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Abstract
The emergence and rapid spread of novel severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has caused over 180 million confirmed cases 
resulting in over 4 million deaths worldwide with no clear end in sight for the 
coronavirus disease 19 (COVID-19) pandemic. Most SARS-CoV-2 exposed 
individuals experience mild to moderate symptoms, including fever, cough, 
fatigue, and loss of smell and taste. However, many individuals develop 
pneumonia, acute respiratory distress syndrome, septic shock, and multiorgan 
dysfunction. In addition to these primarily respiratory symptoms, SARS-CoV-2 
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can also infiltrate the central nervous system, which may damage the blood-brain 
barrier and the neuron's synapses. Resultant inflammation and neurodegen-
eration in the brain stem can further prevent efferent signaling to cranial nerves, 
leading to the loss of anti-inflammatory signaling and normal respiratory and 
gastrointestinal functions. Additionally, SARS-CoV-2 can infect enterocytes 
resulting in gut damage followed by microbial dysbiosis and translocation of 
bacteria and their byproducts across the damaged epithelial barrier. As a result, 
this exacerbates pro-inflammatory responses both locally and systemically, 
resulting in impaired clinical outcomes. Recent evidence has highlighted the 
complex interactions that mutually modulate respiratory, neurological, and 
gastrointestinal function. In this review, we discuss the ways SARS-CoV-2 
potentially disrupts the gut-brain-lung axis. We further highlight targeting 
specific responses to SARS-CoV-2 for the development of novel, urgently needed 
therapeutic interventions. Finally, we propose a prospective related to the 
individuals from Low- and Middle-Income countries. Here, the underlying 
propensity for heightened gut damage/microbial translocation is likely to result 
in worse clinical outcomes during this COVID-19 pandemic.

Key Words: SARS-CoV-2; Gut; Microbiome; Lungs; Brain; Therapeutics
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Core Tip: Severe acute respiratory syndrome coronavirus 2 has spread rapidly, infecting 
and killing millions worldwide. In addition to respiratory symptoms, coronavirus 
disease 19 (COVID-19) is associated with enterocyte infection leading to intestinal 
inflammation, gut barrier damage, and microbial dysbiosis exacerbating the systemic 
inflammatory response. Viral infiltration to the central nervous system from cranial 
nerve innervation of the lungs and gut can also cause neuroinflammation and 
degeneration, which further dysregulates gut and lungs. This review summarizes recent 
findings on COVID-19 pathogenesis in the gut-brain-lung axis and offers therapeutic 
interventions to improve clinical outcomes.
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INTRODUCTION
Starting from late 2019 and through 2020, a novel coronavirus, the causative agent of 
coronavirus disease 19 (COVID-19), initiated one of the deadliest global pandemics 
warranting extensive panic for the underprepared global health system[1-4]. The 
pandemic has claimed countless lives (approximately 4 million deaths worldwide of 
188 million confirmed cases as of July 15, 2021) and presented unprecedented socio-
economic losses[5-8]. The primary mode of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) transmission is airborne, with infectious droplets gaining 
access into the host respiratory tract. Subsequently, standard clinical indicators 
comprise fever, cough, fatigue, chills, nausea, headache, dyspnea. Additionally, the 
loss of taste or smell often ensues[9,10]. Coronavirus infections primarily target the 
upper respiratory tract, but they also manifest in other regions such as the gas-
trointestinal tract (GIT). Within the GIT, additional symptoms such as lack of appetite, 
vomiting, abdominal pain, and diarrhea have been observed in some individuals[11,
12].

SARS-CoV-2 has been shown to infect GIT cells such as human gut enterocytes[13]. 
SARS-CoV-2 RNA has also been detected in gastrointestinal glandular epithelial cells
[14-17]. During infection, compromised gastrointestinal symptom involvement has 
worse clinical outcomes and takes longer to recover than those with only respiratory 
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symptoms[18-20]. Subsequently, patients who test positive for viral RNA in feces have 
poor viral clearance and prolonged delays for infection resolution[21]. SARS-CoV-2 
tropism in the lungs and GIT is supported by abundant cellular viral entry receptors 
such as the angiotensin-converting enzyme-2 (ACE2). ACE2 exists in abundance on 
the epithelia of the lungs and small intestine (ileum)[22,23]. ACE2 catalyzes the 
conversion of angiotensin II into angiotensin 1-7; it is crucial for maintaining gut 
balance through regulation of amino acid homeostasis, innate immunity, the balance 
of the intestinal microbiome, and by limiting diarrhea[24,25].

The gut is the largest immune organ and is a crucial interconnecting hub, which 
synchronously orchestrates multiple physiological, cellular, and organ functions[26]. 
The gut maintains an anti-inflammatory state that supports the growth of trillions of 
commensal bacteria, which modulate the function of other organs like the brain, heart, 
kidney, lungs, and liver while favoring its core functions like digestion, absorption of 
nutrients, and excretion of waste matter[27-30]. This inter-compartmentalized crosstalk 
infers the need to develop effective gut-specific therapeutics that could limit systemic 
pathology during diverse viral infections such as human immunodeficiency virus 
(HIV), SARS-CoV-2, and other related respiratory viruses.

