) n
HTo01 3.59 0.0402 511 151 % 107" 0.20
_________________________ e I
e o om o oo bag
e o emn we by s
_________________________ e
e o oem e we Lo o

high noise level data (subscript 0.10) differ substantially from the corresponding values for the
‘experimental” material and, consistent with this, the posterior probability values are small. Here,
as in fig. 10 of [27], with increasing noise, the posterior probability distribution is more spread out
with similar values of posterior probability for a range of material constitutive parameter values.

Figure 14 shows a comparison between the ‘experimental” uniaxial creep and stress relaxation
responses for CsHSO4 and those predicted based on noise-contaminated HTS data. For both
the high noise level, HTSy 19, based creep parameters and the low noise, HTSg 1, based creep
parameters in table 6, there is very good agreement with the ‘experimental” stress relaxation
response in figure 14b. On the other hand, the creep response in figure 14a shows a large difference
between the uniaxial creep response of the ‘experimental’ material and the prediction based on
the HTSy 19 data.

The comparison of ‘experimental” and noise-contaminated HTS data predicted indentation
responses for Sn in figure 15 shows a noticeable difference even for a low noise (7s = n, = 0.01)
level. The HTS-based creep parameters are given in table 7 along with the associated posterior
probability value. The predicted values of the pre-exponential factor « all differ substantially
from the input value for Sn in table 1 except for the value based on Sy o1 and the largest value of
posterior probability is only p; = 0.38 for HTSg o1. In contrast to the results for Se in table 5 and
for CsHSOy in table 6, the predicted value of o based on HTS o1 data differs from the input value
of Sn in table 1.

The noise-contaminated uniaxial creep and stress relaxation predictions for Sn in figure 16
show a significant deviation from the corresponding responses of the ‘experimental” material. In
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Figure 15. Comparison of predicted and ‘experimental’ indentation responses for Sn. The associated values of n, oy,
€ and « are obtained from noise-contaminated HTS data (averaged over 100 realizations) and given in table 7. (a)
Normalized indentation depth h/hel, 5 Versus normalized time £ /t,e 5. (b) Surface profiles near the indenter after unloading.
() logyy—logy, plot of (a). On the scales in (c), all three responses are essentially indistinguishable.
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Figure 16. Uniaxial creep and stress relaxation responses using the averaged predicted parameter values over 100 realizations
for Sn obtained with noise-contaminated HTS data in table 7. The solid lines show the corresponding ‘experimental’ responses.
(a) Uniaxial logarithmic strain, €, versus time t. (b) Normalized uniaxial Cauchy stress, o' /E, versus time, t.

Table 7. Predicted values of n, oy, €y, o and the associated averaged largest posterior probability p; for Sn obtained from
averaging the predicted values over 100 realizations with 7, = 1y, = 0.01(subscript 0.01) and with 1, = ny, = 0.10 (subscript
0.10). See the caption of figure 6 for the meanings of HT, S and HTS.

n op(MPa) &™) aPa~"s™) P
HTom 6.61 12.20 %2 349 x 1077 0.1
_________________________ e
R o s o e e
R o iy g e T o
_________________________ e
S L as a oy e

particular, in figure 164, the creep responses predicted based on both the HTSg; data and the
HTSy 10 data are very different from the responses of the ‘experimental” material.

For all three materials, values of n and « were calculated using a different 100 realizations.
The HTSp g1 predicted values of n were the same to three significant figures and the values of «
differed by 1 in the third significant figure.
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The results here show an increasing sensitivity to noise with increasing creep stress exponent
n, with relatively little sensitivity for Se (n = 1.15), more sensitivity for CsSHSO4 (1 = 3.59) and the
most noise sensitivity for Sn (1 = 6.60).

(b) Comparison with analytical models

The aim of the analytical power-law creep models is to provide explicit expressions for relating
measured indentation responses to the constitutive parameters n and « in equation (2.6). The first
step is to identify the power-law creep regime of the /1/hg), versus time t responses. The steady-
state portions of the indentation depth, /1/hgj,, versus time, ¢, responses in figure 2c are taken to be
—2 <logyy(t/tref) <0 for Se; —3 <logyy(t/tref) <0 for CsHSO4 and Sn. A least-squares fit is used
and, based on equation (5.6), the slope of the log,;,—log;, plot is identified with 1/(2n) and $
is obtained from the least-squares intercept. The least-square fit used to determine the value of
n involved 197, 455 and 253 points for Se, CsHSO4 and Sn, respectively. The values of n and g
so obtained are then used in analytical expressions for power-law creep indentation derived by
Bower et al. [1] and Ginder et al. [2] to obtain the value of the pre-exponential factor «.

