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Abstract
Establishing proper neighbor relations between a set of spatial units under analysis is essential when carrying out a spatial

or spatio-temporal analysis. However, it is usual that researchers choose some of the most typical (and simple) neigh-

borhood structures, such as the first-order contiguity matrix, without exploring other options. In this paper, we compare the

performance of different neighborhood matrices in the context of modeling the weekly relative risk of COVID-19 over

small areas located in or near Valencia, Spain. Specifically, we construct contiguity-based, distance-based, covariate-based

(considering mobility flows and sociodemographic characteristics), and hybrid neighborhood matrices. We evaluate the

goodness of fit, the overall predictive quality, the ability to detect high-risk spatio-temporal units, the capability to capture

the spatio-temporal autocorrelation in the data, and the goodness of smoothing for a set of spatio-temporal models based on

each of the neighborhood matrices. The results show that contiguity-based matrices, some of the distance-based matrices,

and those based on sociodemographic characteristics perform better than the matrices based on k-nearest neighbors and

those involving mobility flows. In addition, we test the linear combination of some of the constructed neighborhood

matrices and the reweighting of these matrices after eliminating weak neighbor relations, without any model improvement.

Keywords Covariate-based neighbors � Neighborhood matrix � Model performance � Predictive quality � Spatial
dependence � Spatio-temporal models

1 Introduction

In the field of disease mapping, the use of spatial or spatio-

temporal models is essential to estimate the distribution in

space and time of the risk of suffering from a disease, or of

dying from it, among others. These models make it pos-

sible to obtain reliable estimates even in the context of

small areas or, in general, low case counts for the spatial or

spatio-temporal units considered. From the spatial point of

view, the key lies in borrowing strength across the sur-

rounding spatial units, which helps to smooth the modeled

variable and eases the interpretability of the estimates.

Under the Bayesian framework, this is done by defining

autoregressive spatial random effects based on the average

corresponding to those units that are considered nearby,

usually called neighbors (Lawson 2018). Thus, depending

on how neighbor relations are defined, or the magnitude of

such relations, the modeling may be affected in terms of

goodness of fit, smoothing, or even interpretation.
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Although this fact is generally known, there is not much

literature devoted to testing the possible effects of varying

the neighborhood matrix. Even less provides guidelines on

what might be the optimal way to define it. Indeed, since

the seminal work of Cliff and Ord (1981) on neighborhood

matrix specifications, few studies have provided such rec-

ommendations, and many of them have specifically

focused on the case of spatial econometric models. In

particular, choosing a rather small number of neighbors

(Florax and Rey 1995; Griffith 1996; Getis and Aldstadt

2004), using data-driven methodologies for selecting the

weights of the neighborhood matrix (Stakhovych and Bij-

molt 2009; Kostov 2010), or simply employing the typi-

cally used contiguity matrix (Stakhovych and Bijmolt

2009) are some advised strategies. Besides, other extensive

comparative studies have been carried out in the context of

disease mapping to assess how the choice of the neigh-

borhood matrix when fitting a spatial model can influence

the results. For instance, Earnest et al. (2007) studied the

spatial distribution of birth defects in New South Wales,

Australia, and found that distance-based neighborhood

matrices might outperform contiguity-based matrices in

terms of the agreement between observed and predicted

relative risks. In contrast, in the context of analyzing the

incidence of lip cancer across Scotland, Duncan et al.

(2017) noticed that using a first-order contiguity matrix

could produce a better model fit than other alternatives

such as distance-based or covariate-based neighborhood

matrices. Finally, Corpas-Burgos and Martinez-Beneito

(2020) have recently proposed a methodology to define

adaptive conditional autoregressive distributions in which

the entries of the neighborhood matrix are treated as ran-

dom variables to be modeled. These authors show that

models based on these adaptive neighborhood matrices can

provide a better fit than those based on contiguity matrices

in a multivariate disease mapping context considering

mortality data.

In this paper, the objective is to assess the suitability of

different neighborhood matrix specifications in the context

of modeling the spatio-temporal incidence of COVID-19 at

a small-area scale, considering the cases recorded by a

public hospital in Valencia, Spain, during the first months

of the COVID-19 pandemic.

The paper is structured as follows. In Sect. 2, the data

used to conduct the study is described. Section 3 provides

an overview of the spatio-temporal model considered for

the analysis, the different neighborhood matrices con-

structed for the comparison, and multiple model assess-

ment tools. Next, Sect. 4 summarizes the main results

found. Finally, some concluding remarks are provided in

Sect. 5.