IMMUNE ARCHITECTURE OF A HEALTHY GUT
The gut is one of the most complex immune organs containing a wide variety of 
immune cells, including myeloid cells, conventional T cells, innate lymphoid cells (
e.g., natural killer cells and specialized intraepithelial lymphocyte populations), and 
epithelial cells[31]. Homeostasis in a healthy gut is mainly fostered through the 
sustenance of an anti-inflammatory environment crucial for maintaining tolerance to 
oral antigens, commensal microflora, and bridging an intact mucosal barrier[32,33]. 
Commensal microflora competes with pathobionts (potentially pathogenic bacteria 
which are benign during homeostasis) for nutrients within the gut microenvironment, 
secrete toxins that favor their predominance, and release metabolites that shape gut 
immunity by providing appropriate anti-inflammatory signals to other immune cells 
such as macrophages[31,34].

Critical genera of the microbiome also ferment dietary fiber into short-chain fatty 
acids that support gut immune responses by sustaining the balance of T regulatory (T 
reg) cells and activated T cells[35]. The released short-chain fatty acids such as 
butyrate facilitate CD103+ dendritic cell production of retinoic acid, which in turn aid 
in the generation of FoxP3+ T reg cells and sampling of an antigen across the gut 
lumen. Increased frequencies of CD4+ regulatory T cells maintain a basal anti-inflam-
matory state of the gut. Released acetate also improves the integrity of gut epithelial 
cells[36,37]. Additionally, lamina propria macrophages are highly phagocytic and 
engulf any foreign microorganisms that may have breached the intact gut mucosal 
barrier[38]. The gut epithelial cells secrete anti-inflammatory cytokines such as 
interleukin 10 (IL-10) and transforming growth factor-β (TGF-β), which promote 
increased frequencies of T regs that are crucial for immunological suppression and 
induction of mucosal tolerance[39-41].

SARS-COV-2 INFECTION IN THE GUT
During gut infection, SARS-CoV-2 uses its spike (S) proteins on the virus's surface to 
directly bind to the ACE2 receptor that is highly expressed on target intestinal 
epithelial cells (enterocytes and goblet cells). A transmembrane serine protease 
(TMPRSS2) acts synergistically and cleaves the S protein into S1 and S2 subunits, 
facilitating the host cell's viral entry[15]. Like other viruses such as rotavirus, 
norovirus, and enteroviruses, the interferon-stimulated genes are activated, resulting 
in the reinstatement of an antiviral state and restricted SARS-CoV-2 replication[42-44]. 
Simultaneously, pro-inflammatory cytokines like IL-6, IL-1, and tumor necrosis factor-
α (TNF-α) are also released[44]. Severe enterocyte apoptosis follows as soon as the 
virus overcomes the interferon-mediated antiviral state[16]. The tremendous loss of 
intestinal epithelial cells diminishes the gut barrier’s integrity and gravely impacts the 
absorption of nutrients, secretion of mucus, and production of antimicrobial peptides
[45]. The elevated secretion of pro-inflammatory cytokines also simultaneously 
activates macrophages towards pro-inflammatory states, which involves the increased 
surface expression and later shedding of markers such as CD14 and CD163 that are 
critical for detecting microorganisms and limiting inflammation[16].
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A recent unpublished study that comprehensively investigated changes in gut 
dynamics during SARS-CoV-2 infection shows that there were increases in 
permeability of gut tight junctions as estimated using zonulin, microbial translocation, 
lipid-binding protein, and myeloid activation using soluble CD14[46]. Gut barrier 
damage, microbial translocation, and myeloid cell activation worsened as the disease 
transitioned into more severe states. All this was heralded when a two-fold increment 
in tight junction permeability was observed in individuals who died vs COVID-19 
survivors. Unsurprisingly, alterations in gut homeostasis positively correlated with 
elevated IL-6, thus confirming increased inflammation as a conduit for loss of gut 
barrier integrity[46]. Lastly, progressive increments of disrupted citrulline metabolism 
accompanying the severity of SARS-CoV-2 indicate ongoing microbial dysbiosis and 
impaired intestinal function[47].

GUT INFLAMMATION AND SARS-COV-2
An optimal balance between T regs and inflammatory T helper 17 (Th17) cells is 
maintained within a healthy gut. As inflammation occurs, this balance is tipped as pro-
inflammatory bacteria are favored over commensals[37]. These pro-inflammatory 
bacteria induce the secretion of cytokines like IL-6 and IL-17 that select for increased 
frequencies of Th17 pro-inflammatory CD4+ T cells and susceptibility to inflammatory 
conditions such as inflammatory bowel disease (IBD)[37].

An increased expression of SARS-CoV-2 receptors during other inflammatory 
conditions has been suggested to affect disease pathogenesis. During IBD and Crohn's 
disease (CD), epithelial ACE2 expression is elevated in the colon and rectum while 
diminished in the ileum[48]. As anticipated, gut dysbiosis occurs as pathobionts 
outcompete commensal bacteria, and macrophage populations transition towards 
inflammatory states where they secrete increased amounts of pro-inflammatory 
cytokines such as TNF-α, IL-6, and IL-12[49,50]. The resultant inflammatory damage 
leads to the destruction of tight junctions within the gut barrier. This later leads to 
leakage of microbial contents into the systemic circulation. Microbial translocation 
then ensues and later fuels chronic immune activation[49].

Several studies have investigated the co-occurrence of IBD and COVID-19-related 
illnesses[51-53]. Here, we discuss the possibility of leveraging IBD therapeutics for 
treating COVID-19-related symptoms. Current IBD treatments can be divided into two 
broad categories: (1) Non-biologic; and (2) Biologic therapeutics. Examples of non-
biologic therapeutics include small molecules corticosteroids, thiopurines, and 5-
aminosalicylates. Each of these therapeutics non-specifically targets multiple inflam-
matory processes.

