Skip to main content
. 2021 Aug 7;27(29):4802–4817. doi: 10.3748/wjg.v27.i29.4802

Table 1.

Colorectal polyp detection

Ref.
Study design
Algorithm type
Dataset
Results
Karkanis et al[8] Retrospective CADe (Wavelet Decomposition) 180 images Sensitivity: 93.6%
Specificity: 99.3%
Urban et al[2] Retrospective CADe (DCNN) 8461 images &20 colonoscopy videos Accuracy: 96.4%
False Positive: 7%
Klare et al[12] ProspectiveIn vivo CADe 55 colonoscopies ADR of: CAD 29.1% and Endoscopist 30.9%
Wang et al[5] Non-blinded RCT CADe using Shanghai Wision Al Co. Ltd. (DCNN) Randomized 522 patients to CADe and 536 to control group ADR of CAD 29.1% vs control 20.3%
Wang et al[4] Double blinded RCT CADe using EndoScreener (DCNN) Randomized 484 patients to CAD and 478 to sham system ADR of CAD 34% vs control 28%
Gong et al[13] Partially blinded RCT CADe using ENDOANGEL (DCNN) Randomized 355 patients to CAD and 349 to control ADR of CAD 16% vs control 8%
Repici et al[14] Partially-blinded RCT CADe using GI-Genius (CNN) Randomized 341 patients to CAD and 344 to control ADR of CAD 54.8% vs control 40.4%
Liu et al[15] Non-blinded RCT CADe using Henan Xuanweitang Medical Information Technology Co. Ltd (convolutional 3D network) Randomized 508 patients to CAD and 518 control ADR of CAD 39% vs control 23%
Su et al[16] Partially blinded RCT Automatic quality control system (ACQS)(DCNN) Randomized 308 patients to AQCS and 315 to control ADR of AQCS 28.9% vs control 16.5%

CADe: Computer-aided detection; CAD: Computer-aided diagnosis; DCNN: Deep convolutional neural network; ADR: Adenoma detection rate.