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Untangling the Animacy Organization of Occipitotemporal
Cortex
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Some of the most impressive functional specializations in the human brain are found in the occipitotemporal cortex (OTC),
where several areas exhibit selectivity for a small number of visual categories, such as faces and bodies, and spatially cluster
based on stimulus animacy. Previous studies suggest this animacy organization reflects the representation of an intuitive tax-
onomic hierarchy, distinct from the presence of face- and body-selective areas in OTC. Using human functional magnetic res-
onance imaging, we investigated the independent contribution of these two factors—the face-body division and taxonomic
hierarchy—in accounting for the animacy organization of OTC and whether they might also be reflected in the architecture
of several deep neural networks that have not been explicitly trained to differentiate taxonomic relations. We found that
graded visual selectivity, based on animal resemblance to human faces and bodies, masquerades as an apparent animacy con-

tinuum, which suggests that taxonomy is not a separate factor underlying the organization of the ventral visual pathway.
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ignificance Statement

underlying the organization of areas in the visual cortex.
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Portions of the visual cortex are specialized to determine whether types of objects are animate in the sense of being capable of
self-movement. Two factors have been proposed as accounting for this animacy organization: representations of faces and
bodies and an intuitive taxonomic continuum of humans and animals. We performed an experiment to assess the independ-
ent contribution of both of these factors. We found that graded visual representations, based on animal resemblance to
human faces and bodies, masquerade as an apparent animacy continuum, suggesting that taxonomy is not a separate factor
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Introduction

One of the most fascinating examples of functional specialization
in the human brain is the presence of areas in the lateral and ven-
tral occipitotemporal cortex (OTC) that preferentially respond to
a small number of ecologically important visual categories. These
areas tend to spatially cluster in a manner that respects the super-
ordinate dichotomy between animate objects that are capable of
volitional self-movement and inanimate objects that are not
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(Behrmann and Plaut, 2013; Grill-Spector and Weiner, 2014;
Bao et al,, 2020). In particular, face and body areas are known to
cluster separately from those for scenes and tools, and this func-
tional organization has been taken to show that at a broader spa-
tial scale the OTC represents the animate-inanimate division
(Kriegeskorte et al, 2008b; Grill-Spector and Weiner, 2014).
Recent studies suggest the OTC also represents stimulus animacy
in a continuous, or even hierarchical, fashion (Sha et al., 2015;
Thorat et al.,, 2019). In these studies stimuli consist of animal
images groups based on an intuitive taxonomy in which some
animals rank high on the animacy scale (e.g., primates), some are
intermediary (e.g., birds), and others (e.g., insects) are low
(Connolly et al., 2012, 2016; Sha et al., 2015; Nastase et al., 2017).
These results introduce the possibility that the OTC represents
conceptual relations among categories that do not easily reduce
to their diagnostic visual properties (Bracci et al, 2017; cf.
Fairhall and Caramazza, 2013).

The familiar face-body division and proposed intuitive taxon-
omy may both be factors that help explain animacy organization
in the OTC. These factors are not mutually exclusive (nor are
they exhaustive), but they are not the same. Images of the face
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and (face cropped) body of a person are at the same (high) taxo-
nomic level, yet they are distinct, resulting in clearly dissociable
neural responses. To date, studies providing evidence of intuitive
taxonomic organization in the OTC have not factored the face/
body division into their study design and so have failed to disen-
tangle these two factors in several ways. First, these studies have
used images of whole animal bodies and ignored the face-body
division in general and more specific issues such as the fact that
we may be more accustomed to looking at the faces of some ani-
mals and the bodies of others. Second, these studies have focused
on large swaths of the OTC and so are unable to determine
whether the taxonomic organization is exhibited more narrowly
in category-selective areas, like those for faces and bodies. Third,
these studies equate the idea of a continuous, graded organiza-
tion in the OTC with the representation of a taxonomic hierar-
chy. Therefore, they do not allow for the possibility that apparent
animacy continuum may simply be coding for diagnostic visual
features of objects, which is an important factor in the category-
selective organization of the OTC more generally (Jozwik et al.,
20165 Bracci et al., 2017). In particular, as face and body areas are
already known to be preferentially selective to images of humans,
the claimed animacy continuum may simply reflect the relative
visual similarity of animal faces and bodies to those of humans.
Finally, these studies do not rule out the possibility that a system
without any consideration of intuitive taxonomy might nonethe-
less show a similar continuity in its representation of animal
stimuli to the OTC.

