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Abstract
Chronic infection with hepatitis B virus (HBV) remains a global health concern 
despite the availability of vaccines. To date, the development of effective treat-
ments has been severely hampered by the lack of reliable, reproducible, and 
scalable in vitro modeling systems that precisely recapitulate the virus life cycle 
and represent virus-host interactions. With the progressive understanding of liver 
organogenesis mechanisms, the development of human induced pluripotent stem 
cell (iPSC)-derived hepatic sources and stromal cellular compositions provides 
novel strategies for personalized modeling and treatment of liver disease. Further, 
advancements in three-dimensional culture of self-organized liver-like organoids 
considerably promote in vitro modeling of intact human liver tissue, in terms of 
both hepatic function and other physiological characteristics. Combined with our 
experiences in the investigation of HBV infections using liver organoids, we have 
summarized the advances in modeling reported thus far and discussed the 
limitations and ongoing challenges in the application of liver organoids, partic-
ularly those with multi-cellular components derived from human iPSCs. This 
review provides general guidelines for establishing clinical-grade iPSC-derived 
multi-cellular organoids in modeling personalized hepatitis virus infection and 
other liver diseases, as well as drug testing and transplantation therapy.
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Core Tip: The development of an effective treatment for hepatitis B virus relies on 
reliable and reproducible in vitro modeling systems. Recently, three-dimensional multi-
cellular organoid systems have attracted considerable attention owing to their superior 
susceptibility and capability to precisely recapitulate the virus life cycle. Recent 
advances in organoid-generating strategies, particularly those derived from human 
induced pluripotent stem cells, together with future improvements in genetic modifi-
cation and scalability, will undoubtedly promote personalized disease modeling and 
drug development.
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INTRODUCTION
Hepatitis B virus (HBV), a highly prevalent global health concern, is among the most 
common causes of advanced chronic liver disease development. Globally, 292 million 
people (approximately one-third patients in China) reportedly present with chronic 
HBV infection[1], which is associated with a wide range of clinical manifestations, 
including liver cirrhosis, liver failure, and hepatocellular carcinoma[2]. Despite the 
availability of approved vaccines, currently, HBV treatment is mainly restricted to 
interferon (IFN) and nucleoside analogs, which rarely achieve absolute hepatitis 
elimination[3]. Notably, clinical treatment usually results in different responses and 
outcomes due to viral genotype diversity and patient genetic susceptibility, which 
further increases treatment difficulties[4]. To date, in vitro culture systems have been 
utilized to determine the characteristics and life cycle of hepatitis C virus. Fur-
thermore, these systems have been proven to substantially contribute to our under-
standing of the genomic replication subsystems that ultimately led to productive viral 
infection, as well as successful identification of small molecules having effective 
activity against various hepatitis C viral enzymes[5]. Therefore, to better understand 
the HBV life cycle and to promote drug development, a robust personalized in vitro 
HBV modeling platform is urgently needed to recapitulate the entire HBV replication 
cycle, especially that of covalently closed circular DNA (cccDNA) infection and 
formation. Several in vitro modeling systems have been developed, mostly based on in 
vitro culture systems using primary hepatocytes or hepatic cells from other sources[6-
9]. Besides, sodium taurocholate cotransporting polypeptide (NTCP)-transformed 
hepatocellular carcinoma cell lines are also available. No one system fits all studies, 
but findings from different systems may be complementary. Maintenance of hepatic 
function and increase of susceptibility to HBV infection in vitro are the principal focus 
for most established systems. In this regard, numerous culture systems have also been 
developed to better fit the in vivo microenvironment.

Considering the demand for clinical applications, the reproducibility and scalability 
of modeling systems have generated interest in recent years. Accordingly, as a theoret-
ically unlimited source of stem cells without ethical implications, pluripotent stem 
cells [induced pluripotent stem cell (iPSC)] represent the most promising source that 
can be used to yield substantial quantities of homogeneous and reproducible cellular 
components of the liver. Moreover, with a patient-specific genetic background, iPSC-
derived hepatocyte-like cells (HLCs) are optimal for individualized disease modeling, 
which may remarkably benefit mechanistic studies and drug development for here-
ditary diseases and diseases closely related to the host genetic background, such as 
HBV infection[10-12]. With considerable expression of major mature hepatocyte 
markers, as well as host factors required for HBV infection, including the NTCP, iPSC-
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HLCs could support robust production of HBV particles and viral RNAs[7,13]. More 
importantly, significant inhibition of HBV infection was detected upon anti-HBV agent 
treatment, suggesting that iPSC-HLCs could be utilized as a novel HBV infection 
model for drug testing[14].

However, the drawbacks in maturation and difficulty in maintenance of iPSC-HLCs 
have raised considerable concerns. Liver organoids (LOs) can be maintained for a 
longer time, are more susceptible to HBV infection, and exhibit enhanced liver 
function[3]. Multi-cellular three-dimensional (3D) organoid culture systems have 
recently become an effective strategy to compensate the deficiencies and also extend 
the potential modeling duration. With supportive mesenchymal and endothelial cells 
in the 3D microenvironment, HBV susceptibility was greatly enhanced compared to 
monolayer culture system, while the duration for HBV propagation and virus 
production was also prolonged[15]. HBV-infected LOs could serve as a reliable and 
viable ex vivo infection model for hepatitis research to investigate the role of host 
genetic background in HBV infection and individual prognosis of infection, enabling 
personalized hepatitis treatment[15]. To further enhance the reproducibility and 
scalability, an all-iPSC-based strategy has been adopted most recently in generating 
multi-cellular LOs with improved hepatic functions almost equivalent to those of adult 
hepatocytes, although their advantages in HBV modeling remains to be confirmed in 
future studies[16]. With the development of 3D expansion strategies, together with 
advances in direct programming or induction of liver fate, novel engineered LOs are 
expected to be established on a large scale for broad applications in disease modeling, 
drug screening, and transplantation.

