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Abstract 

Background:  The mosquito Aedes albopictus is an important vector for many pathogens. Understanding the virome 
in Ae. albopictus is critical for assessing the risk of disease transmission, implementation of vector control measures, 
and health system strengthening.

Methods:  In this study, viral metagenomic and PCR methods were used to reveal the virome in adult Ae. albopictus 
captured in different areas and during different seasons in Guangzhou, China.

Results:  The viral composition of adult Ae. albopictus varied mainly between seasons. Over 50 viral families were 
found, which were specific to vertebrates, invertebrates, plants, fungi, bacteria, and protozoa. In rural areas, Sipho-
viridae (6.5%) was the most common viral family harbored by mosquitoes captured during winter and spring, while 
Luteoviridae (1.1%) was the most common viral family harbored by mosquitoes captured during summer and autumn. 
Myoviridae (7.0% and 1.3%) was the most common viral family in mosquitoes captured in urban areas during all sea-
sons. Hepatitis B virus (HBV) was detected by PCR in a female mosquito pool. The first near full-length HBV genome 
from Ae. albopictus was amplified, which showed a high level of similarity with human HBV genotype B sequences. 
Human parechovirus (HPeV) was detected in male and female mosquito pools, and the sequences were clustered 
with HPeV 1 and 3 sequences.

Conclusions:  Large numbers of viral species were found in adult Ae. albopictus, including viruses from vertebrates, 
insects, and plants. The viral composition in Ae. albopictus mainly varied between seasons. Herein, we are the first to 
report the detection of HPeV and HBV in mosquitoes. This study not only provides valuable information for the control 
and prevention of mosquito-borne diseases, but it also demonstrates the feasibility of xenosurveillance.
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Background
Vector-borne infectious diseases affect over one billion 
people every year, leading to more than a million deaths 
globally [1]. Aedes albopictus (Ae. albopictus), a diurnal 

mosquito, is considered to be one of the most invasive 
animal species in the world. It was originally indigenous 
to the tropical and subtropical regions of southern Asia 
[2]. However, with the movement of humans and climate 
change, it has spread to many places in the world [3]. 
Except for Antarctica, Ae. albopictus is now found on all 
continents [4].

Ae. albopictus is a competent vector of at least 22 arbo-
viruses that can cause human infections, including Zika 
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virus (ZIKV), dengue virus (DENV), chikungunya virus 
(CHIKV), and yellow fever virus (YFV) [5]. Outbreaks 
caused by arboviruses have been reported, such as den-
gue fever in Thailand, Vietnam, and China, and chikun-
gunya in France, Tanzania, Africa, and the Americas [2, 
6–13]. ZIKV infections have also been reported in many 
countries, including Brazil, Nicaragua, and America 
[14–16].

China is a country located in East Asia. Most of the 
regions in this country are in the temperate zone, while 
some southern regions are located in the subtropical and 
tropical zones [17]. Ae. albopictus is found in nearly one 
third of the regions in China: south to Hainan Island, 
north to Shenyang and Dalian, west to Jingshui and 
Longnan, southwest to the Tibet Autonomous Region, 
and most regions to the east [18–20].

Some mosquito-borne diseases are prevalent in China. 
Since the first outbreak of dengue fever in 1978, this 
disease has been a threat for over 40  years in China, 
especially in southern and southeastern China [21]. Ae. 
albopictus was the sole vector responsible for some den-
gue fever outbreaks [22–26]. Outbreaks of chikungunya 
related to Ae. albopictus have also been reported in China 
[23, 27, 28]. Major public health concerns have been 
raised in China due to these frequent outbreaks [29].

Guangzhou (23°08′N, 113°16′E), the capital city of 
Guangdong Province, is located in southern China, and 
it is the fourth most populous city in the entire country 
[30]. The average annual temperature in Guangzhou is 
22–23  °C, and the average rainfall is 1983  mm [31, 32]. 
Ae. albopictus  is active in Guangzhou nearly all year 
round [33]. In 2014, there were 38,036 dengue cases 
reported in Guangzhou, accounting for 80.8% of all 
cases in the largest dengue outbreak in mainland China 
since 1990  [32, 34]. In addition, some sporadic cases of 
imported CHIKV infection were also reported in Guang-
zhou [35]. There is a great need for mosquito surveillance 
and control in Guangzhou.

