Skip to main content
. 2021 Aug 7;27(29):4802–4817. doi: 10.3748/wjg.v27.i29.4802

Table 3.

Narrow band imaging

Ref.
Study design
Algorithm type
Dataset
Results
Tischendorf et al[29] Prospective Ex vivo CAD – NBI (support vector machine) 209 polyp images Accuracy: 85.3%
Sensitivity: 90%
Specificity: 70.2%
Gross et al[27] Prospective Ex vivo CAD – NBI (support vector machine) 434 polyp images Accuracy: 93.1%
Sensitivity: 95%
Specificity: 90.3%
NPV: 92.4%
Chen et al[31] Retrospective CAD – NBI (DCNN) 284 polyp images Accuracy: 90.1%
Sensitivity: 96.3%
Specificity: 78.1%
PPV: 89.6%
NPV: 91.5%
Byrne et al[30] Retrospective CAD—NBI (DCNN) 125 polyp videos Accuracy: 94%
Sensitivity: 98%
Specificity: 83%
PPV: 90%
NPV: 97%
Kominami et al[32] Prospective CAD –NBI (support vector machine) 118 polyps Accuracy: 94.9%
Sensitivity: 95.9%
Specificity: 93.3%
PPV: 95.9%
NPV: 93.3%
Mori et al[33] Prospective CAD – NBI (support vector machine) 466 polyps NPV: 95.2% to 96.5%
Song et al[35] Prospective In vivo CAD –NBI (DCNN) 363 polyps Accuracy: 82.4%

CAD: Computer-aided diagnosis; NBI: Narrow band imaging; DCNN: Deep convolutional neural network.