Here, we summarized the recent advances in in vitro modeling systems for HBV 
infection, especially using multi-cellular LOs. Additionally, we discussed the current 
and future challenges in the application of advanced organoid generation platforms in 
terms of efficiency, reproducibility, and scalability. Finally, we explored the future 
applications of multi-cellular LOs in personalized and precise treatments.

ADVANCES AND LIMITATIONS IN MODELING HEPATITIS B INFECTION
Cell sources
HBV only efficiently infects fully differentiated hepatic cells. Until now, primary 
human hepatocytes (PHHs) were the only permissive agents used for the study of 
HBV infection in vitro[17]. This system remains the gold standard and is utilized to 
model HBV infections in vitro[18]. However, fresh PHHs have markedly limited 
availability and unpredictable variability among donors. Furthermore, PHHs have 
extremely limited replication ability in conventional culture systems and cannot be 
easily subjected to genetic manipulation, which hinders scaled-up manufacturing and 
targeted gene therapy. Moreover, PHHs show rapid loss of their mature hepatic 
functions and infection susceptibility after plating. Thus, these cells are unsuitable for 
utilization as a stable source for long-term modeling and testing[19]. For a reliable and 
practical platform for long-term disease modeling and drug development, a new gold 
standard should be established.

To overcome restrictions in the use of PHHs, especially source availability and cost, 
researchers have shifted their attention to immortalized tumor-derived or transformed 
hepatocytes and hepatocellular carcinoma cell lines, such as Huh7, HepG2, HepG-
2.2.15, HepAD38, HepaRG, HepDE19, HepBHAe82, and HepG2-NTCP cells[3,20,21]. 
HepG2.2.15 cells can stably express HBV viral gene products. However, HBV viral 
particles are derived from chromosomally integrated DNA rather than cccDNA during 
in vivo processing. Later, a highly HBV-permissive cell clone of HepAD38 cells was 
created, which could produce more robust viruses. However, this cell line failed to 
recapitulate the complete viral replication process[20,21]. In this regard, the liver 
progenitor cell line HepaRG is a more attractive source for modeling, since these cells 
show morphological and functional features similar to those of primary hepatocytes. 
More importantly, HepaRG cells are susceptible to HBV infection upon supple-
mentation with corticoids and DMSO, which maintains the cellular maturation state
[6]. However, this infection system has a relatively low infection efficiency, even under 
the strict culture conditions necessary to prevent dedifferentiation. Additionally, 
cccDNA amplification did not occur in this system[7]. Subsequently, to meet the 
requirements for high-throughput screening of cccDNA-targeting drugs, a HepDE19 
cell line was developed in which the expression of HBV e antigen (HBeAg) was 
derived from cccDNA. However, the ELISA antigen shows cross-reactivity with viral 
HBeAg homologues, which dramatically diminishes the assay specificity[22,23]. To 
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address this problem, the HepBHAe82 cccDNA reporter cell line was developed based 
on similar principles. Importantly, this line produced high levels of cccDNA-
dependent HBeAg with high, specific readout signals and did not disrupt any cis-
elements that were essential for HBV replication and HBeAg secretion[21]. As a 
potential tool for cccDNA-targeted drug screening and testing, it remains to be 
determined whether cccDNA formation, stability, and transcription are recapitulated 
in this system. To further achieve high susceptibility to HBV infection, NTCP, an 
essential receptor for HBV infection[24] was introduced into liver cancer cell lines. 
Establishment of susceptible cell lines, such as HepG2-NTCP, permitted highly 
efficient HBV infection and enabled the identification of key events or processes in the 
viral life cycle, although this system could not be used to elucidate the entire HBV life 
cycle[25]. Furthermore, the physiological and functional characteristics of tumor-
derived or transformed hepatoma cell lines are distinct from those of normal he-
patocytes. Comparing the HepG2 transcriptome to cells obtained from liver tissue 
biopsies showed that most genes with upregulated expression in HepG2 cells were 
associated with carcinogenesis, while those with upregulated expression in the liver 
were enriched in heterologous biometabolism[26], thereby implying a fundamental 
deficiency of hepatocellular carcinoma cell lines for reliable and precise modeling. 
Besides, a non-hepatic cell line was recently developed for HBV modeling. Cons-
tructed by exogenous expression of human NTCP, HNF4α, RXRα, and PPARα, the 
293T cell line (293T-NE-3NR) was able to support HBV entry, transcription, and 
replication, although the HBV production (HBV DNA, cccDNA, and pgRNA) in 293T-
NE-3NR remained lower than that in the HepG2 cell line. To date, the use of a non-
hepatic model is quite a new concept; however, it may serve as a beneficial com-
plement to the current hepatocellular carcinoma cell models. Without intrinsic liver-
related host factors, an exogenous construction strategy may help discover the key 
factors involved in HBV infection[27].