Next-generation sequencing enables efficient detec-
tion of known and unknown viruses [36–38]. Viruses in 
Aedes, Culex, Anopheles, and Armigeres mosquitoes have 
been revealed using these methods. Some known viruses 
have been detected, such as DENV, ZIKV, and West Nile 
virus [39–43]. Novel viruses such as the Cuacua virus in 
Mansonia mosquitoes and the novel orbivirus in Culex 
fatigans mosquitoes have also been detected [37, 44]. 
Understanding the viral composition in mosquitoes is 
important for the prevention and control of emerging 
and reemerging mosquito-borne diseases. However, few 
studies have used next-generation sequencing methods 
to investigate the virome in Ae. albopictus [45, 46].

In this study, viral metagenomic and polymerase chain 
reaction (PCR) methods were used to reveal the viral 

composition in adult Ae. albopictus captured in different 
areas and during different seasons in Guangzhou City, 
China.

Methods
Sample collection
Between September 2017 and August 2018, adult Ae. 
albopictus specimens were collected three times per 
month in rural and urban areas in Guangzhou. The rural 
areas included Xiongwei and Nanfang villages in the Bai-
yun district, and the urban areas consisted of the Keyuan 
community in the Yuexiu district and the Taozhuang 
community in the Tianhe district. The captured mosqui-
toes were morphologically identified to determine their 
species and sex [37]. A total of 3346 adult Ae. albopictus 
were trapped (Additional file  1: Tables S1 and S2). All 
samples were stored at −80 °C in tubes containing RNAl-
ater prior to processing.
Laboratory viral metagenomic experiments
According to the collection sites and seasons, mosquitoes 
were randomly selected and pooled into four samples for 
viral metagenomic analysis (Additional file  1: Table  S1). 
Pooled samples were homogenized in liquid nitrogen 
and then suspended in phosphate-buffered saline (PBS) 
[47, 48]. The supernatant was filtered through a 0.22-mm 
filter, and the filtered samples were then concentrated 
using centrifugal ultrafiltration tubes. To remove non-
particle-protected nucleic acids, samples were incubated 
at 37  °C for 2  h with a mixture of DNases and RNase 
(New England Biolabs, USA). The total DNA and RNA of 
the pooled specimens was extracted using the MiniBEST 
Viral RNA/DNA Extraction Kit (TaKaRa, Japan). Reverse 
transcription was performed using the Transcriptor First 
Strand cDNA Synthesis Kit (Roche, Switzerland), and the 
primer used was reported in a previous study [49]. Ran-
dom PCR was performed using the primer described in a 
previous study, and the purified PCR products were then 
obtained using the QIAquick Gel Extraction Kit (Qia-
gen, Germany) [49]. Libraries were constructed with the 
TruSeq™ DNA Sample Prep Kit (Illumina). The librar-
ies were sequenced using the Illumina HiSeq platform 
at Shanghai Majorbio Bio-Pharm Technology Co., Ltd. 
(Shanghai, China) with 300-bp paired-end reads.

Bioinformatics analysis of viral metagenomics
The quality score cut-off value was 20, and sequences 
with ambiguous bases (more than 10  bp  N) and short 
length reads (less than 50  bp) were removed using the 
Sickle program (https://​github.​com/​najos​hi/​sickle). 
To remove host-related sequences, quality reads were 
aligned with the host genome via BWA [50]. Reads with 
a high degree of similarity to the hosts’ genome were 
removed in further analyses. The taxonomic assignments 

https://github.com/najoshi/sickle
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were based on the National Center for Biotechnology 
Information (NCBI) nucleotide (NT) and non-redundant 
protein sequence (NR) databases, and the functional cat-
egories were based on the MetaGene system. In addition, 
the short reads were assembled using the IDBA-UD algo-
rithm based on the de Bruijn graph approach [51]. The 
assembled contigs were analyzed based on the NCBI NR 
database. Phylogenetic analyses were performed using 
the MEGA 6.0 program with the maximum likelihood 
method.