In light of these shortcomings, we performed a functional
magnetic resonance imaging (fMRI) experiment to disentangle
these two factors and their contributions to explaining the ani-
macy organization of the OTC. First, we designed a stimulus
set that allowed us to evaluate whether the taxonomic hierar-
chy explains the relationship among activity patterns in the
OTC when controlling for the face-body division and vice
versa. Second, we investigated the influence of both factors
in explaining the relationship among activity patterns in
more circumscribed, category-selective areas of the OTC.
Third, we investigated whether the relative visual similarity
of animal faces and bodies, and in particular, their similarity
to the faces and bodies of humans, might better explain the
relationship among activity patterns than taxonomy. Finally,
we assessed whether an intuitive taxonomic organization
might also be reflected in the patterns of activation weights
of layers of multiple deep neural networks (DNNs), although
they have not been trained on taxonomic relations between
animal classes.

Materials and Methods

Participants

The fMRI experiment included 15 adult volunteers (10 women; mean
age, 24.2 years; age range, 21-33 years). A total of 40 volunteers partici-
pated in the different similarity judgment tasks with subjects randomly
selected to participate in the pairwise body (N = 10; seven women; mean
age,21.8 years; age range, 19-26 years), pairwise face (N = 10; seven
women; mean age, 22.6 years; age range, 19-28 years), human body (N =
10; 10 women; mean age, 19.1 years; age range, 18-23 years), and human
face (N = 10; seven women; mean age, 21.1 years; age range, 18-32 years)
similarity tasks. All volunteers were predominantly right-handed, had
normal or corrected vision, and provided written informed consent for
participation in the experiments. All experiments were approved by the
Ethics Committee of Universitair Ziekenhuis/Katholieke Universiteit
Leuven, and all methods were performed in accordance with the relevant
guidelines and regulations.
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Stimuli

Stimuli consisted of 54 natural images of objects (Fig. 1A) and included
a body and face image of 24 animals, as well as 2 images each of 3 natural
objects, resulting in 48 animal and 6 natural object images. The animals
depicted were selected to cluster into six levels of an intuitive taxonomic
hierarchy based on stimulus design and results of previous studies on
the intuitive taxonomic organization of the OTC (Sha et al, 2015;
Nastase et al., 2017): mammal cluster 1 and mammal cluster 2 (birds,
reptiles/amphibians, fish, and exoskeletal invertebrates). We refer to this
as an intuitive taxonomic hierarchy because of the following: (1) it
reflects commonsense divisions of types of animals based directly on be-
havioral and neural findings from previous studies, and (2) it involves an
ordering where mammals are on one end and invertebrates on the other.
This notion of taxonomy tends to group biologically distinct classes. For
example, using similar divisions, for convenience Connolly et al. (2016)
refer to the grouping of reptiles and amphibians as simply “reptiles” and
the group of exoskeletal invertebrates as “bugs.” The class of mammal is
quite broad, and previous studies also make a point of distinguishing pri-
mates as a separate class (Sha et al., 2015). Here, the distinction between
the two mammal clusters was intended to distinguish high intelligence
mammals, including primates (gorilla and lemur) and trainable aquati-
cally mobile mammals (dolphin and seal), from comparatively less intel-
ligent mammals that are terrestrial (leopard and kangaroo) or capable of
flight (flying fox and bat). We note that as the taxonomy structure we
employ here is based directly on previous studies on the taxonomic orga-
nization of the OTC, it may differ from other ways of measuring the rich
conceptual connections between different animal classes, for example,
verbal fluency (Goni et al., 2011). Natural object images were of orchids,
fruit/vegetables, and mushrooms (two images each). All images were
cropped to 700 x 700 pixels (subtending ~10 degrees of visual angle in
the scanner), converted to grayscale, focus blurred in the background
regions, and then filtered using the SHINE toolbox (Willenbockel et al.,
2010) to equate the luminance histogram and the average energy at each
spatial frequency. The full-sized stimulus images are available at https://
osf.io/xcpw6/.