To achieve functional hepatocytes that closely resemble primary hepatocytes, HLCs 
differentiated from pluripotent stem cells have attracted considerable attention as a 
novel cell source. Since the use of embryonic stem cells is markedly hindered due to 
ethical issues, iPSCs induced by the ectopic expression of defined transcription factors 
(e.g., Oct4, Sox2, Klf4, and c-Myc) in patient fibroblasts or other somatic cells have 
emerged as the most promising source for generating HLCs[28-30]. After conduction 
of stepwise hepatic differentiation[31-33], iPSC-derived HLCs could support effective 
HBV infection and last for a long time[14,34]. Together with their infinite expansion 
capability, iPSCs have enabled the provision of numerous hepatic cell sources 
necessary for stable and scalable modeling with less variability than PHHs[25]. 
Meanwhile, the epigenetic effects in human iPSCs are minimal and the genetic 
differences between individual donors contribute to the major heterogeneity between 
different iPSC lines[35]. In this regard, iPSCs may serve as stable, reliable, and 
powerful platforms for the precise analysis of the hepatitis virus in specific genotypes 
and for modeling infection in individuals with different genetic backgrounds[29,36,
37]. Additionally, induced hepatocytes (iHeps) generated by direct reprogramming 
from somatic cells share similar hepatic features and may be potentially used to 
support productive HBV infection[34].

Despite the progressive improvements reported thus far, in vitro hepatocyte in-
duction with transcription factors, growth factors, or chemicals cannot fully represent 
the complete phenotypic spectrum of PHHs. Further, inhibition of the innate immune 
response remains an obstacle to achieve efficient infection[38]. Thus, improvements 
including optimized induction strategies and niche signaling are warranted to gene-
rate transcriptional/functional and hepatitis virus-friendly hepatic sources to recapi-
tulate in vivo virus-host recognition.

In vitro microenvironment
The biological characteristics and functions of primary hepatocytes depend consid-
erably on the in situ liver microenvironment[39,40]. Simply covering hepatocytes with 
multiple layers of collagen gel can markedly extend the culture time and help retain 
cellular functions[41]. Nevertheless, utilization of the conventional in vitro culture 
systems results in a rapid loss of hepatocyte polarity and associated liver function[42], 
innate immune responses, and susceptibility to HBV infection due to the unsatisfied 
intrinsic requirements of the liver microenvironment. Consequently, most of these 
HBV infection systems require the addition of DMSO, PEG[43], or immunomodulatory 
agents to achieve essential susceptibility, which is not feasible for practical consider-
ations[34]. In vivo, however, HBV can infect more efficiently[44], which highlights that 
the native hepatic microenvironment, including the physiological liver architecture 
and niche signaling, markedly impacts productive HBV infection.
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As the most abundant non-parenchymal hepatic cell population, liver sinusoidal 
endothelial cells (LSECs) can efficiently enhance HBV infection by secreting epidermal 
growth factor (EGF)[45] and can lead to the development of liver fibrosis by con-
stitutively expressing the major histocompatibility complex I-restricted antigens and 
co-stimulatory molecules, which shifts the immune balance of the liver toward 
tolerance[46]. Additionally, hepatic stellate cells (HSCs) maintain hepatocyte function 
via cell signaling and secretion of the necessary factors[47]. Furthermore, HSCs are 
actively involved in the development of hepatitis virus-induced hepatic fibrosis[48]. 
Kupffer cells (KCs) and Ly6C+ monocytes are closely associated with host defense in 
the liver and play crucial roles in the development of anti-HBV immunity. Particularly, 
KCs are involved in hepatitis virus recognition, suppression of infection, immune cell 
recruitment and activation, and are correlated with HBV progression and outcomes
[49,50]. The integration of multi-cellular interactions as a whole requires precise 
imitation of the native liver niche. Conventionally, monolayer co-culture systems are 
used as a simple tool to recapitulate cell-cell interactions and signaling. However, 
these systems provide non-natural physiological conditions, in which only parts of the 
hepatocyte surface establish communication with the adjacent cells or the extracellular 
matrix (ECM), leaving the rest of the cell exposed to the culture medium. Although 
certain aspects of hepatitis or other viral infections may be elucidated using this 
system, there remain major concerns regarding a physiologically intact host for virus 
recognition and replication. Cells assembled in 3D aggregates are more similar to cells 
in vivo[15]. PHHs cultured in 3D systems preserve certain metabolic functions and 
permit more accurate hepatotoxicity prediction during in vitro modeling[42]. However, 
the liver microenvironment includes the 3D mass of hepatocytes and an organized 
architecture consisting of numerous cell types, which synergistically regulate liver-
specific physiology. Therefore, reconstruction of these interactions will theoretically 
help in the development of a more reliable system for the initiation and long-term 
maintenance of the hepatitis infection cycle. Recent achievements in generating multi-
cellular organoids have paved the way for the establishment of an accurate model for 
obtaining fundamental knowledge on disease progression, including HBV infection
[15], particularly when single patient-derived iPSCs contribute to the cellular com-
position of desired organoids[51]. iPSC-derived multi-cellular LOs maintain mature 
hepatic phenotypes and functions to levels comparable to those of PHHs. More 
importantly, LOs are more susceptible to HBV infection than iPSC-HLCs and maintain 
long-term HBV propagation while producing infectious viruses. Together with the 
genetic characteristics inherited from the donor iPSCs, LOs help in the achievement of 
a promising individualized infection model[15].

In static culture systems, gas exchange, nutrient supply, and waste removal remain 
significant challenges. The emergence of microfluidic technology has enabled the 
control of the culture system with optimized temperature, pH, nutrients, and gas 
exchange, while providing microscale structures and parameters that may help to 
obtain an approximate simulation of the in vivo microenvironment[52,53]. Thus, the 
application of these systems permits organoid maintenance in in vivo-like physio-
logical states or even in disease-like conditions in a controlled manner. Notably, 
improved drug sensitivity can be obtained using microfluidic 3D systems compared to 
static culture systems. With the utilization of further engineering approaches to control 
the initial cellular composition, shape, and size of cell aggregates; cell-cell and cell-
ECM[54] interactions; and biochemical gradients similar to in vivo microenvironment, 
the incoming generation of organoids-on-a-chip has considerable potential for large-
scale applications in high-throughput drug testing and screening.