Extraction of nucleic acid and detection of viruses using 
PCR
Mosquitoes with the same sampling season, location, and 
sex were pooled into 196 samples (3–18 mosquitoes per 
sample) to perform PCR confirmatory tests (Additional 
file  1: Table  S2). Using a MiniBEST Viral RNA/DNA 
Extraction Kit  (TaKaRa, Japan), total RNA and DNA 
from these mosquito pools was extracted. Three arbovi-
ruses (ZIKV, DENV, and CHIKV) and some vertebrate 
viruses with high relative abundance in viral metagen-
omics were detected using PCR, including human pare-
chovirus (HPeV), torque teno virus (TTV), coronavirus, 
herpesvirus, and hepatitis B virus (HBV) [52–58].

Results
Sample collection
A total of 990 mosquitoes were randomly selected for 
viral metagenomic analysis, and others (2356 Ae. albop-
ictus) were pooled and applied to survey the prevalence 
and genomic diversity of the viruses using PCR (Addi-
tional file 1: Tables S1 and S2).
Data overview of viral metagenomics
An average of 45,012,644 raw reads, 27,464,028 clean 
reads, 47,002 contigs, and 22,280 open reading frames 
(ORFs) was obtained for each sample (NCBI SRA num-
ber: SRP304029) (Additional file 1: Table S3). The major-
ity of the sequences (over 80%) detected in our study 
were unidentifiable based on sequence similarity. Larger 
numbers of viral species were detected in mosquitoes 
captured during winter and spring as compared to mos-
quitoes captured during summer and autumn (Table 1). 
The viral composition in the mosquitoes mainly varied 
between seasons (Figs. 1 and 2).

The viruses detected in Ae. albopictus were specific 
to vertebrates, invertebrates, plants, fungi, bacteria, and 
protozoa (Fig. 3). Invertebrate viruses were detected with 
the highest relative abundance in all groups, especially 
in the mosquitoes that were captured in summer and 
autumn. Plant viruses and phage also had high relative 
abundance in all groups, followed by vertebrate viruses. 
The relative abundance of vertebrate viruses was lower 

in the mosquitoes captured in summer and autumn than 
that of the mosquitoes captured in winter and spring.

Viral composition in Ae. albopictus
In rural areas, Siphoviridae (6.5%), Luteoviridae (4.3%), 
and Coronaviridae (3.7%) were the top three viral fami-
lies harbored by the mosquitoes captured in winter and 
spring, while Luteoviridae (1.17%), Siphoviridae (0.4%), 
and Flaviviridae (0.4%) were the most common viral 
families harbored by the mosquitoes captured in summer 
and autumn (Fig. 4). In urban areas, Myoviridae was the 
most common viral family in the mosquitoes captured 
during all seasons (winter and spring: 7.0%; summer 
and autumn: 1.3%). Siphoviridae (3.8%) and Podoviridae 

Table 1  Number of families, genera and species of viruses 
detected in mosquitoes according to season and area

a SR: mosquitoes captured in rural areas during summer and autumn; WR: 
mosquitoes captured in rural areas during winter and spring; SU: mosquitoes 
captured in urban areas during summer and autumn; WU: mosquitoes captured 
in urban areas during winter and spring

Mosquito 
groupa

No. of families No. of genera No. of species

SR 40 65 245

SU 37 65 236

WR 42 74 254

WU 37 71 368

Fig. 1  Principal component analysis (PCA) plots between 
mosquitoes captured at different locations and during different 
seasons. The viral composition mainly varied between the seasons. 
SR: mosquitoes captured in rural areas during summer and autumn; 
WR: mosquitoes captured in rural areas during winter and spring; SU: 
mosquitoes captured in urban areas during summer and autumn; 
WU: mosquitoes captured in urban areas during winter and spring
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(3.3%) were the second and third most common viral 
families in mosquitoes that were captured during winter 
and spring, while Luteoviridae (0.3%) and Siphoviridae 
(0.3%) were common in mosquitoes captured in summer 
and autumn. Among the mosquitoes captured in win-
ter and spring, Luteoviridae (4.3%), Siphoviridae (6.5%), 
Coronaviridae (3.7%), Herpesviridae (1.0%), Poxviridae 
(0.5%), and Picornaviridae (0.4%) were found with higher 
relative abundance in mosquitoes captured in rural 
areas, while Myoviridae (7.0%), Podoviridae (3.3%), and 
Mimiviridae (2.8%) were more common in mosquitoes 
captured in urban areas. Higher relative abundance of 
Flaviviridae (0.4%) and Polydnaviridae (0.2%) was found 
in mosquitoes captured in rural areas during summer and 
autumn, while Myoviridae (1.3%), Anelloviridae (0.2%), 
Picornaviridae (0.1%), and Podoviridae (0.1%) were more 
common in mosquitoes captured in urban areas during 
the same seasons.