Experimental design and statistical analyses

Similarity judgment experiments. Participants were tasked with mak-
ing visual similarity judgments based on the sequential presentation of
pairs of either face or body stimulus images. For the pairwise face and
pairwise body similarity tasks, subjects responded using a 6-point scale
(1 =highly similar, 6 = highly dissimilar) on how visually similar the two
animal faces/bodies were to each other. For the human face and body
similarity tasks, the subjects responded whether they considered that the
first (press 1) or second (press 2) animal face/body looked visually more
similar to an imagined face/body of a human. Previous studies have
found that such overt similarity judgment tasks can successfully dissoci-
ate information about visual features from categorical information about
the type of object observers are looking at (Bracci and Op de Beeck,
2016; Zeman et al., 2020). Across all similarity tasks, the trial structure
was virtually identical: the fixation cross appeared (1000 ms), then the
first image (1000 ms), followed by an interstimulus interval (1000 ms),
and then the second stimulus (1000 ms). After the second stimulus dis-
appeared from the screen, text appeared reminding participants of either
the 6-point scale or the pairwise choice options. The next trial did not
start until subjects made a response. All possible sequential pairwise
combinations of images were presented during the experiment in ran-
dom order with five rest breaks evenly spaced throughout. Stimulus pre-
sentation and control were performed via PC computers running
PsychoPy2 (Peirce, 2007).

Naming task. Before both the similarity and fMRI experiments, all
participants conducted a naming task with the following trial structure: a
fixation cross appeared for 500 ms after which an image appeared for
1000 ms, then subjects typed in English or Dutch the name of the animal
or natural object depicted in the image (e.g., “duck”/“eend”). If partici-
pants recognized the animal/natural object but could not remember the
name, they were instructed to type “y,” and if they did not recognize it at
all, to respond with “n.” After typing their response, subjects pressed
enter, and the image and the correct English and Dutch labels appeared
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Core features of the experimental design. A, All 54 natural image stimuli, color coded based on the taxonomic hierarchy. Numbers identify individual animals/natural object types:

(1) gorilla, (2) lemur, (3) dolphin, (4) seal, (5) leopard, (6) kangaroo, (7) flying fox, (8) bat, (9) ostrich, (10) owl, (11) duck, (12) penguin, (13) crocodile, (14) turtle, (15) snake, (16) frog, (17)
eel, (18) reef fish, (19) seahorse, (20) shark, (21) ladybug, (22) crab, (23) spider, (24) dragon fly, (25) orchid, (26) fruit, and (27) mushroom. B, The results of the functional contrasts used in
the study to define the ROIs, for one representative participant, mapped onto the inflated cortex using FreeSurfer (Fischl, 2012). The hashed line indicates the boundary between the lateral
and ventral masks defined using the Anatomical Toolbox (Eickhoff et al., 2005). The white asterisk indicates the occipital pole, and the white patch is the EVC. €, The three main model RDMs
used throughout the study. The axes of the RDMs are color coded to reflect the taxonomic hierarchy for the stimuli.

for 3000 ms before the next trial began. Correct responses were coded
based on predetermined labels, with any discrepancy marked as incor-
rect. For example, if a subject correctly labeled the body image for animal
24 as “dragonfly,” but the corresponding face image as simply “fly,” the
latter response would be coded as incorrect. Stimulus presentation and
control were performed via PC computers running PsychoPy2 (Peirce,
2007).