Micropatterning
Highly structured organs and tissues provide a fundamental in vivo microenvironment 
for cells, in which cell polarity and functions are consistently influenced by the specific 
boundaries imposed by the neighboring cells and the ECM. The mechanical and 
spatial properties of the microenvironment are tightly correlated with intracellular 
signaling pathways and affect cell transcriptome status and function. In the past 
decade, numerous studies have been conducted and have provided insights into the 
geometrical modeling of the in vitro culture microenvironment by developing en-
gineered substrates that precisely mimic the composition, structure, and mechanical 
properties of a specific organ or tissue.

To date, accumulative in vitro studies show that cell differentiation can be directed 
by using micropatterned substrates. The micropattern features on the spreading area 
and the aspect ratio determine the differentiation status of human mesenchymal stem 
cells (MSCs)[55]. Moreover, hydroxyapatite bioceramic-based hybrid structures 
stimulate osteogenic differentiation of MSCs by activating integrins, the BMP2 
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signaling pathway, and cell-cell communication. The width of micropattern stripes 
regulates vascular smooth muscle cell orientation by regulating cell elongation[56]. 
Similarly, mechanical and spatial control was observed during pluripotent stem cell 
differentiation. When these cells are differentiated within geometrically uniform and 
circular micropatterns, the patterning of regionalized cell fate can be reproducibly 
recapitulated[57,58]. Moreover, recent evidence shows that a decreased patterning 
width promotes iPSC differentiation efficiency, suggesting that stricter topographies 
direct cell fate specification[59]. Interestingly, the micropattern stiffness, degradability, 
and biochemical composition can even promote pluripotency reprogramming, thus 
emphasizing the critical role of micropatterns in morphogenetic and functional 
remodeling[60].

Although micropatterning strategies are increasingly applied in cell-based modeling 
and testing, they pose challenges in ensuring compatibility with rapidly advancing 
organoid technology that requires the use of non-adhesive substrates and extensive 
cell-cell interactions for self-organization. To this end, scaffold-dependent micropat-
terning strategies were adopted in recent studies conducted on distinct epithelial 
organoid generation. Meanwhile, structural and functional improvements have been 
increasingly reported. For example, a microfilament-based floating scaffold was 
developed to perform micropatterning and to guide brain organoid self-organization 
with increased reproducibility and improved tissue architecture[61]. Additionally, a 
spatially confined hydrogel scaffold was developed to guide self-organization of tube-
shaped functional intestinal organoids with an accessible lumen and a physiologically 
relevant spatial arrangement of crypt- and villus-like domains[62]. Similarly, in terms 
of LOs, both colloidal crystal and hydrogel-based scaffolds were found to support 
advanced liver functions[63,64]. However, to date, the mechanism of spatial microen-
vironmental control of organ/tissue-specific cell fate specification remains unde-
termined. Once identified, scaffold-based micropatterning systems are expected to 
offer a potential platform for generating liver-specific and regionalized cell types 
simultaneously from a single iPSC. These platforms will be of remarkable importance 
for constructing multi-cellular organoids with native spatial composition, and will 
help to elucidate the mechanisms by which intra- or intercellular signals regulate 
distinct cellular identities and maturation patterns, and will fundamentally mimic the 
in vivo physiological features and hepatic functions for precise hepatitis modeling.

CURRENT CHALLENGES IN GENERATING MULTI-CELLULAR LIVER  
ORGANOIDS
Liver-like cellular organoid composition and reconstitution
To better mimic an in vivo niche resembling liver-specific function and physiology for 
disease modeling, vascularized functional multi-cellular LOs were first developed in 
2013[65]. However, in this study, human MSCs and umbilical vein endothelial cells 
(HUVECs) were used to substitute the liver intrinsic stromal cellular components, 
including HSCs and LSECs, which remain major obstacles for future clinical applic-
ations. To address this problem, a complete all-iPSC-based strategy was established, in 
which hepatic functions were promoted by using iPSC-septum transversum me-
senchymal and iPSC-endothelial progenitor cells. In both global transcriptome and 
function, the new system was more advanced than the HUVEC/MSC-based strategy 
and was comparable to primary adult hepatocytes[16]. However, this system remains 
deficient in recapitulating the immune response and inflammation due to the lack of 
an essential liver component, KCs. Recently, KCs, hepatocytes, stellate cells, and 
biliary cells were successfully induced synchronously in a multi-cellular system by 
facilitating co-differentiation from iPSCs, which represents a real and more complex 
liver-like tissue system that may be used for modeling inflammatory and fibrotic 
responses[51]. With advanced integration and optimization of cellular composition 
(Table 1), multi-cellular LOs are expected to support precise and more complex disease 
modeling.

With the progressive understanding of liver organogenesis and technical advan-
cements in iPSC differentiation methods toward tissue-specific cellular compositions, 
the following aspects remain as future challenges: (1) The procedures that can be used 
to remodel the intrinsic cellular composition proportion and distribution in LOs; (2) 
Their specific roles in liver development and disease processes; (3) Clarification of 
biochemical signatures of liver-specific ECM; and (4) The use of clinically compatible 
ECM hydrogels or microparticles. Overcoming these challenges will be beneficial for 
maintaining LO physiological characteristics during modeling.
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Novel strategies for synchronous induction
Before the all-iPSC-based strategy was adopted, the development of multi-cellular 
organoids included the collection and separate preparation of each cell type and 
subsequent self-organization into a 3D structure. Although the emergence of all-iPSC-
based strategies facilitated the establishment of a reproducible and stable source for 
clinical and pharmaceutical applications, the procedure for diverse cell co-culture 
remains time-consuming, labor-intensive, inefficient, and cannot meet the requi-
rements for large-scale production and practical applications. Moreover, selection of 
the specific culture medium and ECM to simultaneously maintain multiple cell 
lineages remains challenging.

