Table 1.
Ref.
|
Study design
|
Algorithm type
|
Dataset
|
Results
|
Karkanis et al[8] | Retrospective | CADe (Wavelet Decomposition) | 180 images | Sensitivity: 93.6% |
Specificity: 99.3% | ||||
Urban et al[2] | Retrospective | CADe (DCNN) | 8461 images &20 colonoscopy videos | Accuracy: 96.4% |
False Positive: 7% | ||||
Klare et al[12] | ProspectiveIn vivo | CADe | 55 colonoscopies | ADR of: CAD 29.1% and Endoscopist 30.9% |
Wang et al[5] | Non-blinded RCT | CADe using Shanghai Wision Al Co. Ltd. (DCNN) | Randomized 522 patients to CADe and 536 to control group | ADR of CAD 29.1% vs control 20.3% |
Wang et al[4] | Double blinded RCT | CADe using EndoScreener (DCNN) | Randomized 484 patients to CAD and 478 to sham system | ADR of CAD 34% vs control 28% |
Gong et al[13] | Partially blinded RCT | CADe using ENDOANGEL (DCNN) | Randomized 355 patients to CAD and 349 to control | ADR of CAD 16% vs control 8% |
Repici et al[14] | Partially-blinded RCT | CADe using GI-Genius (CNN) | Randomized 341 patients to CAD and 344 to control | ADR of CAD 54.8% vs control 40.4% |
Liu et al[15] | Non-blinded RCT | CADe using Henan Xuanweitang Medical Information Technology Co. Ltd (convolutional 3D network) | Randomized 508 patients to CAD and 518 control | ADR of CAD 39% vs control 23% |
Su et al[16] | Partially blinded RCT | Automatic quality control system (ACQS)(DCNN) | Randomized 308 patients to AQCS and 315 to control | ADR of AQCS 28.9% vs control 16.5% |
CADe: Computer-aided detection; CAD: Computer-aided diagnosis; DCNN: Deep convolutional neural network; ADR: Adenoma detection rate.