2 Data

2.1 Study settings

The study locations correspond to 14 municipal districts

under the responsibility of the Consorcio Hospital General

Universitario (CHGUV) of Valencia, Spain, which is the

third most populated city in the country. This public hos-

pital provides services to approximately 350,000 people. In

some cases, the mentioned municipal districts constitute an

entire municipality, so we will generally refer to the dis-

tricts as areas in the remainder of this paper. Fig. 1a shows

the overall study settings and Fig. 1b a closer look at the

districts near the central area of Valencia. Both maps have

been obtained from OpenStreetMap (OpenStreetMap con-

tributors 2020).

2.2 COVID-19 data

The home addresses of COVID-19 patients treated in the

hospital from February 19, 2020, to August 31, 2020

(spanning 29 weeks) were geocoded in a double-stage

process, including an automatic and manual assignation of

the coordinates. Specifically, starting from a set of 2778

patients, 2725 were finally geocoded at the municipal

district level, resulting in a 98% geocoding hit rate, which

exceeds the minimum acceptable geocoding hit rate sug-

gested by recent research (Andresen et al. 2020; Briz-

Redón et al. 2020).

2.3 Human mobility data

Human mobility data is helpful for gaining insights into the

spread of COVID-19 across space (Kraemer et al. 2020).

The Spanish Statistical Office (Instituto Nacional de

Estadı́stica) has estimated the daily number of people that

moved from their home area to a different area from 10 am

to 4 pm within the first months of the COVID-19 pan-

demic. The locations of the mobile phones linked to the

three main mobile companies in Spain (which provide

service to more than 80% of mobile phone users in the

country) were tracked to derive these estimates. An

exploratory temporal analysis of the data at the area level

allowed us to confirm that the magnitude of human flows

on weekdays was higher than on weekend days during this

period, while the variation between the different weekdays

was relatively small. For this reason, we decided to average

the data corresponding to six Wednesdays between April

and June 2020 (April 1, April 15, April 29, May 13, May

27, and June 10) to estimate the flow matrix between the

analyzed areas (we also tested other weekdays but hardly

noticed any difference).
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2.4 Sociodemographic data

In order to account for the sociodemographic characteris-

tics of the areas under study, the following three widely

used covariates have been considered given their potential

role on COVID-19 propagation (Carella et al. 2020; Dowd

et al. 2020; Kodera et al. 2020; Whittle and Diaz-Artiles

2020; Coşkun et al. 2021): population density (inhab/km2),

average household income (euros), and the proportion of

the population aged 65 years and over (percentage). These

three covariates have also been obtained from the Spanish

Statistical Office.

3 Methodology

3.1 Model definition

The number of new daily COVID-19 cases observed in

area i (i ¼ 1; . . .; 14) on week t (t ¼ 1; . . .; 29), denoted by

Oit, is assumed to follow a Poisson distribution with mean

lit ¼ Eirit, where Ei denotes the number of cases per week

expected in area i, and rit the relative risk for area i and

week t. If R ¼
P

i

P
t Oit=

P
i popi represents the average

COVID-19 incidence rate for the set of areas of interest

during the period under study (where popi is the population

of area i), the number of expected cases is set to

Ei ¼ popiR=29. Thus, lit is specified according to the

following spatio-temporal structure

logðlitÞ ¼ aþ logðEiÞ þ ui þ vi þ ct þ /t þ dit

where a denotes the intercept of the model, ui and vi rep-

resent, respectively, the structured and unstructured spatial

random effect of the model, ct and /t are, respectively, the

structured and unstructured temporal random effect, and dit
is the random spatio-temporal effect. Regarding the spatial

random effects, the Besag–York–Mollié (BYM) model has

been considered (Besag et al. 1991), which establishes that

the conditional distribution of the spatially-structured

effect on area i, ui, is

uijuj 6¼i �Normal

� Xn

j 6¼i¼1

wijuj;
r2u
Ni

�

where Ni is the number of neighbors for area i, wij is the

(i,j) element of the row-normalized neighborhood matrix,

and r2u represents the variance of this random effect. The

spatially-unstructured effect over the areas, denoted by vi,

follows a Gaussian distribution, vi �Normalð0; r2vÞ, where
r2v is the variance of the effect. Regarding the two temporal

effects, on the one hand, the temporally-structured effect,

ct, is specified through a second-order random walk

ctjct�1; ct�2 �Normalð2ct�1 þ ct�2; r
2
cÞ, where r2c is the

variance component. On the other hand, an independent

and identically distributed Gaussian prior is chosen for

/t �Normalð0; r2/Þ. Finally, a Gaussian structure is also

assumed for the spatio-temporal interaction term, dit, with
variance r2d.

The spatio-temporal model described above has been

fitted by using the Integrated Nested Laplace Approxima-

tion (INLA), proposed by Rue et al. (2009). The imple-

mentation of the model has required to add specific

constraints on the random effects to avoid identifiability

issues (Goicoa et al. 2018).