Only the naming data from fMRI participants were coded and ana-
lyzed for comparison with their neural data. The mean number of

images for which participants responded “n” was 3.5 (maximum = 12),
and the mean number of correctly coded labels was 44.4 (minimum =
36). The stimulus with the highest number of “n” responses was the co-
conut (9/15). Only five images were incorrectly labeled by a majority of
subjects and three of these were invertebrate face images.

fMRI experiment sample size. For the fMRI experiment the number
of participants was sufficient to have a power above 0.95 with reliable
data that guarantee an effect size of d = 1. Based on previous studies with
similar amounts of data per stimulus and subject (i.e., two long scan
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sessions per participant; Bracci and de Beeck, 2016; Bracci et al., 2019),
we know that the distinction between animals and other objects as
revealed by representational similarity analysis (RSA), described below,
has a very high effect size, typically with a Cohen’s d of 1-4 even in
smaller regions of interest (ROIs). We also assessed the between-subject
reliability of the neural data by calculating the noise ceiling for RSA cor-
relations for each of the ROIs we considered (see below).

Scanning procedures. The fMRI experiment consisted of two sessions
of eight experimental runs followed by two localizer runs, for a total of
16 experimental and four localizer runs per subject, with one or two ana-
tomic scans also collected for each participant. Using a rapid event-
related design, each experimental run consisted of a random sequence of
trials including two repeats of each of the 54 images and 18 fixation tri-
als, for a total of 144 trials per run. Each stimulus trial began with the
stimulus being presented for 1500 ms, followed by 1500 ms of the fixa-
tion bull’s-eye. Subjects performed a one-back task in which on each trial
they indicated with a button press whether they preferred looking at the
current image or the previous one. Experimental runs had a total dura-
tion of 7 min and 30 s. A fixation bull’s-eye was centrally presented con-
tinuously throughout each run.

For the localizer runs a block design was used with four stimulus
types: bodies, faces, objects, and box-scrambled versions of the object
images, with 18 images of each stimulus type. Each image in a block
appeared for 400 ms followed by 400 ms fixation with four repeats of
each stimulus block type per run. All four series of image types were pre-
sented sequentially in each stimulus block in pseudorandom order, fol-
lowed by a 12 s fixation block. Localizer runs had a duration of 8 min
and 0 s. To maintain their attention during a run, participants indicated
when one of the images was repeated later in an image series, which
occurred once each for two different randomly selected images per
image type per block. A fixation bull’s-eye was centrally presented con-
tinuously throughout each run. For one subject the data for three of four
localizer runs were used as the data file for the remaining run was cor-
rupted and unusable.

For both types of runs, stimulus presentation and control were per-
formed via a PC computer running the Psychophysical Toolbox package
(Brainard, 1997), along with custom code, in MATLAB (MathWorks).

Acquisition parameters. Data acquisition was conducted using a 3T
Philips scanner, with a 32-channel coil, at the Department of Radiology
of the Universitair Ziekenhuis Leuven university hospitals. Functional
MRI volumes were acquired using a two-dimensional (2D) multiband
(MB) T2*-weighted echo planar imaging sequence: MB = 2; repetition
time, 2000 ms; echo time, 30 ms; flip angle, 90°; field of view = 216; voxel
size = 2 X 2 X 2 mm; matrix size = 108 x 108. Each volume consisted of
46 axial slices (0.2 mm gap) aligned to encompass as much of the cortex
as possible and all of the occipital and temporal lobes. Typically this
resulted in the exclusion of the most superior portions of the parietal
and frontal lobes from the volume. The T1-weighted anatomic volumes
were acquired for each subject using an MPRAGE sequence, 1 X 1 x 1
mm resolution.

fMRI preprocessing and analysis. Preprocessing and analysis of the
MRI data were conducted with SPM12 software (version 6906) using
default settings unless otherwise noted. For each participant, fMRI vol-
umes were combined from the two sessions (while preserving run order)
and slice-time corrected (indexing based on slice acquisition time rela-
tive to 0 ms, not slice order), motion corrected using the realign opera-
tion (using fourth-degree spine interpolation), and coregistered to the
individual anatomic scan. For all these steps the transformations were
estimated and saved to the image header files before a single reslicing
was conducted using the coregistration (reslice) operation. Functional
volumes were then normalized to standard MNI space by first aligning
the SPM tissue probability map to the individual subject anatomic scan
and then applying the inverted warp to the functional volumes. Finally,
all functional volumes were smoothed using a Gaussian kernel, 4 mm
FWHM.

