Table 3.
Ref.
|
Study design
|
Algorithm type
|
Dataset
|
Results
|
Tischendorf et al[29] | Prospective Ex vivo | CAD – NBI (support vector machine) | 209 polyp images | Accuracy: 85.3% |
Sensitivity: 90% | ||||
Specificity: 70.2% | ||||
Gross et al[27] | Prospective Ex vivo | CAD – NBI (support vector machine) | 434 polyp images | Accuracy: 93.1% |
Sensitivity: 95% | ||||
Specificity: 90.3% | ||||
NPV: 92.4% | ||||
Chen et al[31] | Retrospective | CAD – NBI (DCNN) | 284 polyp images | Accuracy: 90.1% |
Sensitivity: 96.3% | ||||
Specificity: 78.1% | ||||
PPV: 89.6% | ||||
NPV: 91.5% | ||||
Byrne et al[30] | Retrospective | CAD—NBI (DCNN) | 125 polyp videos | Accuracy: 94% |
Sensitivity: 98% | ||||
Specificity: 83% | ||||
PPV: 90% | ||||
NPV: 97% | ||||
Kominami et al[32] | Prospective | CAD –NBI (support vector machine) | 118 polyps | Accuracy: 94.9% |
Sensitivity: 95.9% | ||||
Specificity: 93.3% | ||||
PPV: 95.9% | ||||
NPV: 93.3% | ||||
Mori et al[33] | Prospective | CAD – NBI (support vector machine) | 466 polyps | NPV: 95.2% to 96.5% |
Song et al[35] | Prospective In vivo | CAD –NBI (DCNN) | 363 polyps | Accuracy: 82.4% |
CAD: Computer-aided diagnosis; NBI: Narrow band imaging; DCNN: Deep convolutional neural network.