Fig. 1 Map of the study area, which corresponds to the Consorcio

Hospital General Universitario (CHGUV) of Valencia, Spain, refer-

ence area a. In b, the closest districts to the center of Valencia among

those considered for the study are displayed. The blue point indicates

the location of the hospital
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3.2 Neighborhood matrix specifications

In the remaining of the section, wij represents the (i, j)

entry of any of the defined neighborhood matrices (in

general, before applying row normalization), and dij
denotes the physical distance (in decimal degrees) between

the centroids of the i and j areas. In all cases, the elements

of the diagonal, wii, are set to 0.

3.2.1 Contiguity-based neighbors

Neighborhood matrices based on contiguity relations are

possibly the most widely used in spatial statistics and

related fields. Under the contiguity criterion, two areas are

first-order neighbors if they share a common edge or vertex

(‘‘queen’’ criterion). In general, two areas are kth-order

neighbors if they have a (k � 1)th-order neighbor in com-

mon. Hence, a kth-order contiguity matrix is defined by

wij ¼ 1 if areas i and j are kth-order neighbors, and 0

otherwise. In the present comparative analysis, Ck, for

k 2 f1; 2; 3g, denotes the corresponding kth-order conti-

guity matrix.

3.2.2 Distance-based neighbors

Several distance-based neighborhood matrices have been

considered, including k-nearest neighborhood matrices for

k 2 f1; 3; 5; 7g, according to which wij ¼ 1 if the centroid

of area j is among the k nearest area centroids from the

centroid of area i, and 0 otherwise. These four matrices are

denoted by D1, D2, D3, and D4, respectively. As there are

only 14 spatial units within our study window, we decided

to limit the analysis to k� 7. We have included only the

odd values of k in this interval for slightly reducing the set

of matrices under comparison since the results for inter-

mediate (even) values of k turn out to be very similar.

Besides, the inverse distance neighborhood matrix (D5)

given by wij ¼ 1=dij, and the ‘‘Gravity’’ (D6) and ‘‘En-

tropy’’ (D7) neighborhood matrices (Earnest et al. 2007)

are also considered. The ‘‘Gravity’’ matrix is defined by

wij ¼ popipopj=dij, while the ‘‘Entropy’’ matrix is given by

wij ¼ expð�50dijÞ. The ‘‘Gravity’’ neighborhood matrix

allows assigning greater weights on highly populated areas

(in other words, it reduces the influence of sparsely popu-

lated areas), whereas the ‘‘Entropy’’ matrix drastically

reduces the weights corresponding to distant areas. In this

regard, while Earnest et al. (2007) chose wij ¼ expð�10dijÞ
for defining the ‘‘Entropy’’ neighborhood matrix, we found

more suitable in our case to use wij ¼ expð�50dijÞ. Indeed,
if wij ¼ expð�adijÞ, with a[ 0, increasing the value of a

favors that the weights corresponding to distant areas get

closer to 0 more quickly. For the set of spatial units

analyzed in this paper, choosing a ¼ 10, as in Earnest et al.

(2007), leads to an uninformative neighborhood matrix in

which all the weights are too similar. In contrast, increasing

the value of a to 50 allowed us to obtain the desired

decaying effect on the weights for the most distant areas

(we increased a from 10 to 50 in intervals of 10, until we

considered that the matrix was informative enough).

3.2.3 Covariate-based neighbors

The estimate of the number of people moving from area i

to area j, denoted as flowij, has been used to construct the

neighborhood matrix F by defining wij ¼ flowji. Hence, the

influence of the observations corresponding to area j on the

observations of area i is set to be proportional to the

average number of people that area i receives from area

j during the morning of a working day.

Besides, the three considered sociodemographic

covariates have been used to compute a ‘‘sociodemo-

graphic distance’’ between each pair of areas under anal-

ysis. Specifically, this distance is defined as

dSij ¼ kxi � xjk2, where xi denotes a three-dimensional

vector including the standardized values of the chosen

sociodemographic covariates for area i, and k � k2 the

Euclidean distance. Therefore, the sociodemography-based

neighborhood matrix, S, is characterized by wij ¼ 1=dSij.

3.2.4 Hybrid neighbors

Covariate and spatial information have been combined

following previous research (Earnest et al. 2007; Duncan

et al. 2017), leading to what we refer to as hybrid neigh-

bors. Specifically, a neighborhood matrix accounting for

mobility flows and physical distances (H1) is defined by

wij ¼ flowji=dij, and a matrix considering physical and

sociodemographic distances simultaneously (H2) is deter-

mined by setting wij ¼ 1=ðdijdSijÞ. Finally, a neighborhood

matrix including information on mobility flows, sociode-

mographic characteristics, and physical distances (H3) has

been constructed by choosing wij ¼ flowji=ðdijdSijÞ. The

definition of hybrid neighborhood structures enables us to

establish that the dependency relationship between two

areas will only be strong if both are close in space and

similar according to some covariate or set of covariates.