To address these limitations, a stepwise organoid induction and maintenance 
platform was developed, which involved sequential stimulation with the addition of 
growth factor cocktails into the culture medium. Following the induction of foregut 
spheroids by retinoic acid (RA) treatment and subsequent hepatic maturation, iPSCs 
were simultaneously differentiated into multi-cellular LOs. However, this approach 
lacks precise control over multi-lineage specification and physiological functions. 
Furthermore, the optimization of medium and growth factors that are used to direct 
and maintain distinct cell specificity remains an obstacle. In this regard, systematic 
probing of the molecular pathways and transcriptional networks has emerged as a 
more precise method for direct organogenesis in vitro. PROX1 and ATF5 overex-
pression combined with CYP3A4 activation enables gene regulatory network (GRN)-
based engineering and facilitates direct programming or induction and the develop-
ment of iPSC-derived multi-cellular LOs. Importantly, compared to primary mature 
hepatocytes, the established GRNs not only showed major similarities in natural liver 
functions, but were also responsive to perturbation and feedback regulation, and thus 
were superior to immature HLCs and fetal LOs[66]. Although this new method 
enabled the development of multi-cellular systems via synthetic genetic control, it is 
difficult to reflect every facet of human liver physiology and function, such as 
relatively low levels of urea production and CYP2C19 activity. Further global assess-
ment of GRNs may be necessary to identify critical regulatory signatures for advanced 
liver fate. Additionally, it is important to carefully determine and avoid potential 
tumorigenesis by transcription factor-based genetic programming and delocalization 
processes using guide RNAs (gRNAs) to achieve clinical safety standards.

Taken together, synchronous induction or programming systems may substantially 
improve the efficiency of traditional multi-lineage differentiation, which is a promising 
strategy for practical applications (Figure 1). However, the lack of maturation, purity, 
and batch-to-batch variability remains a major challenge. Further optimization of 
stepwise induction or programming strategies, including medium, supplements, 
timing, and application of tissue scaffolding and microfluidic devices, is warranted to 
precisely recapitulate the intrinsic multi-cellular organ system in vivo.

Scaling up
The possibility of scaled-up applications is a major advantage of using in vitro 
organoid systems over animal models. The increasing biomedical and preclinical 
demands for high-throughput disease modeling, drug testing, and screening, have led 
to the identification of critical bottleneck of scaling up, which prevents their appli-
cation to provide more reliable, rapid, and cost-effective modeling.

Using chemical induction, a limited expansion capability of human hepatocytes was 
successfully induced in 2D monolayer culture systems[67,68]. However, expansion in a 
3D system is subjected to complicated factors, such as nutrient/gas exchange, contact 
inhibition, and complex cell-cell signaling. Although long-term expansion of organoids 
from human adult biliary epithelial-derived progenitor cells, fetal/adult hepatocytes, 
and pluripotent stem cell-derived hepatocytes has been successfully established, the 
expansion efficiency remains markedly lower than that observed with the application 
of 2D systems[69-73] (Table 2). Recently, a rotating flask-based method was developed 
for the large-scale expansion of human LGR5-positive liver stem cell organoids. In this 
system, organoids were subjected to continuous passage and stable maintenance for at 
least 6 wk, which was mostly achieved with improved oxygenation[74].

Scaling up multi-cellular systems is another major challenge. By developing an 
omni-well array culture platform, Takebe et al[16] adopted an all-iPSC strategy for the 
large-scale production of homogenized and vascularized LOs in a clinical setting and 
achieved a 108-cell grade, which seemed to be feasible for human therapeutic applic-
ations. However, this platform involved the performance of labor-intensive work, 
including separate preparation of diverse cell sources for co-culture, thus limiting the 
efficacy of scaling. Later, the same group established a synchronous co-differentiation 
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Table 1 Current modeling strategies and applications of human multi-cellular liver organoids

Model/application Multiple cells (ratio) Culture 
system Advances/significance Limitations Ref.

ALF iPSC-HEs, HUVECs, 
BM-MSCs (10:8:2)

3D, Matrigel Multi-cellular LOs with vascularization Low reproducibility; 
Time-consuming

2013[65]

ALF HEs, MCs, ECs (all 
from iPSCs) (10:8:2)

3D, ULA All-iPSC-based strategy Time-consuming; High 
cost

2017[16]

ALF iPSC endoderm cells, 
HUVECs, UC-MSCs 
(10:7:1)

3D, ULA LOs generated from single donor-
derived cells

Low reproducibility; 
Time-consuming

2018[75]

ALF iPSCs, HAMECs (3:1) EB, Agarose HAMECs improved hepatic functions Unable to reflect the 
nature cellular 
composition of liver

2019[102]

Liver fibrosis HepaRG, THP-1, 
hTERT-HSC

3D, Hanging 
drop

LOs derived from cell lines Functional deficiency 2017[103]

Liver fibrosis and 
steatohepatitis

PHHs, KCs, HSCs, 
SECs (16:2:1:1)

3D, ULA LOs derived from primary cell sources Low reproducibility; High 
cost

2018[104]

Steatohepatitis Hepatocytes, HSCs, 
BCs, KCs (all from 
iPSC)

3D, ULA Co-differentiation of multiple cell 
lineages for iPSC- LOs

Functions undetermined; 
Potential inter/intra-
batch variability

2019[51]

HBV infection ex vivo iPSC endoderm cells, 
HUVECs, BM- MSCs 
(10:7:1)