After preprocessing, the BOLD signal for each stimulus, at each
voxel, was modeled separately for the experimental and localizer runs
using GLMs. For the experimental runs, the predictors for the GLM con-
sisted of the 54 stimulus conditions and six motion correction
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parameters (translation and rotation along the x-, y-, and z-axes). The
time course for each predictor was characterized as two boxcar functions
at the two stimulus onsets (duration = 1500 ms) convolved with the ca-
nonical hemodynamic response function. The GLM analysis produced
one parameter estimate for each voxel for each stimulus predictor for
each run. For the localizer runs the same modeling procedure was con-
ducted for the four localizer conditions, with a single onset at the begin-
ning of each image series (duration = 16 s) for each image type for each
of the four stimulus blocks.

Defining ROIs. Three contrasts were used to specify separate func-
tional ROIs for each subject based on the four conditions from the local-
izer runs (Fig. 1B): body > face + objects; face > body + object; and
object > scrambled. We used conjunctions of masks from the Anatomy
Toolbox to isolate lateral (conjunction of bilateral hOc4lp, hOc4la, and
hOc4v) and ventral (conjunction of bilateral FG1-FG4) components of
the OTC (Eickhoff et al., 2005). Within the two masked areas we used a
threshold of FWE = 0.05, and then lowered the threshold to uncorrected
p = 0.001 if no activity was detected or if it was detected in only one
hemisphere. This procedure resulted in six functionally defined ROIs:
lateral occipitotemporal cortex (LOTC)-body, LOTC-face, LOTC-object,
ventral occipitotemporal cortex (VOTC)-body, VOTC-face, and VOTC-
object. To define the early visual cortex (EVC), we used the posterior
(i.e., most foveal) ~2/5 of the V1 mask as defined by the Anatomy
Toolbox. Thus, unlike the other ROIs, which were defined functionally
for each individual participant (although constrained by the masks),
identical V1 mask coordinates were applied across participants without
further functional feature selection.

Representational similarity analysis. RSA was used to compare the
activity patterns from the different ROISs to the stimulus models, similar-
ity judgments, and the layers of a suite of DNNs (Kriegeskorte and
Kievet, 2013; Kriegeskorte et al., 2008a). For each comparison, represen-
tational dissimilarity matrices (RDMs) were constructed, which are mat-
rices that are symmetrical around the diagonal and reflect the pairwise
dissimilarities among all stimulus conditions. RDMs from different data
modalities can be directly compared in order to evaluate the second
order isomorphisms of the dissimilarities between conditions. RSA was
conducted using CoSMo Multivariate Pattern Analysis, along with cus-
tom code (Oosterhof et al., 2016).

Neural RDMs for the different ROIs for each subject were con-
structed using the (non-cross-validated) Mahalanobis distance as the
dissimilarity metric, characterized as the pairwise distance along the dis-
criminant between conditions for the B weight patterns in an ROI
(Walther et al., 2016; Ritchie and Op de Beeck, 2019). To assess the
between-subject reliability of the RDMs for each ROI, the RDM of one
subject was left out and those of the remaining subjects were averaged,
and Pearson’s r correlated with the left-out subject’s RDM. This was con-
ducted for all subjects, and the resulting coefficients were averaged. The
resulting region-specific average value was used as an estimate of the
noise ceiling when correlating individual neural RDMs for each ROI
with the RDMs from the other data modalities. Visualization of group-
averaged neural RDMs included multidimensional scaling (MDS) with
stress 1 as the criterion.