3.2.5 Combined neighborhood matrices and negligible
neighbors

In addition to constructing the previously defined matrices,

the possibility of obtaining linear combinations of the

matrices has also been explored, inspired by the recent work

of Ejigu and Wencheko (2020) to account for the spatio-
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environmental dependence between regions, along with the

reweighting of these matrices after the elimination of weak

neighbor relations (negligible neighbors), according to some

prespecified threshold. Specifically, if wM1

ij and wM2

ij denote

the row-normalized entries of two of the above-defined

neighborhood matrices, a combined matrix can be obtained

by definingwC
ij ¼ swM1

ij þ ð1� sÞwM2

ij . For simplicity,we can

denote this combined matrix as M1 þM2. Besides, those

entries such as wC
ij\u, for a given (small) u 2 ½0; 1�, can be

set to 0 to remove the influence of negligible neighbors (row

normalization is then applied again). The usual way to pro-

ceed would be to choose different values of u and observe

their effect on the quality of the model. Increasing the value

of u will lead to a larger number of neighbors considered as

negligible and, therefore, to more sparse neighborhood

matrices.

3.2.6 Edge effects

The existence of edge effects (Griffith 1983; Dreassi and

Biggeri 1998) at the areas located in the boundary of the

study window is an issue that is often overlooked in disease

mapping analyses. Edge effects arise as a consequence of

data incompleteness (missing data for some neighboring

areas), potentially affecting model estimates (Rodeiro and

Lawson 2005). The study window considered in this paper

might also suffer from edge effects, as the data from areas

corresponding to other hospitals was not available for the

analysis.

Therefore, we followed Lawson et al. (1999) to take

edge effects into account. If B denotes the set of areas that

constitute the boundary of the study window, the following

edge effect correction factor, cj, was defined for a given

area j

cj ¼
1; j 62 B

1�
� ‘Bj
‘j

�k

; j 2 B

8
><

>:
ð1Þ

where ‘j denotes the length of the perimeter of area j and

‘Bj the length of the perimeter of the intersection between

area j and the external boundary of the study window.

Hence, the edge-corrected entries of a neighborhood matrix

defined as ðwijÞn�n are w�
ij ¼ cjwij (although row normal-

ization is applied again as a final step). In this way, the

weight of a boundary area is reduced according to the

length of perimeter lying outside the interior of the study

area. The parameter k	 1 allows controlling the level of

reduction to be applied, as the reduction decays as the

value of k is increased. Figure 2 shows the values of cj that

are obtained for our study window, considering k ¼ 1

(Fig. 2a) and k ¼ 2 (Fig. 2b). In this case, only the three

small areas located in the central part of the study window

are not contained in B (for these areas it holds that cj ¼ 1).

It can also be seen that using k ¼ 1 strongly reduces the

weight of some of the areas, so it has been preferred to use

k ¼ 2 for all the neighborhood matrices under analysis.

3.2.7 Summary

To summarize the information provided in this section,

Fig. 3 displays the structure of the fifteen types of

neighborhood matrices described above. Despite the par-

ticularities of each matrix specification, some of them are

quite similar, as suggested by Fig. 3a, and especially

Fig. 3b, which shows the correlation coefficients across

matrices, computed as the Pearson’s correlation of their

vectorized forms (if A ¼ ðaijÞm�n, its vectorization is

ða11; . . .; am1; . . .; a1n; . . .; amnÞT). Moreover, Table 1 shows

some basic properties of the neighborhood matrices under

comparison, which allow distinguishing those sparse

matrices containing only a few neighbor relations (such as

the contiguity-based or the k-nearest neighborhood matri-

ces) from those dense matrices where every area under

study has some influence on the rest.

In the remainder of the paper, the spatio-temporal

models considered are referred to following the same

notation used for the matrices (for instance, Model C1 will

correspond to the spatio-temporal model based on matrix

C1).

3.3 Model comparison

Model quality has been assessed through multiple statisti-

cal tools, allowing us to perform a comprehensive com-

parison across models. First, the Deviance Information

Criterion (DIC) introduced by Spiegelhalter et al. (2002)

and the Watanabe–Akaike Information Criterion (WAIC)

proposed by Watanabe and Opper (2010) have been used

for measuring the goodness-of-fit of the models.