3D, ULA Validation of advantages of iPSC-LOs in 
HBV modeling

Low reproducibility; 
Time-consuming

2018[15]

Hepatic differentiation iPSC-HEs, MSCs, 
HUVECs (10:2:7)

3D, Matrigel Platform to identify developmental 
paracrine signals involved in hepatocyte 
differentiation

Low reproducibility; 
Time-consuming

2017[105]

Hepatic differentiation iHEPs, ECs, HSCs, 
cholangiocytes 
(10:7:2:1)

3D, ULA Cholangiocytes impaired the hepatic 
functions in LOs and were associated 
with the liver disease relevant phenotype

Cholangiocyte activation 
in LOs was unclear

2019[106]

Liver development and 
angiogenesis

Hepatocytes, BCs, ECs, 
HSCs (all from iPSC)

3D, Matrigel Engineered iPSC-LOs by programming 
of the gene regulatory network

Not completed for liver 
functions

2021[66]

ALF: Acute liver failure; BCs: Biliary cells; BM: Bone marrow; EB: Embryoid body; ECs: Endothelial cells; HAMECs: Human adipose microvascular 
endothelial cells; HBV: Hepatitis B virus; HEs: Hepatic endoderm cells; HSCs: Hepatic stellate cells; HUVECs: Human umbilical vein endothelial cells; 
iHEPs: Induced hepatocytes; KCs: Kupffer cells; Los: Liver organoids; MCs: Mesenchymal cells; MSCs: Mesenchymal stem cells; NPCs: Non-parenchymal 
cells; PHHs: Primary human hepatocytes; SECs: Sinusoidal endothelial cells; UC: Umbilical cord; ULA: Ultralow adhesion microwell plate.

method that facilitated the generation of multi-lineage organoids in a preset growth 
factor administration strategy, thereby saving substantial time and costs for co-culture 
procedures[51]. Most recently, organoid programing has emerged as a promising 
strategy for establishing both functionality and scalability. A tissue-specific set of 
factors were identified using computational analyses. These factors were then 
genetically introduced into LOs, and after manipulation of GRNs, multi-lineage tissue 
fate could be directed to develop multi-cellular systems. Notably, these LOs can be 
passaged and cryopreserved while retaining their vascular networks[66]. This scalable 
organoid production system may pave the way for personalized disease modeling, 
drug testing, and even transplantation. However, there remain challenges in the 
identification of liver-specific GRNs to directly re-establish the entire profile of human 
liver physiology and function. Other tissue engineering techniques, such as pinning 
bioreactors, microfluidics, and bioprinting may be developed before high-throughput 
and highly efficient platforms can be established to meet the practical demands of 
pharmaceutical and clinical applications.

Transplantation and gene editing
In addition to demonstrating utility as an in vitro tool in the modeling of a structural 
and functional organ unit, organoids are also potential transplantation substitutes for 
organ donors. Indeed, organoids exhibit various advantages over conventional cell-
based strategies, as mentioned elsewhere[69,75]. By mimicking liver regeneration after 
injury, an advanced in vitro system was recently developed for the long-term expan-
sion of functional LOs. Particularly, LOs generated from primary liver sources have 
demonstrated genetic stability after long-term culture[69,70], suggesting that these 
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Table 2 Up-to-date methods for obtaining expandable human liver organoids

Initial cells
Expansion systems 
(substrate for 
embedding)

Medium
Expansion capability (Split 
ratio/passage days/expansion 
duration)

Ref.

Fetal and adult 
hepatocytes

3D, Matrigel AdDMEM/F12, B27, N-Acetylcysteine, gastrin, 
RSPO1, Noggin, Wnt, EGF, FGF7, FGF10, HGF, TGFa, 
Nicotinamide, A83-01, CHIR99021 and Y27632

1:3/7-8 d/> 16 passages 2018[70]

EpCAM+ bile duct cells 3D, Matrigel or BME gel AdDMEM/F12, N2, B27, N-Acetylcysteine, gastrin, 
RSPO1, Noggin (d0-3), Wnt (d0-3), EGF, FGF10, 
FGF19, HGF, Nicotinamide, A83-01, FSK, and Y27632 
(d0-3)

1:4-1:8/7-10 d/6 mo 2015[69]

EpCAM+ bile duct cells 3D, BME gel AdDMEM/F12, B27, N-Acetylcysteine, gastrin, 
RSPO1, Noggin (d0-3), Wnt (d0-3), EGF, FGF10, 
FGF19, HGF, Nicotinamide, A83-01, FSK, and Y27632 
(d0-3)

1:5/7-10 d/> 6 mo 2019
[107]

iPSC derived EpCAM+ 
hepatic progenitors

3D, Matrigel AdDMEM/F12, B27, N-Acetylcysteine, gastrin, 
RSPO1, Noggin (d0-3), Wnt (d0-3), EGF, FGF10, HGF, 
Nicotinamide, A83-01, FSK and Y27632 (d0-3)

1:4-1:8/7-10 d/9-12 mo 2019[71]

PSC-derived 
hepatocytes

3D, Matrigel AdDMEM/F12, N2, B27, N-Acetylcysteine, gastrin, 
RSPO1, EGF, FGF10, HGF, Nicotinamide, A83-01, 
FSK

1:3-1:10/7 d/3 mo 2019[72]

PSCs transduced with 
PROX1, ATF5 and 
CYP3A4

3D, Matrigel APEL medium NA/10 d/17 d 2021[66]