Model RDMs were constructed in a number of different ways. For
the main model RDMs (Fig. 1C), a 54-value vector was coded based on
whether a stimulus was animate or not (Animacy), a face-body or not
(Face-Body), or its rank (mammal 1 = 1; invertebrates = 6) in the intui-
tive taxonomic hierarchy (Taxonomy). The values of the model RDMs
were then filled based on the absolute difference in the pairwise values in
these coding vectors.

We also constructed an RDM from the GIST descriptors of the
images (Oliva and Torralba, 2001). GIST was included in the analysis to
control for potential low-level visual confounds (see below). Each image
was segmented into a 4 x 4 grid, and Gabor filters (eight orientations
and four spatial frequencies) were applied to each block in the grid. For
each image, the values for each filter were converted to a vector, and all
pairwise 1-r Pearson’s correlations between these vectors were used to
fill the cells of the RDM.

For the different DNNs (described below), layer-specific RDMs were
constructed based on the 1-r pairwise Pearson’s correlation between the
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vectors of unit responses for each image. For the similarity judgments
with a 6-point scale, RDMs were constructed based on populating a ma-
trix with all pairwise judgments.

For the other similarity tasks, participants’ responses resulted in a
ranking vector, averaged across runs in the case of the in-scanner prefer-
ence task. For example, the gorilla face might always be chosen as visu-
ally more similar to that of a human relative to all other animal faces and
so would have the highest rank. The absolute pairwise differences in this
ranking vector were used as the dissimilarity metric to construct the
matrices. Individual behavioral RDMs were averaged to create a group-
averaged matrix for comparison with individual neural RDMs.

For the naming task, a single matrix was constructed based on the
proportion of subjects who correctly labeled an image with the absolute
difference in proportion correct as the dissimilarity metric. To assess the
reliability of the group-averaged human similarity RDMs, the individual
RDMs were split into two groups, then averaged and correlated. This
was done for all possible half splits of the data, and the resulting average
coefficient value was transformed using the Spearman-Brown formula.
This resulting value gives an estimate of the reliability of the group-aver-
aged data, based on the full sample size (DiCarlo and Johnson, 1999; Op
de Beeck et al., 2008).

To compare RDMs from different data modalities, the bottom half of
each matrix was converted to a vector, and the Spearman rank-order
correlation was calculated between matrices. The median correlations
across subjects were tested for significance using the Wilcoxon signed-
rank test. Because the test statistic W can be computed exactly for N <
15, it is reported along with the p value. Effect sizes for these tests are
reported as the rank-biserial correlation (r,.). Following Kerby (2014),
this was calculated as r,. = W/S, where S is the summed rank of N.
When multiple similar statistical tests were conducted, for brevity we
report the lower/upper bounds of the test statistics, effect sizes, and p val-
ues. In the case of the DNNS, for which several comparisons of the same
type were made, the false discovery rate (FDR) adjusted p values are
reported to correct for multiple comparisons.

Commonality analysis. Commonality analysis is a method for deter-
mining whether multiple predictors uniquely or jointly explain variance
in the dependent variable (Newton and Spurell, 1967; Seibold and
McPhee, 1979). This method has increasingly been used in conjunction
with RSA and other multivariate pattern analysis methods and is also
sometimes known as “variance partitioning” (Lescroart et al., 2015;
Groen et al., 2018; Hebart et al., 2018). In the present case of three pre-
dictors (a, b, ¢) for some dependent variable y, there will be seven coeffi-
cients of determination (R?) for all possible combinations of predictors
in a linear regression model: R2y @ Rzy b R2y o Rzy < ab» RZy 2o R2y bo
R2y . abe- The last of these is the full model, for which the variance is parti-
tioned based on differential weighting of the R* of the different models.
When there are only three predictors, the partitioning can be performed
using a simple weighting table (Nimon and Reio, 2011), in which the
vector of coefficients is multiplied with row vectors of weights for each
of the unique and common variance components. These results were
visualized with EulerAPE (Micallef and Rodgers, 2014), which can be
used to plot overlapping ellipses proportional to the variance partition of
the total explained variance (Groen et al., 2018). Although in principle,
negative variance can reflect informative relationships among predictors
(Capraro and Capraro, 2001), in the present context these values
were typically so small they are negligible (e.g., —0.1% of the total
explained variance). They were therefore excluded from the visual-
ization. Notably, the exclusion of these negative values means that
the displayed values in the Euler plots depicting the commonality
analyses that were performed will not sum to exactly 100% as is
normally the case when all unique and common variance compo-
nents are combined (Nimon and Reio, 2011).