The overall predictive performance of the models has

been evaluated with two Bayesian diagnostics: the condi-

tional predictive ordinate (CPO) (Pettit 1990) and the prob-

ability integral transform (PIT) (Dawid 1984). On the one

hand, the CPO corresponding to a specific spatio-temporal

unit is defined as CPOit ¼ Pðyobsit jy�itÞ, where yobsit is the

value observed on spatio-temporal unit (i,t), and y�it is the

vector containing all observations except the one corre-

sponding to unit (i,t). A small value ofCPOit suggests that the

observation on (i, t) is surprising (an outlier) based on the rest

of observations (Pettit 1990). Besides, the Log Pseudo-

Marginal Likelihood (LPML) computed as
P

i

P
t logðCPOitÞ can be used for model choice (Held et al.

2010). On the other hand, the PIT is another leave-one-out
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cross-validation score defined as PITit ¼ PðYit\yobsit jy�itÞ,
where Yit represents a random variable generated from the

posterior distribution of themodel being evaluated. If the PIT

scores are uniformly distributed, the model is well calibrated

(Czado et al. 2009), whereas deviations from uniformity

indicate that the predictive distribution of the model is either

underdispersed (U-shaped distribution), overdispersed (in-

verse-U shape distribution), or biased (skewed distribution).

Furthermore, the ability of the models to detect high-risk

spatio-temporal units has also been studied. Specifically,

0.2 − 0.3
0.3 − 0.4
0.4 − 0.5
0.5 − 0.6
0.6 − 0.7
0.7 − 0.8
0.8 − 0.9
0.9 − 1.0
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0.2 − 0.3
0.3 − 0.4
0.4 − 0.5
0.5 − 0.6
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0.7 − 0.8
0.8 − 0.9
0.9 − 1.0

(b)

Fig. 2 Edge effect correction factors, computed according to (1), considering k ¼ 1 a and k ¼ 2 b, for the areas under analysis. The external

boundary of the study window is represented by a thicker line

F S H1 H2 H3

D3 D4 D5 D6 D7

C1 C2 C3 D1 D2

0.00
0.25
0.50
0.75
1.00

wij

(a)
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C1 C2 C3 D1 D2 D3 D4 D5 D6 D7 F S H1 H2 H3

C1

C2

C3

D1

D2

D3

D4

D5

D6

D7

F

S

H1

H2

H3

(b)

Fig. 3 Graphical description of the main fifteen neighborhood

matrices (of size 14� 14) considered for the comparative analysis

a. The entries of the matrices (wij) have been row-normalized to allow

for comparison (wij always lies between 0 and 1). The correlation

between each pair of matrices, computed as the correlation between

the vectorizations of the matrices, are shown in b

Table 1 Average number of neighbors, percentage of non-zero

entries, and average value of the non-zero entries ( �wij) for the main

fifteen neighborhood matrices considered for the analysis. The

percentage of non-zeros is computed with respect to the number of

off-diagonal entries, as wii ¼ 0 by definition

C1 C2 C3 D1 D2 D3 D4 D5 D6 D7 F S H1 H2 H3

No. of neighbors 2.86 6.71 9.29 1.00 3.00 5.00 7.00 13.00 13.00 13.00 11.50 13.00 11.50 13.00 11.50

Non-zeros (%) 21.98 51.65 71.43 7.69 23.08 38.46 53.85 100.00 100.00 100.00 88.46 100.00 88.46 100.00 88.46

�wij (non-zeros) 0.35 0.15 0.11 1.00 0.33 0.20 0.14 0.08 0.08 0.08 0.09 0.08 0.09 0.08 0.09
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high-risk units have been defined as those satisfying

Pðrit [ 1Þ[ c, choosing a cutoff probability c ¼ 0:7, as

suggested by Richardson et al. (2004). According to this

decision rule, several measures of the performance of the

classification test are computed for each of the models,

including the sensitivity, the specificity, and the Matthews

correlation coefficient (MCC) introduced in Matthews

(1975), which is more informative to analyze a classifica-

tion problem as claimed by recent research (Chicco and

Jurman 2020).

Finally, the degree of spatio-temporal autocorrelation

remaining in model residuals has been assessed by using an

extension of Moran’s I (Moran 1950a, b) for spatio-tem-

poral data (Lee and Li 2017), hereinafter denoted by Ist.

The fact that Ist is significantly greater than 0 indicates that

model residuals are spatio-temporally correlated, which

suggests that the model is misspecified. To compute Ist, it

has been considered that two spatio-temporal units are

neighbors if they are neighbors in space (considering the

corresponding neighborhood matrix) and only one week

apart.