APEL: A commercial medium from Stem Cell Technologies; BME: Basement membrane extract; bFGF: Basic fibroblast growth factor; BME: Basement 
membrane extract; EGF: Epidermal growth factor; FGF: Fibroblast growth factor; FSK: Forskolin; HGF: Hepatocyte growth factor; iPSCs: Induced 
pluripotent stem cells; PSCs: Including embryonic stem cells and induced pluripotent stem cells; RSPO1: R-spodin1.

organoids are a safe transplantation source for clinical applications. Alternatively, 
autologous transplantation of iPSC-derived LOs is expected to be promising for the 
realization of reproducible and personalized liver disease treatment. As a highly 
prevalent disease, HBV infection remains a strong risk factor for developing liver 
cirrhosis, hepatocellular carcinoma, or other end-stage liver diseases, thus posing a 
major threat to health worldwide[76]. To this end, there exists a necessity of develo-
ping effective treatments for chronic HBV infection. Currently, the standard therapy 
for chronic hepatitis B infection includes two major agents. First, nucleotide or 
nucleoside analogs such as tenofovir and entecavir interfere with viral replication by 
suppressing the synthesis of reverse transcriptase; second, IFNs such as IFNα induce 
long-lasting immunological control[76]. However, available drugs show side effects or 
high response variability, and drug resistance leads to reduced long-term effect-
iveness. Currently, HBV infection cannot be absolutely cured[77]. Combined with the 
CRISPR/Cas9 genome editing technology, patient iPSC-derived organoid trans-
plantation may provide a new therapeutic strategy for realizing a highly specific HBV 
treatment. As the functional regions in key HBV receptors (e.g., NTCP) for HBV 
binding and post-binding entry have been identified, specific genetic knock-out or 
modification may markedly change HBV infection susceptibility, thereby permitting 
the development of transplanted organoids that are resistant to HBV infection. More 
importantly, the risk of HBV recurrence may be permanently avoided, which remains 
a major concern after liver donor transplantation and is associated with graft dysfun-
ction or failure and cirrhosis progression[78].

Nevertheless, current research on organoids is in the preclinical stages, and clinical 
safety and efficacy remain to be established for adult or iPSC-derived LO trans-
plantation. Moreover, the potential risks associated with genetic modification, tumori-
genesis, and transplantation techniques should be emphasized in light of individual 
and societal values. In the context of continuing investigation regarding clinical 
concerns[79,80], quality-controlled and personalized LOs from authorized patient-
derived cell banks are expected to be used routinely in the future.
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Figure 1 Schema to generate human liver organoids and strategy regarding their application potential and hepatocyte B virus modeling. 
Multi-cellular liver organoids are generated and self-organized with parenchyma cells, non-parenchyma cells, and other hematopoietic or/and neuronal supportive 
cells after stepwise induction from human induced pluripotent stem cells/embryonic stem cells; in contrast, synchronous induction using a CRISPR-based strategy 
markedly enhances their hepatic functions and improves their reproducibility and scalability. The personalized and population organoid system may provide a reliable 
platform for high-throughput hepatocyte B virus (HBV) drug screening, allowing to understand novel key points of the HBV lifecycle, gene editing to knock-out the 
HBV receptor, and distinguish genomic susceptibility in a large population. Transplantable multi-cellular organoids without the HBV receptor have much potential for 
future applications. ECM: Extracellular matrix; ESCs: Embryonic stem cells; HBV: Hepatocyte B virus; HBVR: Hepatocyte B virus receptor; iPSCs: Induced pluripotent 
stem cells; KO: Knock-out; NPCs: Non-parenchyma cells, including Kupffer cells, hepatic stellate cells, and liver sinusoidal endothelial cells; Supportive cells: Such as 
neuronal cells, hematopoietic cells, and vascular endothelial cells; PCs: Parenchyma cells such as hepatocytes; Tx: Transplantation.

PERSPECTIVES
Automated and large-scale cultural systems
Robust, consistent, and cost-effective manufacturing is extremely important for 
facilitating the practical applications of LOs for high-throughput disease modeling, 
drug testing, and therapeutic purposes. Similarly, automatic LO generation and 
culture systems may provide promising opportunities to meet critical requirements, 
especially in reproducibility and scalability.

In recent years, automated culture systems have garnered considerable attention, 
particularly in the maintenance and differentiation of iPSCs. Since the quality of iPSCs 
is dependent on the technical skills applied during culture and manipulation[81], 
automated culture systems can decrease technical variability. With the development of 
fully automated cell culture systems that have revolutionized cell seeding, medium 
changing, imaging, harvesting, and analysis, human iPSCs can be maintained in an 
undifferentiated state for a long period[82]. Additionally, reprogramming and differ-
entiation of cardiomyocytes, hepatocytes, mesenchymal cells, neural stem cells, and 
retinal pigment epithelial cells have also been successfully performed using automated 
systems, with high quality and consistency[83-86]. Recently, an automated system was 
first used to produce LOs. Although the differentiation process was not fully au-
tomated, automatic LO self-assembly and maintenance substantially permitted the 
obtainment of reliable and reproducible results, suggesting potential applications in 
applied research and industry[87]. With the development of differentiation strategies 
and medium optimization for iPSC-derived parenchymal and non-parenchymal liver 
cells, the integration of automated cell production and maintenance systems is ex-
pected to further promote a completely standardized high-throughput workflow for 
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LO production. These workflows will enable downstream applications such as HBV 
and liver cancer modeling, drug screening, and regenerative medicine.