Using expressions derived by Bower et al. [1] and identifying p in equation (5.2) with the force
per unit nominal area as in Su et al. [10]:

aprno = B(F"c? ) coty, (6.7)

where both F and c are functions of # and the indenter angle y (figure 1). The values of F and ¢
were estimated using the values for an indenter angle y =70° in tables 1 and 2 of [10].

The closed-form algebraic expression for e obtained by Ginder et al. [2] based on an expanding
cavity model is

- ﬁ(%”)" coty. 6.8)

For the noise-contaminated predictions of the analytical models, noise is added to the power-
law regime indentation depth versus time data using the Matlab [28] function normrnd(0,£,[1,K])
where the K is the number of data points on the indentation depth versus time response that lie in
the power-law regime (i.e. 197-455 points). Note that although the mean and standard deviation
are the same as for the Bayesian-based calculations in §6a(ii), the number of data points and the
specific realizations differ. The values of 1 and « for noise-contaminated data were again obtained
by averaging over 100 realizations. As for the Bayesian statistics-based predictions, carrying out
the noise-contaminated calculations for a different 100 realizations with n;, = ns =0.01 does not
significantly change the results. Table 8 shows a comparison between the values of the creep
exponent 1 and the pre-exponential factor « associated with the input experimental materials, the
Bayesian statistical analysis, the expression equation (6.7) and the expression equation (6.8). Note
that the Bayesian statistics based predictions shown are based on HTS data whereas the analytical
model predictions only use HT data. Also, because the values of # used in equations (6.7) and (6.8)
are obtained from the least-squares fits to computed power-law regime responses, the same value
of n appears for the BFNO and GNP entries in table 8.

The values of « for the various entries in table 8 are not directly comparable since the units of «
vary with n. However, the quantity ao,' has the dimension 1/time and can be directly compared.
In the power-law creep regime, the uniaxial creep strain rate in equation (6.2) is given by aas}},
with o, the applied stress. Thus, the comparison between the various predictions for ao,' with the
‘experimental’ value provides a measure of the accuracy of the prediction.

For Se (n=1.15), all the predictions of n and w«o], both for noise-free data and for
noise-contaminated data (with n, =7 =0.01 in table 8) provide a good representation of the
‘experimental” material. Perhaps surprisingly, the simple formula in equation (6.8) provides a
slightly more accurate prediction than equation (6.7).

For CsHSO4 (n=3.59), the ‘experimental” values of n and «o,' are well represented by the
Bayesian statistical predictions and by equation (6.7) while the predictions of wo,' from equation
(6.8) differ from the ‘experimental” value by a factor of about 2.
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Table 8. A comparison of the values of n, o and v’ obtained using the input ‘experimental’ data in table 1 (subscript inp),
the Bayesian-type statistical approach with HTS data from §6a(i)(ii) (subscript Bayes), HT data with equation (6.7) (subscript
BFNO), and HT data with equation (6.8) (subscript GNP). The subscript ( )¢ denotes noise-free data and the subscript ( )o.01
denotes values averaged of predictions over 100 realizations with ny = 1, = 0.01. Also shown is the value of ez, where for
each material, o, is the applied stress in equation (6.1). The values of n used in equations (6.7) and (6.8) were obtained from a
least-squares fit to the steady-state portions of the ‘experimental’ indentation depth versus time responses.

Se (sHSO, Sn

For Sn (n = 6.60), the Bayesian statistical prediction and the prediction based on equation (6.7)
are both rather accurate for noise-free data. The prediction based on equation (6.7) also provides
a reasonably accurate value of o)} for the noise-contaminated data while the Bayesian statistics
based prediction of ao;' differs from the ‘experimental” value. This may be due to the values of
n and B used in equation (6.7) being obtained directly from the power-law regime indentation
data, whereas the Bayesian statistics values of n and « are obtained based on database data which
largely consist of interpolated approximations. Nevertheless, the Bayesian statistics values of n
and o based on noisy data are rather close to the ‘experimental” input values of Sn.