To carry out the multiple regression necessary for commonality anal-
ysis, RDMs were converted to vectors, and the group-averaged neural
dissimilarity values were regressed on the different model or behavioral
dissimilarity vectors. Because this application of linear regression violates
standard assumptions of independence between samples and normality,
significance for the full model was determined by using a permutation
test. For each individual subject, the rows of the bottom half of their
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neural RDM were independently randomly shuffled, and the resulting
random vector was averaged across subjects and then fit with the full
model. This procedure was conducted 1000 times for each application of
multiple regression. The resulting proportion of R*~values greater than
that observed for the full model (fit to the unshuffled dissimilarities) pro-
vides the p value for the test.

Univariate analysis. For each subject the 8 weight values were aver-
aged across all runs, and then all voxels, for each stimulus condition.
Univariate RDMs were then constructed based on the pairwise absolute
differences in the 8 weight values for each condition. The individual
subject univariate RDMs were then correlated with the main model mat-
rices as with the other forms of RSA described above. To further visual-
ize the univariate results, average 8 weight values were calculated for
each of the clusters of four face and body images for each level of the
Taxonomy model and for all six of the natural object images.

DNNs. Networks consisted of stacked multiple convolutional (conv)
layers that were intermittently followed by pooling operations, which fed
into fully connected (FC) layers before output. Each DNN was pre-
trained on the ImageNet dataset (Russakovsky et al., 2015). To generate
the response vectors for RSA we passed each image through the net-
works, with the activation weights of each layer as outputs. Softmax clas-
sification layers, which reflect the 1000 ImageNet labels commonly used
for training DNNs, were excluded from the analysis. The networks used
in our analysis are well known for their performance in the ImageNet
Large Scale Visual Recognition Challenge (ISLVRC) competitions, or in
the case of CORnet, have been promoted as superior in brain predict-
ability, in contrast to image classification performance, using Brain-
Score (Schrimpf et al., 2018).

CaffeNet is an implementation of the AlexNet architecture within
the Caffe deep learning framework (Krizhevsky et al., 2012; Jia et al,,
2014). The network includes five conv layers followed by three FC layers,
for a total network depth of eight layers. The VGG-16 consists of 13
conv layers interspersed with five pooling layers, followed by three FC
layers (Simonyan and Zisserman, 2014). GoogLeNet, or InceptionNet, is
a 22-layer deep network, when counting only the parameterized layers
(Szegedy et al., 2015). As with the majority of standard networks, the ini-
tial layers are conv layers followed by maximum pooling operations, and
the final layers involve (average) pooling followed by a single FC layer.
The main architectural point of difference from standard serial networks
is that in GoogLeNet intermediary layers consist of stacked inception
modules, which are themselves miniature networks containing parallel-
ized conv and maximum pooling layers with convolutions of different
sizes. ResNet50 is a deeper network (50 layers), with 48 convolutional
layers and two pooling layers (He et al., 2015). The unique feature of
ResNet50 is the implementation of shortcut connections that per-
form identity (residual) mappings between every three layers.
CORnet is a family of architectures that include recurrent and skip
connections, with all networks containing four layers that are pre-
mapped onto the areas of the ventral visual pathway in the primate
brain: V1, V2, V4, and IT (Kubilius et al., 2018). We used CORnet-
S, which combines skip connections with within-area recurrent con-
nections and performed best “overall” on Brain-Score (Schrimpf et
al., 2018), and so in principle should potentially be superior at
matching the dissimilarity structure of OTC.