3.4 Software

The R programming language (Core Team 2020) has been

used to carry out the present study. In particular, the R

packages caRtociudad (Gil Bellosta and Frı́as 2018),

corrplot (Wei and Simko 2017), ggplot2 (Wickham 2016),

INLA (Rue et al. 2009; Lindgren and Rue 2015), rgdal

(Bivand et al. 2019), rgeos (Bivand and Rundel 2020), and

spdep (Bivand et al. 2008) have been used.

4 Results

4.1 Model assessment and comparison

This section shows the performance of the different models

tested, taking into account the different metrics described

in Sect. 3.3. Thus, Table 2 shows several indicators related

to the goodness of fit, the overall predictive quality, the

ability to detect high-risk units, and the capability to cap-

ture the spatio-temporal autocorrelation inherent to the type

of data being modeled. In summary, the set of the fifteen

defined matrices can be split into two groups based on their

performance, as indicated in Table 2. The contiguity-based

matrices, the inverse distance matrix, the ‘‘Gravity’’ and

‘‘Entropy’’ matrices, and the matrices based on sociode-

mographic characteristics (both in their pure and hybrid

forms), performed similarly and noticeably better than the

rest of the neighborhood matrices considered in the anal-

ysis, namely the k-nearest neighborhood matrices and the

matrices based on population flows. The following

paragraphs detail some of the discrepancies found in terms

of performance for the set of matrices studied. As both sets

of matrices present practically identical results within each

group, we usually highlight the differences observed

between specific members of each of the groups.

First, Table 2 confirms that both the goodness of fit

(according to both the DIC and the WAIC) and the overall

predictive quality (indicated by the LPML) are widely

superior in the first group of matrices mentioned above.

However, a visual inspection of the distribution of the PIT

scores reveals that all the models considered still have

room for improvement, as shown in Fig. 4 for models C1

(the predictive distribution is moderately biased) and D1

(the predictive distribution is heavily biased and

underdispersed). Nevertheless, the distribution of the PIT

scores is closer to uniform among the matrices belonging to

the first group, which reflects their superior performance.

Furthermore, the neighborhood matrices of group 1 are

more suitable to detect high-risk spatio-temporal units with

a higher level of accuracy, as indicated by the sensitivity,

specificity, and MCC values shown in Table 2. The inferior

performance of the matrices in group 2 in this regard could

also be related to the inability of these models to ade-

quately capture the spatial-temporal autocorrelation inher-

ent in the data under study, as indicated by the values of Ist
(Table 2). Thus, as can be seen in Fig. 5, while the resid-

uals of Model C1 show a random spatio-temporal structure,

the residuals generated by Model H3 are considerably

greater in magnitude during the last weeks studied, and

their sign is markedly dependent on the temporal unit

considered.

Regarding the goodness of smoothing achieved by the

models, although none of the specific metrics available

(Duncan and Mengersen 2020) has been employed, the

visualization of the estimates of relative risks by spatial

(area) or temporal (week) unit allows verifying that the

matrices from group 1 also perform better in this respect. In

particular, Fig. 6 shows the estimates of these relative risks

corresponding to matrices C1 and D2. While the model

based on C1 shows how the relative risk varies consider-

ably across the different areas studied (Fig. 6a), distin-

guishing areas of high risk from others of low risk, the

estimates of the relative risks in the case of D2 are over-

smoothed, as they all fluctuate around 1 (Fig. 6c). Simi-

larly, the weekly relative risk estimates provided by Model

D2 are uninformative (Fig. 6d), suffering from the same

problem, whereas Model C1 is indeed able to capture the

evolution of the overall relative risk over the months

considered, which peaked at the beginning of April (around

week number 6) and by the end of August (Fig. 6b).
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4.2 Some tests on matrix combinations
and negligible neighbors

We have conducted several experiments following the

procedure described in Sect. 3.2.5. In particular, we have

combined matrices C1 with D5, C1 with F, and C1 with S,

varying s in the range [0.1, 0.9]. We have chosen these

specific combinations to account for two different forms of

geographic information (contiguity-based and distance-

based) and to combine geographic information with both

sociodemographic and mobility information. We have only

considered the combination of C1 with F and S (and not D5

with F and S) to limit the number of comparisons and

reduce the computational burden. To eliminate the effect of

negligible neighbor relations, we have set to 0 those ele-

ments of the combined matrix lower than u, considering

u 2 f0; 0:01; 0:05; 0:10g, where u ¼ 0 corresponds to not

performing any elimination.