On the other hand, biologic therapies target specific inflammatory mediators in the 
gut to modulate their ability to induce signal transduction[41]. Current biologics used 
to treat IBD include the monoclonal antibodies infliximab, ustekinumab, and 
vedolizumab. Infliximab and ustekinumab target pro-inflammatory cytokines TNF-α 
and IL-12/IL-23, respectively. Since these cytokines are not specific to intestinal 
inflammation, antibodies that inhibit their action can act throughout the periphery. 
More specific therapies target IBD like vedolizumab function by blocking the gut 
homing receptor α4β7 integrin, thereby blocking inflammatory lymphocyte trafficking 
resulting in reduced inflammation[41,54,55]. Similarly, the biologic natalizumab, an 
anti-α4 integrin antibody, is also used to treat Crohn's disease, albeit less frequently 
due to an increased risk of progressive multifocal leukoencephalopathy (Table 1)[56].

Several studies have suggested that IBD non-biologic therapies may worsen clinical 
outcomes during COVID-19[57-59]. For example, 5-aminosalicylate and its prodrug 
form sulfasalazine have increased the risk of SARS-CoV-2 infection and increased the 
risk of hospitalization and mortality[57-59]. Other immunomodulators include 
thiopurines, calcineurin inhibitors, and methotrexate. When grouped in meta-analyses, 
these immunomodulators were also associated with an increased risk of infection, 
hospitalization, and mortality during SARS-CoV-2 infection[57-59]. The data for 
corticosteroids is more complicated[57-59]. Owing to their nature as non-selective 
hormone analogs, corticosteroids target gut inflammation non-specifically, resulting in 
a dampening of the inflammatory response beyond the intestines. This dampened 
immune response can therefore inhibit the clearance of replicating virus and prolong 
the duration of infection. Corticosteroids may further negatively impact clinical 
outcomes by increasing the pro-thrombotic response to SARS-CoV-2, exacerbating 
already frequent clotting in intrinsically vascular disease. Several case studies have 
linked this hypercoagulable state in COVID-19 to worsening in the gut, including 
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Table 1 Comprehensive list of available gut-based and vagus nerve therapies that could be leveraged to limit the severity of 
coronavirus disease 19 infection

Therapy Target Impact Clinical outcome

Infliximab[57,58] TNF-α Reduced pro-inflammatory response 
induction and leukocyte migration

Reduced infection rate, symptoms, 
hospital rate, and mortality

Ustekinumab[57] IL-12/IL-23 Blocks T cell activation Possible improved outcome (pooled 
with other biologics)

Vedolizumab[54,57] α4β7 integrin Reduced leukocyte trafficking to gut and 
associated inflammation 

Possible improved outcome (pooled 
with other biologics)

Corticosteroids[57,58,63] Glucocorticoid and 
mineralocorticoid receptors

Reduced inflammatory response Better or worse clinical outcomes, 
depending on the timing

Microbiome[176] Butyrate production Improved gut barrier integrity and 
decreased  microbial translocation

Reduced inflammatory response

Vitamin D[70,72,74] Th17 cells Reduced gut and systemic inflammation Reduced infection risk and enhanced 
clinical outcomes

Nicotine and related agonists
[142,152,153]

α7nAChR Reduced Inflammatory Response Reduced infection rate

Vagus nerve stimulation[151] α7nAChR Increased acetylcholine release Reduced inflammation

TNF-α: Tumor necrosis factor-α; IL:  Interleukin; Th17: T helper; nAChR: Nicotinic acetylcholine receptor.

ischemic colitis, potentially aggravating an already disrupted gut homeostasis[60,61]. 
Therefore, it is unsurprising that studies to determine the impact of IBD therapy on 
COVID-19 have not been pursued. Nonetheless, corticosteroids for IBD are typically 
administered long-term and precede SARS-CoV-2 infection. Corticosteroids, partic-
ularly dexamethasone, reduce mortality in hospitalized SARS-CoV-2 patients 
receiving oxygen and reduce intensive care unit hospitalization length when given at 
moderate doses over a short period (6 mg for up to 10 d)[20,62]. In this context, 
dexamethasone is typically given after the body has begun clearing the virus but 
before the worst symptoms of COVID-19 due to cytokine storm arise[63]. The 
difference in infection rate and clinical outcomes for patients receiving treatment 
before infection suggests that timing is critical for optimizing corticosteroid use.

In addition to modulating immune responses directly, non-biologic medications 
may influence COVID-19 pathogenesis in other ways. For instance, people receiving 
non-biologic medications such as corticosteroids, thiopurines, and 5-aminosalicylates 
have reduced ACE2 and TMPRRS2 expression on enterocytes in the inflamed colon 
rectum, but not the ileum[48]. This suggests that despite the adverse clinical outcomes 
with these medications, they may reduce productive gut epithelial infections in people 
living with IBD. However, these drugs did not cause changes to receptor expression in 
the uninflamed gut[48]. In contrast, some biologics used to treat IBD have been mostly, 
though not exclusively, linked to improved clinical outcomes during SARS-CoV-2 
infection, offering novel therapeutic interventions. Early studies have shown that the 
patients administered biologics did not have an increased risk of COVID-19, despite 
being considered immunocompromised[64,65]. Individual case studies demonstrate 
that targeting TNF-α with infliximab promises to improve pulmonary symptoms 
related to COVID-19[66]. Further, an early study grouping multiple biologic therapies 
showed that clinical outcomes for individuals taking these biologics were five times 
less likely to be diagnosed with a SARS-CoV-2 infection[67]. However, this analysis 
was limited due to the small sample size and inability to separate the specific 
therapies.