At the genus level, Sobemovirus and Polerovirus were 
the top two genera in all of the mosquitoes (Fig.  5). 
Alphacoronavirus ranked third in mosquitoes cap-
tured in rural areas during winter and spring, Flavivirus 
ranked third in mosquitoes captured in rural areas dur-
ing summer and autumn, and Alphacoronavirus was the 
third most common viral genus in mosquitoes captured 
in urban areas during all seasons. In winter and spring, 

a higher relative abundance of Rhadinovirus (0.9%) was 
detected in mosquitoes captured in rural areas as com-
pared to mosquitoes captured in urban areas. However, 
in summer and autumn, Parechovirus (0.1%) was more 
common in mosquitoes from urban areas, while a higher 
relative abundance of Sobemovirus (4.8%), Polerovi-
rus (1.1%), Flavivirus (0.4%), and Bracovirus (0.2%) was 
found in mosquitoes captured in rural areas.

At the species level, Drosophila A virus, Sowbane 
mosaic virus, and Wheat yellow dwarf virus-GPV were 
the top three viral species in all of the mosquitoes 
(Fig. 6). In both urban and rural areas, Sowbane mosaic 
virus, Wheat yellow dwarf virus-GPV, Bat coronavi-
rus Trinidad/1CO7BA/2007, Moumouvirus, Megavirus 
courdo7, Human immunodeficiency virus 1, and  Hepa-
titis B virus  were found with higher relative abundance 
in mosquitoes captured during winter and spring, while 
Drosophila A virus and Mushroom bacilliform virus were 
more common in mosquitoes captured during summer 
and autumn. Mosquitoes trapped in winter and spring 
from rural areas exhibited higher relative abundance of 
Bat coronavirus Trinidad/1CO7BA/2007 (3.7%) and Ate-
line herpesvirus 3 (0.9%), while Hepatitis B virus  (0.2%) 
and Megavirus chiliensis (2.1%) were more common in 
mosquitoes from urban areas. In summer and autumn, 
Torque teno virus  (0.2%) and Rhinovirus C (0.1%) exhib-
ited higher relative abundance in mosquitoes from urban 
areas, while Aedes flavivirus (0.4%), Small anellovirus 
(0.1%), and Kamiti River virus (0.1%) exhibited higher 
relative abundance in mosquitoes from rural areas.

PCR confirmatory testing and phylogenetic analysis
Although Ae. albopictus is one of the dominant vectors of 
ZIKV, DENV, and CHIKV, none of the Ae. albopictus in 
our study was positive for these viruses. Some vertebrate 
viruses in mosquitoes were detected using PCR, includ-
ing HPeV and HBV, while negative results were found 
in the detection of coronavirus, herpesvirus, and TTV 
(Table 2).

HPeV was detected in seven male and two female mos-
quito pools. Five of the screening sequences showed a 
high level of similarity with HPeV 3 sequences, while four 
sequences were clustered with HPeV 1 (GenBank acces-
sion numbers: MW455086-MW455091 and MZ502310- 
MZ502312) (Fig. 7).

HBV was only detected in one female mosquito pool 
from an urban area, and a near full-length HBV genome 
was amplified (TH5-11, GenBank accession number: 
MW411446). Both the screening sequence and the near 
full-length genome of HBV were clustered with human 
HBV genotype B sequences (Fig.  8a and b). The nearly 
full-length genome exhibited a high level of similarity 

Fig. 2  Principal coordinates analysis (PCoA) plots between 
mosquitoes captured at different locations and during different 
seasons. The viral composition mainly varied between the seasons. 
SR: mosquitoes captured in rural areas during summer and autumn; 
WR: mosquitoes captured in rural areas during winter and spring; SU: 
mosquitoes captured in urban areas during summer and autumn; 
WU: mosquitoes captured in urban areas during winter and spring
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with the human HBV genotype B sequence (JX661478.1, 
99.1%) (Additional file 2: Table S4, Fig. 8b).