However, as shown in Fig. 7, no improvements have

been observed in terms of DIC variations with respect to

the optimal DIC value yielded by the main fifteen matrices

considered in the analysis (DICopt ¼ 1666:25, as shown in

Table 2). In all cases, the combined matrix gives rise to a

model with a worse (higher) DIC value, although it

depends strongly on the choice of s and u. More specifi-

cally, the effect of s and u is similar in the case of Models

C1 þ D5 and C1 þ S, since increasing u (which implies

considering more neighbors as negligible), or reducing s

(which means giving more weight to C1 in this case),

usually produces combined matrices that result in models

of higher DIC (although the pattern is not entirely consis-

tent). In combining matrices C1 and F, almost any

Model C1

PIT value

0.0 0.2 0.4 0.6 0.8 1.0

0.
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1.
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1.
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Fig. 4 Histograms of the PIT

scores obtained for the models

based on neighborhood matrices

C1 a and D1 b

Table 2 Summary of the main metrics considered for the assessment

and comparison of the spatio-temporal models fitted, each one based

on a different neighborhood matrix (a brief description of each of the

matrices is provided). Two groups of matrices are identified according

to the distinct performance of the models

Group Matrix DIC WAIC LPML Sensitivity Specificity MCC Ist (p-value)

1 C1 (first-order contiguity) 1666.625 1632.306 0.209 0.729 0.997 0.808 0.013 (0.357)

1 C2 (second-order contiguity) 1666.710 1633.549 0.209 0.729 0.997 0.808 0.012 (0.359)

1 C3 (third-order contiguity) 1666.811 1634.228 0.209 0.729 0.997 0.808 0.012 (0.359)

1 D5 (inverse distance) 1666.250 1631.888 0.209 0.729 0.997 0.808 0.015 (0.342)

1 D6 (‘‘Gravity’’) 1666.250 1631.888 0.209 0.729 0.997 0.808 0.015 (0.342)

1 D7 (‘‘Entropy’’) 1666.250 1631.888 0.209 0.729 0.997 0.808 0.015 (0.342)

1 S (sociodemography) 1666.250 1631.888 0.209 0.729 0.997 0.808 0.015 (0.342)

1 H2 (hybrid between D5 and S) 1666.250 1631.888 0.209 0.729 0.997 0.808 0.015 (0.342)

2 D1 (1-nearest neighbors) 2102.532 2233.515 0.101 0.757 0.983 0.798 0.192 (0.000)

2 D2 (3-nearest neighbors) 3770.938 3851.917 0.073 0.738 0.930 0.683 0.331 (0.000)

2 D3 (5-nearest neighbors) 3739.163 3875.593 0.073 0.729 0.940 0.693 0.334 (0.000)

2 D4 (7-nearest neighbors) 3673.010 3861.366 0.072 0.738 0.953 0.725 0.340 (0.000)

2 F (mobility flows) 3766.721 3866.660 0.072 0.738 0.933 0.689 0.332 (0.000)

2 H1 (hybrid between D5 and F) 3766.721 3866.660 0.072 0.738 0.933 0.689 0.332 (0.000)

2 H3 (hybrid between D5, F and S) 3766.721 3866.660 0.072 0.738 0.933 0.689 0.332 (0.000)
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combination of s and u is very detrimental in terms of the

DIC. Unlike what happened with the two combinations

mentioned above, in the case of C1 and F, it is convenient

to take a value of s close to 1 and favor eliminating neg-

ligible neighbor relations. The poor performance of the

F matrix has probably led to these results.

In short, combining the selected matrices and eliminat-

ing some weak neighbor relations have not improved

model fitting, at least for the experiments performed

(testing all possible combinations of matrices is computa-

tionally very expensive). Despite this, the results achieved

indicate that small variations in the neighborhood matrix

can be considerably detrimental to the fit, as reflected in

Fig. 7. The low number of areas under analysis may be the

cause of this fact, but it is difficult to determine to what

degree each neighbor relation improves/worsens the fit.

4.3 Model selection and application

As highlighted in Sect. 1, the appropriate use of spatio-

temporal models enables the estimation and prediction of

the distribution of diseases such as the COVID-19 and,

therefore, the establishment of epidemiological surveil-

lance methods for the benefit of public health. In light of

the comparative analysis carried out, Model C1, which

could be regarded as the best model given the metrics of

performance considered and because of the simplicity of its

associated neighborhood matrix (although any of the

models of group 1 leads to similar conclusions), allows us

to reach the following conclusions.

First, Model C1 indicates that the areas closer to the

center of Valencia experienced higher relative risks during

the study period, even though other more distant areas also

presented relative risks above 1 (Fig. 6a). Nevertheless,

although Figure 6a might suggest that the spatial distribu-

tion of the relative risks is moderately to highly structured,

the computation of the amount of variance explained by the

spatially-structured effect (Blangiardo and Cameletti 2015)

has revealed that the spatially-unstructured component, vi,

captures around 95% of the spatial variability of the data.

Therefore, most of the spatial variability cannot be

explained through neighbor relations in this particular case

study.