Genetic manipulation
Genetic manipulation seems extremely promising in the revelation of the biological 
functions of specific genes, their regulation networks, and their relevance to disease 
progression[88]. Moreover, genetic manipulation facilitates drug testing in various 
disease states with different genetic backgrounds. In recent years, the CRISPR/Cas9 
technology has markedly simplified genetic engineering because of its versatility and 
broad application potential. Combined with the development of organoid generation 
and culture technology, CRISPR has enabled the establishment of multiple disease 
models using genetically engineered tissue-specific organoids. For example, colorectal 
cancer models were derived from intestinal organoids with mutations in APC, 
SMAD4, TP53, and KRAS[89]; injury models were derived from kidney organoids via 
podocalyxin knock-out[90]; brain tumor models were derived from cerebral organoids 
with mutations in MYC and mutations commonly found in glioblastoma[91]; and liver 
cancer models including hepatocellular carcinomas and intrahepatic cholangiocar-
cinomas were derived from LOs with mutations in c-Myc or RAS[92]. Notably, 
genetically modified iPSC-derived organoids may permit broader practical applic-
ations in modeling genetic diseases once consistent patient-derived organoids are 
developed, such as those with A1AT deficiency or Allagile syndrome. Although not 
reported, iPSC-derived LOs are expected to acquire altered susceptibility to HBV 
infection with mutated NTCP expression, which is critical in studying viral replication.

In addition to demonstrating versatility as an in vitro tool used for the elucidation of 
substantial clues to diseases, gene correction in organoid models provides a potential 
strategy for future gene therapy. Using the CRISPR/Cas9 genome editing system, the 
mutation of cystic fibrosis transmembrane conductor receptor was corrected in 
intestinal organoids derived from cystic fibrosis patients, which restored normal 
function[93]. Subsequently, mutation correction was achieved in retinal organoids 
derived from retinitis pigmentosa patients using a similar strategy[94]. With increasing 
interest in the genetic manipulation of various tissue-specific organoids, the deve-
lopment of a robust genome editing strategy is necessary to further enhance organoid-
based disease modeling and related gene correction. Recently, CRISPR–Cas9-mediated 
homology-independent organoid transgenesis (CRISPR-HOT) was developed to 
efficiently generate knock-in human organoids[95], thus providing a powerful plat-
form for obtaining reliable and scalable applications in this field.

However, to date, no gene editing has been performed on multi-cellular organoids, 
partially because of the technical difficulties in targeting specific cell types within the 
system. Additionally, there are several issues that are encountered with gene therapy, 
including off-target mutations, delivery difficulties, and the lack of standardized tests 
to assess anti-HBV gene therapy[96,97]. Undoubtedly, new innovations in the rapidly 
evolving field of the CRISPR technology may provide exciting possibilities for 
organoid-based clinical applications.

Susceptibility to HBV infection
The identification of NTCP, the specific receptor for HBV[98], paved the way to 
construct NTCP-expressing hepatoma cell lines that were originally not susceptible to 
HBV. Exogenous NTCP expression may render these cell lines vulnerable to HBV 
infection, providing a more reliable system for studying the HBV life cycle. However, 
this system does not help elucidate the entire HBV life cycle and permits limited viral 
spread, with only moderate amounts of detectable cccDNA, partially due to intrinsic 
deficiencies of these cell lines. As a result, an extremely high multiplicity of infection is 
necessary to achieve substantial infection, and the addition of polyethylene glycol is 
needed to enhance infection in most reported cases[99]. Meanwhile, hepatoma cells are 
physiologically impaired in several intracellular signaling pathways and functions 
after forced NTBC expression, which limits their use for studying virus-host inter-
actions[38].

In addition to NTCP, HBV infection may also depend on other receptors, such as the 
sialic acid glycoprotein receptor (ASGPR)[100,101]. A comparison of iPSC-derived 
hepatic progenitors and HLCs revealed a significant increase in ASGPR expression in 
iPSC-HLCs, suggesting that ASGPR might be considered a candidate receptor for 
hepatitis virus infection in mature hepatic cells and might mediate HBV entry into 
cells. To date, NTCP expression is considered the most important factor for HBV 
infection in host cells[13]. However, it remains necessary to identify other unknown 
receptors or media that contribute to hepatitis virus infection susceptibility. The 
emergence of 3D multi-cellular LOs, which mimic the native liver microenvironment, 
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has attracted substantial attention owing to its superior HBV susceptibility compared 
to 2D culture[15]. Although the underlying mechanism remains unclear, these or-
ganoids may provide an opportunity for the investigation of potential receptors and 
related pathways involved in viral infection. Computational analyses, followed by 
sequential knock-out of the candidate targets in engineered multi-cellular LOs, may 
enable the complete understanding of the key genes contributing to HBV suscept-
ibility. Furthermore, the role of ethnic genotypes in viral susceptibility may be studied 
using this system. Individuals of different races present with different susceptibilities 
to hepatitis virus. For example, Chinese populations have a high susceptibility to 
hepatitis B, while European and American populations are prone to hepatitis C 
infection. It would be beneficial to use iPSC-derived LOs from different genomic 
backgrounds to compare HBV infection in different populations with the same risk 
factors, or to compare susceptibility in the same population with different risk factors. 
In this regard, drugs, which may account for disparities in different populations and 
individuals, may also be developed.

CONCLUSION
With the progressive understanding of liver organogenesis, the development of 3D 
organoid culture systems has helped in the establishment of a novel platform for 
precise and personalized liver disease modeling. However, it remains particularly 
challenging to promote the efficiency, reproducibility, and scalability of organoid 
reconstitution and maintenance. It is expected that future advances in genetical 
engineering and automated culture system will put 3D multi-cellular organoids into a 
variety of practical uses, including hepatitis infection modeling and related drug 
development. Furthermore, the proof of concept for clinical-grade patient iPSC-
derived multi-cellular LOs is expected and will contribute much to modeling and 
treatment of hepatitis virus infection and other liver diseases.
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