Discussion
Mosquito-borne diseases have greatly influenced human 
health. Aedes albopictus is an invasive animal species, and 
it is an important reservoir for many arboviruses, includ-
ing DENV, ZIKV, and CHIKV [5]. Outbreaks of mos-
quito-borne infectious diseases related to Ae. albopictus 
have been reported. Because of the active movement of 
humans and climate change, Ae. albopictus is found in 
nearly one third of the regions in China [18]. Some mos-
quito-borne diseases associated with Ae. albopictus, such 
as dengue fever, are prevalent in China [59], and there-
fore, understanding the virome in Ae. albopictus is very 
important for the prevention and control of mosquito-
borne diseases. Compared with traditional methods, 

viral metagenomics is more efficient for viral identifica-
tion and discovery [60]. Many studies have used viral 
metagenomics to investigate the viruses in mosquitoes 
[39, 61, 62]. However, few studies have focused on Ae. 
albopictus.

In this study, viral metagenomics was performed to 
investigate the virome in adult Ae. albopictus captured 
in different areas and during different seasons in Guang-
zhou City, Guangdong Province, China. We also inves-
tigated the prevalence and genetic diversity of several 
arboviruses and vertebrate viruses in Ae. albopictus using 
PCR. To the best of our knowledge, this is the first study 
to reveal and compare the viral composition in adult Ae. 
albopictus captured in different areas and during differ-
ent seasons in Guangzhou, China.

The viral composition in Ae. albopictus varied mainly 
between seasons, and the viral composition between 

Fig. 3  Viral sequences classified by host type. SR: mosquitoes captured in rural areas during summer and autumn; WR: mosquitoes captured in 
rural areas during winter and spring; SU: mosquitoes captured in urban areas during summer and autumn; WU: mosquitoes captured in urban areas 
during winter and spring
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mosquitoes captured in different areas during the same 
season showed a high level of similarity (Figs.  1 and 2). 
However, a previous study revealed a significant differ-
ence in the viral communities when comparing mosqui-
toes captured in different regions [61]. The high level 
of similarity in viral composition between mosquitoes 
captured in rural and urban areas in our study might be 

explained by the following: first, we collected the mos-
quitoes in urban and rural areas in the same city, and the 
sampling areas are close, with a maximum straight-line 
distance between Xiongwei village and Keyuan commu-
nity of 47  km; second, the large population and active 
movement of humans in Guangzhou facilitated the 
spread of Ae. albopictus [30].

Fig. 4  The top ten viral families in the different groups of Ae. albopictus. SR: mosquitoes captured in rural areas during summer and autumn; WR: 
mosquitoes captured in rural areas during winter and spring; SU: mosquitoes captured in urban areas during summer and autumn; WU: mosquitoes 
captured in urban areas during winter and spring

Fig. 5  The top ten viral genera in the different groups of Ae. albopictus. SR: mosquitoes captured in rural areas during summer and autumn; WR: 
mosquitoes captured in rural areas during winter and spring; SU: mosquitoes captured in urban areas during summer and autumn; WU: mosquitoes 
captured in urban areas during winter and spring
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Large amounts of the sequences detected in the mos-
quitoes from our study cannot be annotated to known 
viral species, and this was consistent with the results of 
a previous study [63]. It seems that Ae. albopictus har-
bors a large number of novel viruses, and further studies 
are required to investigate these unknown viruses. Even 
though there was only a small proportion of detected 
sequences that could be annotated as known viruses, 
more than 50 viral families were annotated in adult Ae. 
albopictus, and these viruses were specific to vertebrates, 
invertebrates, plants, fungi, bacteria, and protozoa. Inver-
tebrate viruses appeared with the highest relative abun-
dance in all samples of Ae. albopictus, which is consistent 
with the results for Culex mosquitoes [39]. Large num-
bers of bacteriophages were detected, including members 
in Myoviridae, Siphoviridae, and Podoviridae  [64]. Plant 
viruses were also found, such as members in Luteoviridae 
[65]. Some viruses that can cause diseases in humans and 

animals were detected, indicating the wide range of blood 
hosts for Ae. albopictus in Guangzhou.