The accuracy of the predictions becomes more sensitive to noise for larger values of the stress
exponent 1. For example, for Se (n = 1.15) with ny, = ns = 0.10, the predicted values of «s))} =5.04 x
1075571, 6.23 x 1072571, and 7.40 x 10™>s~! for the Bayesian statistics approach, equation (6.7)
and equation (6.8), respectively. For Sn (1 = 6.60), the corresponding values are 6.86 x 1072571,
1.61 x 1072571 and 2.89 x 1072 s~ L. Hence, for very noisy data, both analytical approximations
for Sn (n = 6.60) are very inaccurate.
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7. Conclusion

The Bayesian-type statistical approach of Zhang et al. [15] has been used to identify the power-
law creep constitutive parameters, the creep exponent n and the pre-exponential factor o, from
‘experimental’ load and hold indentation creep measurements, considering noise-free as well
as noise-contaminated data. The indentation creep measurements are: (i) the indentation depth
versus time response and (ii) the residual surface profile. Material properties representative of
three materials have been considered: amorphous selenium (Se), solid acid CsHSO4 and tin
(Sn). Finite-element calculations were carried out to populate a coarse database of power-law
creep parameters. The finer database used for the Bayesian statistical analyses was created by
interpolation. Uniaxial creep and stress relaxation responses were computed using the power-law
creep parameters obtained from the Bayesian-type statistical approach using noise-free as well as
noise-contaminated data and compared with the corresponding responses of the ‘experimental’
materials. The Bayesian statistics-based predictions were also compared with predictions based
on analytical power-law creep indentation expressions of Bower et al. [1] and Ginder et al. [2].

1. The Bayesian-type statistical approach provides the values of power-law creep
parameters that provide a good fit to the indentation responses of all the materials
considered when based on noise-free data and for sufficiently small noise amplitudes.
The sensitivity to noise increases with increasing creep stress exponent 7.

— For Se (n =1.15), the creep parameters obtained from both the noise-free and noise-
contaminated indentation responses provide a good fit to the uniaxial creep and
stress relaxation responses.

— For Sn (n=06.60), creep parameters that provide good fit to the load and hold
indentation responses do not necessarily give a good fit to the uniaxial creep and
stress relaxation responses.

2. Can very different power-law creep parameters give nearly the same responses in load
and hold indentation creep? In the circumstances analysed, different values of the power
law creep parameters did give reasonably good fits to the ‘experimental” indentation data,
particularly for noisy data, but no cases were found where very different values of both
power-law creep parameters gave nearly the same indentation response.

3. Does using the residual surface profile in addition to or instead of the indentation
depth versus time data improve the quality of the prediction? Using both indentation
depth versus time data and residual surface profile data generally leads to an improved
prediction of the uniaxial creep and stress relaxation responses. For Se (n=1.15), the
improvement over only using indentation depth versus time data is negligible.

4. How sensitive is the predicted creep response to noise in the ‘experimental” indentation
data? The uniaxial creep response is more sensitive to the accuracy of the predicted values
of the power-law creep parameters, and therefore to noise, than is the uniaxial stress
relaxation response.

5. How do the power-law creep properties obtained using the analytical steady-state creep
results of Bower et al. [1] and Ginder et al. [2] compare with those predicted from the
Bayesian-type statistical approach? For Se (1 = 1.15), the predictions of both the analytical
models of Bower et al. [1] and of Ginder et al. [2] are in very good agreement with those
of the ‘experimental” material, while the model of Bower et al. [1] provides a good fit for
all three values of creep stress exponent and the corresponding pre-exponential factor
considered if the noise level is sufficiently small.
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Appendix A. Values of ¢ for constant load and hold indentation creep

The tabulated values of ¢(n, épt2) are given in equations (A1) to (A3). For the values of n and
éotp that are not tabulated, the value of (1, éptp) used in equation (5.1) is obtained by linear
interpolation between tabulated values.

4.7 x 104, ¢yt =0.1 24 x10°, éytp=0.1
) 47 x 103, étr=1.0 . 47 x 10%, étr=1.0
¢(1,éotr) = , £(2,éot2) = 4 (A1)
47 x 102, éotr =10.0 1.4 x 10*, é9tr =10.0
47 x 101, ¢éytp =100.0 47 x 103, €éytp =100.0
9.4 x 10%, ¢ty =0.1 1.4 x 10°, ¢gtp =0.1
4.7 x 104, &yt =1.0 1.1 x 10°, égty =1.0
3,é0t) = 4,éhp) = A2
CEQR=0 0 100 =100 “FODTV04 10t =100 (A2)
9.4 x 103, ¢yt =100.0 3.8 x 10%, ¢éytr =100.0
14 x 10°, égtp =0.1 1.4 x 105, &yt =0.1
1.1 x 10°, éotr =1.0 1.1 x 10°, égtr =1.0
¢(5, éotr) = t(n>>5,¢étr) = A3
( ) 9.4 x 10%, €&t =10.0 ( ) 9.4 x 10%, ¢t =10.0 (A3)
7.5 x 104, égtp =100.0 9.4 x 10%, €éyt, =100.0
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