A more recent meta-analysis, again grouping different biologics (anti-TNF-α, 
ustekinumab, and vedolizumab), demonstrated that their use was associated with a 
risk ratio of hospitalization 0.34 [95% confidence interval (CI) 0.19-0.61], need for 
intensive care unit 0.49 (95%CI 0.33-0.72), and mortality 0.22 (95%CI 0.13-0.38), 
suggesting a substantial improvement in clinical outcome[57]. However, one concern 
is that because people treated with biologics have such muted symptomology, they 
may serve as silent carriers of SARS-CoV-2[68]. In addition to reducing symptoms, 
infliximab has also been shown to reduce the expression of ACE2 in the colon, 
potentially limiting the productive infection of the gut[48]. Because of these findings, a 
continued study of these monoclonal antibodies is warranted. Luckily, several clinical 
trials are currently underway, including anti-TNF- α therapies infliximab and 
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adalimumab.
In addition to prescription therapeutics, other recommendations for IBD can also be 

applied to SARS-CoV-2 infection. COVID-19 pathogenesis has been characterized 
primarily by dysregulation of the systemic pro-inflammatory response of Th17 cells, 
particularly during the cytokine storm. This includes decreases in CD4+ T cells 
expressing Th17 markers CCR6 and CD161, increasing senescence and exhaustion 
markers CD57 and PD-1[69]. The total number of IL-17A-producing CD4+ and CD8+ 
T cells was significantly increased despite these findings. These studies suggest that 
targeting IL-17 may improve clinical outcomes for COVID-19 patients[69].

Further, early during the pandemic, low circulating vitamin D became a known risk 
factor for SARS-CoV-2 infection, and severe pathogenesis, including associations with 
significantly higher pro-inflammatory cytokines, including IL-6[70,71] was noted. For 
this reason, vitamin D supplementation has been recommended for high-risk 
individuals[70]. Oral vitamin D supplements are absorbed by the small intestine, 
where they may modulate local Th17 cells, including reduced production of IL-17[72]. 
In clinical practice, vitamin D is frequently recommended for patients prescribed 
corticosteroids to manage their IBD symptoms to prevent bone density loss[73]. It is 
also recommended to reduce or protect against IBD onset of symptoms, in part by 
suppressing IL-17 production[72]. Further, vitamin D has been linked to increased 
expression of tight epithelial junctions and blocking apoptosis in the intestine, 
strengthening gut integrity and preventing bacterial translocation[74,75]. However, 
whether dampened COVID-19 pathogenesis is linked to inhibition of pro-inflam-
matory Th17 cells or by a different mechanism remains unknown.

One final concern regarding SARS-CoV-2 during IBD has been the safety and 
efficacy of vaccination with current therapeutics, many of which are immunosup-
pressive because so far, phase III clinical trials have excluded patients with IBD[76,77]. 
Previous studies have found IBD patients treated with anti-TNF-α therapies have a 
muted response when administered other vaccines (pneumococcal, influenza), leading 
to further questioning of efficacy[76,78,79]. Despite these concerns, the benefits of 
vaccination outweigh many of the risks of SARS-CoV-2 infection, and vaccination is 
likely beneficial for most patients with IBD, even if receiving immunosuppressive 
therapies[76,80,81]. However, future studies are needed to determine efficacy for this 
population.

SARS-COV-2 INFECTION RESULTS IN MICROBIAL DYSBIOSIS IN THE 
GUT
SARS-CoV-2-related microbial dysbiosis manifests the enrichment of pathobionts such 
as Ruminococcus gnavus, Ruminococcus torques, and Bacteroides dorei (B. dorei) Bacteroides 
vulgatus. These bacteria have also been implicated in IBD and ulcerative colitis 
pathogenesis, further strengthening their role in gut dysfunction[82,83]. SARS-CoV-2 
dysbiosis was also accompanied by loss of crucial bacteria that have been previously 
implicated in the lowering of inflammation, such as Bifidobacterium adolescentis, 
Faecalibacterium prausnitzii (F. prausnitzii), Collinsella aerofaciens, and Eubacterium rectale 
(E. rectale)[84] (Figure 1). Another study highlighted that Clostridium hathewayi (C. 
hathewayi), Clostridium ramosum (C. ramosum), and Coprobacillus were linked to COVID-
19 severity[85]. Unsurprisingly, these microbial signatures (C. hathewayi, C. ramosum, 
and Coprobacillus) have also been associated with pathogenic/inflammatory gut 
conditions such as diarrhea, colitis, IBD, and overall inflammation[86-88]. This 
situation's gravitas is further supported by observations made in a separate study that 
showed that the inflammatory species, Proteobacteria, was reported in the guts of 
COVID-19 patients[89].

Alternatively, several anti-inflammatory bacteria, including F. prausnitzii, B. dorei, 
Bacteroides thetaiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus were linked to 
improved clinical outcomes in SARS-CoV-2 patients. Remarkably, Bacteroides were 
reported to down-regulate ACE2 expression in the gut[85]. The fecal microbiome has 
also been determined to be dysbiotic for periods as long as 30 d after clearance of SAR-
CoV-2 infection, further contributing to the extensive list of health complications 
reported in COVID long haulers who never wholly recover and recuperate to a 
healthy state[84,90]. To this effect, it was noted that microbiomes of recovered patients 
were enriched in Bifidobacterium dentium and Lactobacillus ruminis species and reduced 
E. rectale, Ruminococcuss bromii, F. prausnitzii, and Bifidobacterium longum[84]. 
Therapeutics involving antibiotics to stabilize the gut microbiome by eliminating 
SARS-CoV-2 associated pathobionts revealed that these regimens did not affect the 
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Figure 1 Severe acute respiratory syndrome coronavirus 2 infection induces microbial dysbiosis and intestinal inflammation. Severe acute 
respiratory syndrome coronavirus 2 infections of intestinal epithelial cells result in a pro-inflammatory immune response leading to infiltration of inflammatory 
lymphocytes and disrupting the gut barrier. This disruption to homeostasis allows overgrowth of detrimental bacteria resulting in dysbiosis, and the impaired gut 
barrier facilitates the translocation of bacteria exacerbating the inflammatory response. Additionally, opportunistic fungal infections have been found in some patients, 
further contributing to the dysfunction. SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