Low temperatures limit insect development and 
activity, as well as the replication of viruses in insects 
[66]. Interestingly, the number of viral species in Ae. 
albopictus captured in winter and spring was slightly 
greater than that in Ae. albopictus captured in sum-
mer and autumn. In addition, a lower relative abun-
dance of vertebrate viruses was found in Ae. albopictus 
captured in summer and autumn as compared to that 
in Ae. albopictus captured in winter and spring. This 
might be associated with the average winter tempera-
ture in Guangzhou (15.9 °C) [67], which is high enough 
that Ae.  albopictus is active all year round in this city. 
A previous study showed that Ae.  albopictus can still 
feed on humans and animals, and produce eggs in early 
winter in Guangzhou [68]. In addition, the sex ratio of 
emerged adults in early winter, such as in November 

Fig. 6  The top ten viral species in the different groups of Ae. albopictus. SR: mosquitoes captured in rural areas during summer and autumn; WR: 
mosquitoes captured in rural areas during winter and spring; SU: mosquitoes captured in urban areas during summer and autumn; WU: mosquitoes 
captured in urban areas during winter and spring

Table 2  Viruses detected in Aedes albopictus 

Virus Xiongwei village Nanfang village Yuexiu district Tianhe district Total

Human parechovirus Female 0 (0/17) 9.1 (2/22) 0 (0/7) 0 (0/18) 3.1 (2/64)

Male 11.5 (3/26) 2.9 (1/35) 2.9 (1/34) 5.4 (2/37) 5.3 (7/132)

Total 7.0 (3/43) 5.3 (3/57) 2.4 (1/41) 3.6 (2/55) 4.6 (9/196)

Hepatitis B virus Female 0 (0/17) 0 (0/22) 0 (0/7) 5.6 (1/18) 1.6 (1/64)

Male 0 (0/26) 0 (0/35) 0 (0/34) 0 (0/37) 0 (0/132)

Total 0 (0/43) 0 (0/57) 0 (0/41) 1.8 (1/55) 0.5 (1/196)
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(female/male = 1.2), is higher than that in some sum-
mer months (female/male = 0.71 in August), indicat-
ing that there may be a larger proportion of female 
Ae. albopictus in winter than in summer [68].

PCR or viral metagenomic analysis indicated that 
none of the samples was positive for ZIKV, DENV, or 
CHIKV. This is consistent with the prevalence of the rela-
tive diseases in human populations: none of the related 
mosquito-borne diseases were reported in the sampling 

Fig. 7  The construction of a phylogenetic tree was based on the screening nucleotide sequence of HPeV from Ae. albopictus (MrBayes, GTR + G + I 
nucleotide substitution model). Twenty-five sequences belonging to different species within genus Parechovirus are included for comparison. 
One sequence belonging to genus Sapelovirus is set as outgroup. Percentages of the posterior probability (PP) values are indicated. ▲ Sequences 
detected in mosquitoes trapped in Tianhe district; ■ Sequence detected in mosquitoes trapped in Yuexiu district; ♦ Sequences detected in 
mosquitoes trapped in Xiongwei village; ▼ Sequences detected in mosquitoes trapped in Nanfang village

Fig. 8  a The construction of a phylogenetic tree was based on the screening nucleotide sequence of HBV from Ae. albopictus (MrBayes, GTR + G + I 
nucleotide substitution model). Thirty-two sequences belonging to species Hepatitis B virus are included for comparison. Two sequences belonging 
to species Domestic cat hepatitis B virus are set as outgroup. Percentages of the posterior probability (PP) values are indicated. b The construction of 
a phylogenetic tree was based on the near full-length nucleotide sequence of HBV from Ae. albopictus (MrBayes, GTR + G + I nucleotide substitution 
model). Twenty-five sequences belonging to species Hepatitis B virus are included for comparison. Two sequences belonging to species Domestic 
cat hepatitis B virus are set as outgroup. Percentages of the posterior probability (PP) values are indicated. ▲ Sequences detected in mosquitoes 
trapped in Tianhe district
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areas at the time the mosquitoes were captured. In the 
future, studies should be continued to survey the virome 
in Ae. albopictus in order to monitor and prevent related 
mosquito-borne diseases.

