Skip to main content
. 2021 Aug 18;25(24):15255–15268. doi: 10.1007/s00500-021-06098-1

Table 2.

Comparison of the number of training, iteration, time complexity, Accuracy, and time of testing with the traditional methods

Algorithm No. of training images (Ntrain) No of iteration (Niter) Time complexity (Ttrain) (s) Accuracy (%) Time of testing (Ttest) (s)
CNN 15 9 4.725 73.1 7.81
20 12 6.3 76.4
25 16 8.4 79.12
30 20 10.5 83.56
35 24 12.6 86.72
40 27 14.175 88.5
R-CNN 15 7 2.1875 74.32 5.42
20 9 2.8125 78.64
25 12 3.75 81.45
30 15 4.6875 85.92
35 18 5.625 88.62
40 22 6.875 90.32
Fast R-CNN 15 6 1.86 78.12 3.17
20 8 2.48 81.23
25 10 3.1 84.32
30 13 4.03 87.52
35 16 4.96 89.32
40 20 6.2 91.24
Proposed Faster R-CNN 15 4 1.1648 84.45 2.64
20 6 1.7472 86.32
25 8 2.3296 88.54
30 11 3.2032 91.74
35 13 3.7856 93.92
40 16 4.6592 93.98