Table 2.
Algorithm | No. of training images ( | No of iteration ( | Time complexity ( (s) | Accuracy (%) | Time of testing ( (s) |
---|---|---|---|---|---|
CNN | 15 | 9 | 4.725 | 73.1 | 7.81 |
20 | 12 | 6.3 | 76.4 | ||
25 | 16 | 8.4 | 79.12 | ||
30 | 20 | 10.5 | 83.56 | ||
35 | 24 | 12.6 | 86.72 | ||
40 | 27 | 14.175 | 88.5 | ||
R-CNN | 15 | 7 | 2.1875 | 74.32 | 5.42 |
20 | 9 | 2.8125 | 78.64 | ||
25 | 12 | 3.75 | 81.45 | ||
30 | 15 | 4.6875 | 85.92 | ||
35 | 18 | 5.625 | 88.62 | ||
40 | 22 | 6.875 | 90.32 | ||
Fast R-CNN | 15 | 6 | 1.86 | 78.12 | 3.17 |
20 | 8 | 2.48 | 81.23 | ||
25 | 10 | 3.1 | 84.32 | ||
30 | 13 | 4.03 | 87.52 | ||
35 | 16 | 4.96 | 89.32 | ||
40 | 20 | 6.2 | 91.24 | ||
Proposed Faster R-CNN | 15 | 4 | 1.1648 | 84.45 | 2.64 |
20 | 6 | 1.7472 | 86.32 | ||
25 | 8 | 2.3296 | 88.54 | ||
30 | 11 | 3.2032 | 91.74 | ||
35 | 13 | 3.7856 | 93.92 | ||
40 | 16 | 4.6592 | 93.98 |