Large numbers of vertebrate viruses were detected in 
our study. Members within Coronaviridae can cause 
human diseases [69]. Using viral metagenomics, Corona-
viridae was found in Ae. albopictus, and it was the most 
abundant vertebrate viral family in our study. However, 
none of the samples was positive for it using PCR. This 
discrepancy might be explained by the high sensitivity 
of viral metagenomics. A higher relative abundance of 
Coronaviridae was found in mosquitoes captured during 
winter and spring. Interestingly, the circulation of coro-
naviruses in human and animal populations in Guang-
zhou City also exhibited a peak of coronavirus infection 
in winter and spring [70]. It seems that xenosurveil-
lance is feasible, and the relative abundance of Corona-
viridae in Ae.  albopictus can provide some information 
regarding the disease prevalence in human populations. 
Bat coronavirus Trinidad/1CO7BA/2007 was the only 
species detected within Coronaviridae. This virus was 
first detected in bats in America [71]. Its detection in 
Ae. albopictus indicated that this virus had already spread 
to the bats in Guangzhou, China. Some pathogenetic 
coronaviruses might have originated from bats [72], and 
therefore, studies on these animals is necessary to pre-
vent the transmission of emerging viruses.

A previous study reported the detection of Herpesviri-
dae in Culex mosquitoes [61]. In our study, Herpesviridae 
was the second most abundant vertebrate viral family in 
Ae.  albopictus. Different species of herpesviruses were 
detected, including Ateline herpesvirus 3, Macacine her-
pesvirus 1, Caviid herpesvirus 2, Gallid herpesvirus 1, 
Human herpesvirus 6, and Human herpesvirus 6B, sug-
gesting that many animals in Guangzhou were infected 
by herpesviruses. Like Coronaviridae, a higher relative 
abundance of Herpesviridae was found in Ae. albopictus 
captured in winter and spring than that in Ae.  albop-
ictus captured in summer and autumn, which might be 
explained by the seasonal dynamics of herpesviruses  in 
human and animal populations [73].

Sequences annotated as Anelloviridae have been 
detected in other species of mosquitoes, such as Anoph-
eles mosquitoes [62]. Three members of Anelloviridae 
were annotated in our study, including Torque teno virus, 
Small anellovirus, and Torque teno sus virus 1a, indicat-
ing that humans and pigs in Guangzhou were infected by 
anelloviruses. However, PCR results indicated that none 
of the mosquito pools was positive for TTV, which might 
also be explained by the high sensitivity of viral metagen-
omics.  The pathogenicity of TTV is still unknown, but 
it is prevalent in humans [74], and mother-to-infant 

vertical transmission of this virus is known to occur [75]. 
Studies should be performed to investigate the relation-
ship between TTV and human diseases. Pigs are often 
co-infected with torque teno sus virus and other viruses, 
especially the porcine circovirus, and it may pose a 
potential threat to swine herds [39].

Like Coronaviridae and Herpesviridae, a higher relative 
abundance of Picornaviridae was also found in mosqui-
toes captured in winter and spring. A similar seasonal 
pattern for picornaviruses was found in some blood hosts 
of Ae. albopictus [76]. Three viral species within Picorna-
viridae were detected, including Human parechovirus, 
Rhinovirus C, and Oscivirus A. HPeV and rhinovirus C 
are human pathogenic viruses related to gastrointesti-
nal diseases and respiratory diseases, respectively [77]. 
It seems that humans in Guangzhou were infected by 
parechovirus and rhinovirus, and it would be a worthy 
endeavor to further study these viruses for disease pre-
vention and control. Osciviruses originate from amphib-
ians and birds [78, 79], suggesting that Ae. albopictus also 
feeds on these animals. The PCR results indicated that 
nine pooled samples were positive for HPeV. The HPeV 
sequences obtained in our study were clustered with 
HPeV 1 and 3 sequences. HPeV 1 can cause acute gastro-
enteritis, and it is the most frequently identified member 
within the genus Parechovirus [80–82]. Disease outbreak 
related to HPeV 3 has been reported in humans [83]. To 
prevent the relative diseases in Guangzhou, mosquito 
surveillance is beneficial because it can provide rapid 
identification of the spread of emerging HPeV types. In 
our study, most of the HPeV sequences were detected 
in male mosquitoes. Male Ae.  albopictus do not need a 
blood meal, and it was unlikely that they acquired this 
virus from humans by mosquito bite. Male Ae.  albopic-
tus might have acquired HPeV by vertical transmission 
or from the environment, such as from raw sewage [84]. 
However, there is no evidence indicating that HPeV can 
be transmitted vertically. Thus, it is likely that the HPeV 
in male Ae.  albopictus was obtained from the environ-
ment. Surveillance of the virome in mosquitoes not 
only provides data that reflects the viral infection status 
in humans and animals, but also provides information 
regarding the viruses in the environment.