recovery of the microbiome. Therefore, these findings negate this approach as a 
possible future gut microbial rejuvenation strategy[84]. In contrast, previous studies 
have shown that probiotics improve immune responses to other respiratory tract viral 
infections such as Influenza and Rhinoviruses[91,92]. Also, in patients with severe 
COVID-19 disease who cannot ingest probiotics, the use of butyrate enemas could act 
as adjunctive therapy for repairing intestinal epithelial cell wall damage, lowering 
chronic immune activation promoting gut-brain axis function[93].

Analysis of the fungal mycobiome using deep shotgun metagenomic sequencing 
revealed significant proportions of opportunistic fungal pathogens such as Candida 
albicans, Candida auris, and Aspergillus flavus were enriched in the gut microbiota of 
COVID-19 hospitalized patients[94]. Similarly, separate studies have detected 
Aspergillus in respiratory tract secretions and tracheal aspirates of patients with 
COVID-19[95,96]. Unsurprisingly, in patients with Aspergillus in their fecal mic-
robiomes, the cough was noted as one of the significant symptoms that emphasized 
intricate systemic distortion of the gut-lung axis[97]. In such cases, antifungal 
medications should be considered.

THE SARS-COV-2 INFECTION AFFECTS THE HOMEOSTASIS OF THE 
GUT-LUNG AXIS
The gut-lung axis has been proposed to be a bi-directional conduit by which each 
organ can modulate the function and inflammatory state. This includes the production 
of metabolites such as short-chain fatty acids (SCFAs) by the gut microbiome, 
lymphocyte trafficking from the lungs or the gut into the periphery where they 
redirect systemic immune responses, and indirect neuronal innervation via the central 
nervous system (CNS) and cranial nerves bridging each organ[98,99]. The bi-
directionality of the gut-lung axis, while capable of promoting beneficial co-
mmunication, as noted, also represents an avenue for disruption in immune 
regulation. Changes in the composition and function of the gastrointestinal flora 
operate to effect change in the respiratory tract through the mucosal immune system, 
while reciprocally, disturbances to the respiratory tract flora consequently affect the 
digestive tract through immune regulation[100]. Infection from SARS-CoV-2 causes 
effector CD4+ T cells to reach the small intestine by accessing the C-C chemokine 
receptor type 9 (CCR9) via the gut-lung axis resulting in intestinal immune damage 
and diarrhea[101]. A study related to the influenza virus demonstrated that lung-
derived CCR9+CD4+ T cell levels were increased following viral infection[102]. Ye et al
[101] summarized that the small intestinal epithelium can express CCL25, which 
actively recruits CCR9+CD4+ T cells to the small intestine, resulting in intestinal 
immune damage and polarization of Th17 cells in conjunction with overproduction of 
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IL-17A. This, in turn, leads to neutrophil recruitment, thus establishing diarrhea onset 
and other gastrointestinal symptoms during SARS-CoV-2 infection. Generally, 
COVID-19 patients presenting with gastrointestinal symptoms (> 20% of cases) are 
more likely to be complicated by acute respiratory distress syndrome (ARDS) and are 
more prone to fatigue, headache, and cough[101]. Another pathway that may be 
involved in the severity of ARDS during SARS-CoV-2 infection is the C5a-C5aR1 axis. 
Proportionate to the severity of ARDS, soluble levels of C5a were found to be 
increased, and C5aR1 receptors were reported with high expression levels in the blood 
and pulmonary myeloid cells; furthermore, in C5aR1 knock-in mice, acute lung injury 
was prevented by the introduction of anti-C5aR1 therapeutic monoclonal antibodies 
suggesting that this axis could be used to limit lung inflammation[89]. Given that 
ACE2 is highly expressed in the gastrointestinal tract, specifically intestinal epithelial 
cells, the esophagus, and the lungs, this may make it a target organ for SARS-CoV-2 
infection[103]. Therefore, probiotics offer a favorable potential treatment addressing 
the gastrointestinal symptoms in COVID-19 by operating to sustain the healthy 
balance of the gut microecology and protect the respiratory tract from bacterial 
infections[100]. ACE2, while present across different tissue types, is most prominent in 
the lungs, which highlights the importance of understanding the network involved to 
combat the hypersensitivity of the receptor in this tissue, which may lead to worse 
respiratory illness.

Another branch that extends from the lung-gut axis includes the lung-brain conduit, 
which proposes to connect severe neurological dysfunction and injury with associated 
lung injury. In general, CoV-induced inflammation and oxidative stress may represent 
a crucial mechanism for the onset of neurological symptoms. SARS-CoV-2, in 
particular, has been shown to have the neuroinvasive potential[104]. The vagus nerve 
innervates the lung's distal airway, and upon stimulation, nerve endings release 
acetylcholine (ACh), which functions to regulate lung infection[105] (Figure 2). ACh 
secreted from neuronal and non-neuronal sources acts to decrease inflammation, and 
using an Influenza A model, a previous study showed that viral infection caused an 
influx of cholinergic lymphocytes while inhibiting ACh synthesis resulted in extended 
pulmonary inflammation, increased inflammatory macrophage activation, and 
delayed tissue repair (Reviewed in[106]).

