Skip to main content
. 2021 Aug 18;25(24):15255–15268. doi: 10.1007/s00500-021-06098-1

Table 1.

Algorithms used in few state-of-the-art methods with its performance

Schemes Data size Features Representation Classifier Evaluation results
Vidal Plácido et al. (2020) 179 Texture and intensity SVM-RBF Accuracy: 83.83%
Srinivasan et al. (2014) 42 HOG Linear-SVM Accuracy: 86.7%
Liu et al. (2011) 326 Edge, LBP PCA SVM-RBF AUC: 0.93
Venhuizen et al. (2015) 384 Texton BoW, PCA Random forest AUC:0.984
Albarrak et al. (2013) 140 LBP-TOP, HoG PCA Bayesian network Sensitivity: 87.4%, Specificity: 85.5%
Lemaître et al. (2015) 32 LBP, LBP-TOP PCA, BoW, Histogram Random forest Sensitivity: 87.5%, Specificity: 75%
Sidibé et al. (2016) 32 Pixel-intensities PCA Mahalanobis distance to GMM Sensitivity: 80%, Specificity: 93%