Hepatitis B virus  was the only viral species within 
Hepadnaviridae detected by viral metagenomics. A 
higher relative abundance of Hepatitis B virus  was 
found in mosquitoes captured during winter and spring 
than that in mosquitoes captured during summer and 
autumn, which may be explained by the seasonal fluc-
tuations in HBV DNA levels in humans [85]. PCR results 
indicated that one female mosquito pool collected in an 
urban area was positive for HBV, and the first near full-
length genome of HBV (TH5-11) from mosquitoes was 
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amplified. The screening sequence and the near full-
length genome showed a high level of similarity with 
human HBV genotype B sequences. A previous study 
reported that HBV genotype B is common in Asia [86], 
and the results in our study similarly indicated that HBV 
genotype B is prevalent in humans in Guangzhou. Mos-
quito bites may transmit HBV to laboratory animals 
[87]. However, up until now, there is no evidence show-
ing that mosquitoes can transmit HBV to humans. Even 
though we amplified the near full-length genome of HBV 
in the current study, the most likely explanation for this 
detection is that the mosquitoes fed on HBV-infected 
humans. Experiments are needed to determine the role 
of Ae. albopictus in HBV transmission.

This research can further our understanding of the 
virome in adult Ae.  albopictus in Guangzhou City. We 
also demonstrated that there is a wide circulation of 
diverse vertebrate viruses in Ae.  albopictus. In addition, 
the relative abundance of vertebrate viruses in Ae. albop-
ictus was in accordance with the disease prevalence in 
humans and animals, suggesting that surveillance of the 
virome in adult Ae. albopictus not only provides informa-
tion to prevent mosquito-borne diseases but also forms a 
framework for the surveillance, prevention, and control 
of other human diseases. Surveillance of the virome in 
Ae. albopictus can also provide information regarding the 
viruses in the environment.

There are some limitations to our study. First, we did 
not pool the mosquitoes by sex in our viral metagen-
omic studies, which might affect the viral community 
composition within them. Second, midgut and salivary 
gland dissections were not performed to identify where 
the viruses were located. Third, the head, legs, and wings 
of the mosquitoes were not removed in our study. In 
the future, mosquito heads, legs, and wings should be 
removed to prevent PCR inhibition and reduce the host 
genome. Our findings should be confirmed by more rig-
orous studies with larger sample sizes.

Conclusions
This study revealed the viral composition of adult 
Ae.  albopictus captured in different areas and during 
different seasons in Guangzhou City. The viral compo-
sition in Ae. albopictus varied mainly between seasons. 
A higher relative abundance of some vertebrate viruses 
was found in the mosquitoes trapped in winter and 
spring, which was consistent with the seasonal patterns 
of the related viruses in humans and animals. HPeV 
and HBV were detected in Ae.  albopictus using PCR. 
Although the first near full-length genome of HBV from 
Ae. albopictus was amplified, additional research is still 
needed to decipher whether Ae. albopictus plays a role 
in the transmission of HBV. In the future, surveillance 

of the virome in Ae. albopictus should be continued 
to provide information for the prevention and control 
of mosquito-borne diseases. In addition, xenosurveil-
lance is feasible, and the surveillance of the virome in 
Ae.  albopictus can also form a framework for surveil-
lance, prevention, and control of other human diseases.
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