Similarly, it was demonstrated that a deficiency to the α7 nicotinic ACh receptor 
(nAChR) acts to worsen lung infection, inflammation, and injury while increasing 
circulatory levels of pro-inflammatory cytokines. Additionally, α7 nAChR activation 
by GTS-21, which enhances the phagocytic ability of hyperoxic macrophages, is a 
prominent method for improving bacterial clearance and reducing lung injury[107], 
suggesting an involvement of lung-gut-brain connection. During infection, viruses 
may breach the CNS by various routes, including the vasculature, olfactory and 
trigeminal nerves, or the lymphatic system. However, the direct mechanism that 
SARS-CoV-2 utilizes is unknown[108]. One hypothesis is that SARS-CoV-2 enters the 
CNS by breaching the olfactory route, thereby circumventing the blood-brain barrier 
(BBB). More than 80% of COVID-19 patients presented with gustatory and olfactory 
impairments lending support to this access point[104].

Furthermore, in a cohort of 214 COVID-19 patients, 36.4% developed neurologic 
symptoms ranging from acute cerebrovascular diseases, consciousness impairment, 
and skeletal muscle symptoms[109]. As reviewed by Nuzzo and Picone, another study 
used a cellular model to demonstrate that respiratory syncytial virus infection 
propagates reactive oxygen species (ROS) production transitively, creating oxidative 
stress that supports the idea that lung inflammation may be a determinant of systemic 
oxidative stress[104]. The brain, a primary tissue for metabolizing oxygen, is partic-
ularly vulnerable to ROS, and SARS-CoV-2 could generate enough ROS to cause brain 
injury.

In addition to the host immune system's direct mutual interaction in the gut-brain-
lung axis, commensal and pathogenic bacteria in the gut microbiome can also 
influence COVID-19 pathogenesis. SCFAs such as acetate, butyrate, and propionate, 
being the most prominent immunomodulatory metabolites, maintain and reinforce 
intestinal epithelial integrity to decrease inflammation in the gastrointestinal tract and 
respiratory tract by increasing differentiation and fortifying against tight junction 
permeability[110]. During SARS-CoV-2 infection, increased permeability was 
associated with clinical worsening, including multiorgan failure[111]. SCFAs produced 
by the microbiota influence the inflammatory state of the host's epithelial cells, innate 
and adaptive immune cells directly or indirectly, and utilize the mesenteric lymphatic 
system for translocation of intact bacteria, their fragments or metabolites through the 
intestinal barrier, thereby modulating the lung immune response upon entry to the 
systemic circulation[112,113]. Additionally, SFCA butyrate suppresses intestinal 
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Figure 2 Role of acetylcholine on immune micro-environments in diverse tissues including the brain, heart, lungs, and gut. Cholinergic 
signaling can be exploited to reduce microglia activation in the central nervous system, lower systemic inflammation, and promote optimal organ function in diseased 
states such as severe coronavirus disease 19 infection where systemic dysfunction occurs.

inflammation by inhibiting histone deacetylase (HDAC) activity. Inhibition of HDAC 
enhances the mTOR-S6K pathway required for T cell differentiation and cytokine 
expression and enhances histone 3 acetylation at Foxp3 Locus to allow transcription to 
occur and Treg cell differentiation[114,115] Further, GPR43 activation by butyrate can 
inhibit NF-κB activity and stimulate anti-inflammatory signaling, including IL-8 and 
IL-10[116].

Previous work on other respiratory viruses also documents disruptions to the gut 
microbiota. Interestingly, SARS-CoV-2 has been reported to deplete the levels of short-
chain fatty acid-producing bacteria such as Parabacteriodes merdae, Bacteriodes stercoris, 
and Lachnospiraceae bacterium[117]. Thus, respiratory influenza can indirectly induce 
intestinal immune injury and alter gut microbiota, resulting in the outgrowth of 
Enterobacteriaceae and reduction of Lactobacilli and Lactococci[113]. In the influenza-
related lung response in mice, intestinal TLR activation is required for NF-κB-
dependent pathways for the innate immune response. In this case, disruptions of the 
microbiota were unrelated to the influenza virus and mediated by Th17 cells[118].

Similarly, other respiratory infections, such as a respiratory syncytial virus (RSV), 
distort the gut microbiome's balance by depleting Lachnospiraceae and Lactobacillaceae 
families while enriching Bacteroidaceae[119]. Experimental studies designed to 
administer high fiber diets favor the enrichment of short-chain fatty acid butyrate-
producing bacteria, thus promoting the interferon antiviral state within the lungs of 
RSV-infected individuals[120]. In turn, depletion of the gut microbiome has been 
shown to hinder optimal alveolar macrophages' optimal functionality by reducing 
oxidative respiratory burst capacity and later diminishing their bactericidal effects
[121].