With regard to the estimated temporal effects, it is worth

noting that the (structured) week-specific relative risk

reached a maximum value above 9 at the end of August

(Fig. 6b). Moreover, it can be observed that the temporal

variability of the data is markedly structured, in contrast to

the spatial variability. Indeed, the estimation of the spatio-

temporal relative risks for the complete set of areas under

study suggests that all of them followed a similar pattern

during the study period, as shown in Fig. 8.

Besides the capability of Model C1 to capture spatial,

temporal, and spatio-temporal effects, this model also

allows performing short-term predictions. The biased dis-

tribution of the PIT scores yielded by Model C1 (Fig. 4a)

suggests that the model shows a tendency to underestimate

the number of weekly COVID-19 cases for some of the

areas. This could be attributed to the common presence of

extreme values in COVID-19 datasets, especially in the

context of analyzing small areas. Using a generalization of

the Poisson distribution could be helpful in this regard

(Jalilian and Mateu 2021).
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A
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a

Sign Negative Positive Absolute 2 4 6

Model C1

(a)

1 5 1 5 10 15 20 25

Week

A
re

a

Sign Negative Positive Absolute 10 20 30 40 50
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(b)

Fig. 5 Graphical summary of the residuals yielded by the fitted

spatio-temporal models based on neighborhood matrices C1 a and H3

b. The size of each point is proportional to the absolute value of the

residual, whereas the color of the point indicates the sign of the

residual. Note that two different scales have been used for represent-

ing the absolute values of the residuals given the large differences

observed between the two models under comparison
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Fig. 6 Area-specific relative risks, computed as expðui þ viÞ, and

week-specific relative risks, computed as either expðctÞ (structured

component) or expð/tÞ (unstructured component), obtained with the

fitted spatio-temporal models based on neighborhood matrices C1 and

D2. In (b) and (d), the red dashed line represents a relative risk of 1
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Fig. 7 DIC variations with respect to the optimal DIC value

(DICopt ¼ 1666:25), yielded by different combinations of the neigh-

borhood matrices C1 and D5 a, C1 and F b, and C1 and S c,

considering different values of the weight s (from 0.1 to 0.9, in

intervals of 0.1), and several thresholds of u (0, 0.01, 0.05, and 0.10)

for determining the negligible neighbors
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5 Conclusions

Using the right neighborhood matrix when conducting a

spatial or spatio-temporal analysis is an essential but rarely

addressed issue. According to our results, some classical

and non-sophisticated choices such as the first-order con-

tiguity matrix or the inverse distance matrix are still the

most suitable. However, more research would be needed to

better assess the performance of some of the neighborhood

matrices considered (especially those that include covariate

information) to reach more definite conclusions. The

results also suggest that even though two neighborhood

matrices may be highly similar in structure, slight differ-

ences in their definition can lead to significantly different

model performances. For example, although the flow-based

matrix turned out to be quite similar to the first-order

contiguity matrix, the attenuation of certain neighbor

relations between some contiguous areas causes a notice-

able detriment in terms of performance. Furthermore, it is

worth noting that, even though some previous studies

suggest that a smaller average number of neighbors per

spatial unit is beneficial for model fitting, some neighbor-

hood structures only based on a few neighbors (such as k-

nearest neighborhood matrices) performed worse than

other alternatives accounting for more neighbor relations.

Therefore, testing multiple sensible specifications of the

neighborhood matrix is highly advisable. Otherwise, an

unsuitable choice of this matrix can lead to poor models in

terms of explanatory and forecasting capability. Given the

inconvenience of having to fit numerous models, a good

strategy might be to test a fairly general neighborhood

matrix of each of the main types available (contiguity-based,

distance-based, etc.), select the one that gives the overall

best results, and then assess the performance of multiple

variations of such typology of matrix selected. In this regard,

neither the combination of neighborhood matrices nor the

elimination of weaker neighbor relations have improved the

performance of the models for the matrices tested. Anyhow,

we believe that the employment of both strategies in an

attempt to obtain a more informative neighborhood matrix,

which more adequately represents the connections between

the areas under analysis, deserves consideration. The low

number of areas available in our study window, together

with the dominance of the unstructured component

of the estimated spatial variability, may have made it more

challenging to see such improvements, so further case

studies or even simulation studies would be necessary to

better assess the potential benefits of this methodology.

Finally, it is also necessary to point out that considering edge

effects is highly convenient if there is missing information

for some surrounding areas. The method proposed by

Lawson et al. (1999), which we chose, is easily imple-

mentable, but there are other alternatives available. In our

case study, we have verified that not accounting for edge

effects would not have caused any change in model fitting.

Nonetheless, more applied and theoretical research would

be required in this direction to better assess the possible

impact of edge effects on a spatial/spatio-temporal analysis.
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