IMPACT OF SARS-COV-2 INFECTION ON THE BRAIN-GUT AXIS
The gut microbiome has been shown to directly modulate multiple brain functions 
such as immune modalities like inflammation and neuroendocrine states like mood, 
stress, anxiety, and memory functions[122-125]. Within the gut, two plexuses comprise 
the enteric nervous system (ENS): one at the submucosa and the other associated with 
the muscularis propria. Together, these two plexuses sense the inflammatory and local 
microbial milieu. The ENS can regulate many aspects of CNS health and behavior 
through the production of inflammatory mediators, hormones, and direct neuronal 
innervation of the vagus nerve from the medulla oblongata[126,127]. The release of 
short-chain fatty acids by gut commensal bacteria improves the BBB's integrity, 
reduces inflammation signaling in microglia/astrocytes, and enhances neurogenesis 
within neurons. Collectively, this promotes reduced aging, better memory, and 
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improved cognitive development[128].
During gut inflammation, as exemplified with IBD, distorted microbiota 

populations drive mucosal myeloid cells' activation and subsequent release of pro-
inflammatory cytokines that sustain epithelial gut damage. In turn, this activates a 
cascade of gut pain sensory pathways, dysregulates the enteric nervous system, and 
simultaneous gut-brain dysfunctions[129-132]. Besides distortion of the lung-gut axis, 
SARS-CoV-2 dysbiosis of the microbiome could also negatively impact other organs 
such as the brain. SARS-CoV-2 diminishes crosstalk with the brain by depleting crucial 
short-chain fatty acid-producing bacteria within the gut microbiome[117] (Figure 3). 
Furthermore, SARS-CoV-2 has been shown to gain access to the brain by crossing the 
neural–mucosal interface in olfactory mucosa, where the olfactory mucosal, 
endothelial, and nervous tissue are closely intertwined[133]. After this, SARS-CoV-2 
localizes within the medulla, where respiratory and cardiovascular activities are 
controlled[133-135]. Thus, this could account for the neurological symptoms such as 
loss of smell and taste, persistent headaches, confusion, cerebrovascular disease, 
muscle pain, ataxia, seizures, and dizziness observed in COVID-19 patients[136]. The 
CNS also supports gut function making the gut-brain axis bi-directional[137,138]. 
However, the impact of SARS-CoV-2 pathology within the CNS on the direction of gut 
functions such as peristalsis, modulation of gut immune responses, and directing 
digestion is yet to be fully comprehended[139].

NICOTINE RECEPTORS, POSSIBLE THERAPEUTIC TARGETS FOR 
LIMITING SARS-COV-2 DAMAGE IN THE GUT AND BRAIN
Several epidemiological studies from the United States, Europe, and south and east 
Asia have concluded that tobacco smokers have a lower risk of SARS-CoV-2 infection
[140-144]. Additionally, smokers may also have a reduced risk of significant symptoms 
once infected with SARS-CoV-2, despite typically experiencing increased morbidity 
and mortality during other respiratory infections[142]. Nicotine is the receptor agonist 
for nAChRs that contribute to tobacco smoke's addictive and psychoactive properties. 
In contrast to exogenous nicotine, the endogenous agonist for nAChRs, ACh is 
produced by neurons and lymphocytes, an essential neuro-immune modulator. The α
7nAChR, in particular, regulates the cholinergic anti-inflammatory response (CAIP)
[145]. During acute inflammation, efferent signals from the CNS induce the release of 
ACh at the enteric nervous system, where they modulate T-cell dynamics, including 
the induction of Tregs and inhibition of Th17 cells and suppression of local inflam-
mation, including the releases of TNF-α, IL-1β, and HMGB1[146,147]. One hypothesis 
for nicotine's inhibitory effects is that exogenous α7nAChR agonists recapitulate the 
effects of ACh release by the vagus nerve, thereby reducing cytokine storm risk both 
locally at the inhalation site (the lungs) and systemically, including in the gut. This 
mechanism may be a likely reason nicotine improves ulcerative colitis symptoms[146,
148]. The argument for cholinergic modulation is made even more compelling when 
considering that neither smoking nor nicotine consumption decreases ACE2 or 
TMPRSS2 and may increase their expression in the lower airways[149,150]. COVID-19 
patients should not be encouraged to smoke or consume nicotine. However, 
alternative methods of modulating the CAIP have been suggested. Vagus nerve 
stimulation (VNS) delivers electrical impulses to the left vagus nerve via a small device 
implanted below the collar bone currently used to treat treatment-resistant epilepsy 
and major depressive disorder. However, less-invasive transcutaneous auricular VNS 
is being developed. Although more extensive clinical studies are ongoing, case studies 
have indicated possible benefits in reducing plasma IL-6 levels when using these 
devices[151]. Alternatively, α7nAChR agonists or acetylcholinesterase inhibitors have 
been proposed to reduce systemic inflammation[152,153].

A recent report describing ACE2 and TMPRSS2 expression during chronic vagus 
nerve stimulation showed no changes in either protein or enterocytes[154], although 
each gene was strongly correlated with CHRNA7 gene expression RNA-seq[154]. 
Another report separately described how the spike glycoprotein's receptor-binding 
domain on SARS-CoV-2 possesses significant structural homology with α-bun-
garotoxin, a neurotoxin produced by kraits that target α7nAChR, the product of 
CHRNA7 translation[155]. In their discussion, the authors suggest this homology 
blocks normal cholinergic signaling by competitive inhibition leading to an excessive 
pro-inflammatory response that cannot be alleviated by vagal signaling. If that is the 
case, the co-expression of CHRNA7 and ACE2 with TMPRSS2 would mean that 
infected gut epithelial cells are producing viral particles that inhibit cholinergic 
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Figure 3 Potential mechanisms by which severe acute respiratory syndrome coronavirus 2 dysregulates the gut-brain axis. Side by side 
comparisons of the gut-brain-lung axis in a healthy state vs a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposed state. In a healthy state, 
commensal bacteria outcompete pathogens within the gut micro-environment leading to a predominantly anti-inflammatory state. Peptides released by commensal 
gut bacteria support optimal brain and lung function. During SARS-CoV-2 infection, gut microbial dysbiosis dysregulates gut, lung, and brain function. SARS-CoV-2: 
Severe acute respiratory syndrome coronavirus 2; BBB: Blood-brain barrier; AM: Alveolar macrophages; SCFA: Short-chain fatty acids; T-regs: T regulatory cells.

signaling on themselves. A loss of cholinergic signaling fails to block HMGB1, 
allowing increased microbial translocation at the gut barrier exacerbating inflam-
matory responses[156]. Targeting this interaction on colonocytes may offer consid-
erable protection from pathogenesis, including the cytokine storm. A similar 
correlation between ACE2 and CHRNA7 expression has been found on airway 
epithelial cells, suggesting these cells specifically may be the mechanism by which 
nicotine modulates infection rates and pathogenesis when endogenous ACh fails[157].

It should be noted that in addition to a disruption to its anti-inflammatory 
functions, the vagus nerve may also contribute to the COVID-19 pathology in other 
ways. During Parkinson's disease, α-synuclein aggregates travel from the gut to the 
CNS in the vagus nerve via retrograde axonal transport[158]. The innervation of both 
the lungs and gut, where significant viral replication occurs, may allow a similar direct 
transport to the CNS[159]. This hypothesis is corroborated by the recent reports, which 
showed that the brain stem has an increased inflammatory response during COVID-19 
compared with other brain regions. Where cranial nerves IX and X (glossopharyngeal 
and vagus nerves) meet, the medulla oblongata, in particular, has a higher viral load 
than the rest of the CNS[160]. The axonal and synaptic loss at the dorsal motor nucleus 
and nucleus solitarius near this region may be contributing to the loss of autonomic 
control of respiratory function, cardiac arrhythmias, and gastrointestinal symptoms 
like diarrhea and vomiting[161,162]. Complicating the role of nicotine in COVID-19 
pathogenesis, its administration can inhibit Th17-driven neuroinflammation, thereby 
possibly protecting these regions in smokers[163]. A better understanding of this 
process, if it exists, could contribute significantly to minimizing neuropathogenesis 
during SARS-CoV-2 infection.

CONCLUSION
SARS-CoV-2 infection in the gut leads to alterations in gut microbiota with depletion 
of bacterial genera that produce crucial metabolites such as short-chain fatty acids that 
sustain optimal brain function. Future studies focusing on using probiotics to 
replenish commensals' dwindling populations as a strategy to reverse gut dysbiosis 
while maintaining the gut-brain axis during COVID-19 are needed[164]. Furthermore, 
additional efforts should be applied to the testing strategies currently used to manage 
inflammatory conditions affecting the gut for their potential in the direction of 
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Figure 4 Elevated baseline gut inflammation observed in Sub-Saharan African individuals could lead to severe coronavirus disease 19 
associated dysregulation of the gut-brain-lung axis. Continuous exposure to various endemic pathogens such as human immunodeficiency virus, 
tuberculosis, multiple vectors like tsetse flies, and several mosquitoes, in addition to low diets, set the ground for high levels of gut dysbiosis within the entire 
community populations. Additional studies focused on evaluating the effects of baseline gut dysbiosis on coronavirus disease 19 infection are highly warranted. 
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; COVID-19: Coronavirus disease 19, HIV: Human immunodeficiency virus; TB: Tuberculosis.

COVID-19 associated dysbiosis, gut damage, and microbial translocation. Targeting 
vagal stimulation and diverse nicotinic receptors could offer lower organ inflam-
mation and confer systemic protection across the gut-brain and lung organs.

Lastly, special consideration should be given to populations worldwide where there 
is a high incidence of coinfections such as HIV and tuberculosis (TB) that target the gut 
early on in infection, cause dysbiosis and lead to microbial translocation[165-167]. In 
the world's poorest regions like Sub-Saharan Africa, most individuals are continuously 
exposed to endemic pathogens like helminths and TB that could lead to elevated 
baseline levels of gut damage, immune activation, and possible microbial translocation
[168-171]. Recently, Bhaskaran et al[172] analyzed data from 27480 individuals co-
infected with HIV within the United Kingdom. Their data revealed that people living 
with HIV had a higher risk of COVID-19 death than those without HIV, after adjusting 
for the age and sex with a hazard ratio (HR) of 290 (95%CI 0.196-0.430; P < 0.0001). 
However, the absence of testing, limited case reporting, and poor health care limits our 
understanding of the SARS-CoV-2 pandemic on this continent[172].

The sudden lifestyle changes imparted by the pandemic within these populations 
have tremendously strained their chances of survival. In countries where restrictions 
or lockdowns are enforced, most individuals from these regions rely on the 
government to supply free food rations[173]. However, the low quality of this freely 
distributed food fuels the already highly prevalent risk of malnutrition within these 
populations[174]. As we have illustrated, limited dietary access within these co-
mmunities could further aggravate gut dysbiosis leading to severe systemic disori-
entation during SARS-CoV-2 infection. The complexity of these variables, in addition 
to limited health service delivery and governmental support[175] could exacerbate 
gut-brain disruptions within diverse populations in Sub-Saharan Africa (Figure 4).

In these trying times of the COVID-19 pandemic, the connotation of a healthy gut-
healthy mind could translate into one's ability to orchestrate a meaningful immune 
response that could limit SARS-CoV-2 infection and maintain systemic homeostasis 
and diminish side effects from virus exposure. Leveraging therapies currently being 
used to improve gut health could be exploited for better disease outcomes during 
severe disease. Additional studies on the gut-brain axis, particularly from diverse 
populations across the world, are warranted.
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