Results

Face-body and intuitive taxonomy models both uniquely
explain neural similarity in the OTC

Because previous studies of the animacy organization in the
OTC have tended to focus on large areas of the lateral and ven-
tral OTC rather than category-selective ROIs (Connolly et al.,
2012; Sha et al., 2015; Thorat et al., 2019), we first investigated
whether the face-body and taxonomy model RDMs would corre-
late with the neural RDMs for the LOTC and VOTC, broadly
construed. The ROIs for lateral and ventral ROIs in OTC (face,
body, and object) were grouped into two ROIs, the LOTC-all
and VOTC-all, which together encompass much of the large
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Figure 2.

Comparing the main model RDMs to the EVC, LOTC-all, and VOTC-all. A, Bar charts indicating the median Spearman’s p rank-order correlations between neural RDMs for individual

subjects (dots) and model RDMs. Gray blocks indicate the noise ceiling. *p << 0.05. B, Results of commonality analysis for the LOTC-all and VOTC-all, depicted with Euler diagrams. A schema of
the unique and common variance components is also depicted. Coefficients of determination (8%) indicate the total proportion of explained variance for the full model. Regions of the Euler plots
indicate percentages of the explained, and not total, variance accounted for by each component. C, Group-averaged neural RDMs with the axes color coded based on the taxonomic hierarchy.
Dissimilarity values are scaled to range 0—100. D, Two-dimensional multidimensional scaling applied to the dissimilarity matrices. Points are color coded to reflect the taxonomic hierarchy and
are either rings or dots to reflect the face/body division, or the first/second item for each natural object type. Numbers indicate individual animals or natural object type based on Figure 1A.

cortical territory typically investigated in previous studies of ani-
macy organization in the OTC (Fig. 1B). We also included the
early visual cortex (EVC) as a control region. In this analysis and
those to follow, we also included an Animacy model that reflects
the baseline distinction between animal and natural object

stimuli that is common to both the Face-Body and Taxonomy
models (Fig. 1C).

Consistent with previous studies, the median correlations of
the three model RDMs (Fig. 2A) were significant for both the
LOTC-all and VOTC-all [all: W(15) > 90, r,. > 0.75, p < 0.008],
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but not the EVC [all: W(15) < 48, 1, < 0.4, p > 0.19]. For the
LOTC-all, there were also significant differences between the me-
dian correlations for Animacy versus Face-Body and Face-Body
versus Taxonomy [both: W(15) > 118, rp. > 0.97, p < 0.001].
Despite similar magnitude median correlations for the VOTC-
all, the differences in median correlation were not significant for
Animacy versus Face-Body [W(15) = 66, 1y, = 0.55, p = 0.06] or
Face-Body versus Taxonomy [W(15) = 44, r,. = 0.37, p = 0.23],
although for the Face-Body model the individual correlations
have a clear bimodal distribution.

All three model RDMs are correlated with each other (Fig. 3),
which raises the issue of how much of the observed effects for
the three models reflect their common structure, although if the
natural object images are excluded, the Animacy RDM contains
no internal structure, and the Face-Body and Taxonomy RDMs
are not correlated (p = —0.03, p = 0.28). Still, to address this, we
conducted commonality analysis on the group-averaged neural
RDMs for the LOTC-all and VOTC-all. The full model, contain-
ing all three predictors (Animacy, Face-Body, Taxonomy),
explained a sizable amount of the variance for both ROIs (Fig.
2B) and was significant based on permutation tests (LOTC-all:
R* = 0.36, p < 0.001; VOTC-all: R* = 0.46, p < 0.001). In the
LOTC-all, most of the explained variance was uniquely accounted
for by the Face-Body model and to a lesser extent the Taxonomy
model. For the VOTC-all, the Face-Body and Taxonomy were
qualitatively more equitable in their unique contributions. These
results show that the Face-Body and Taxonomy models each
account for unique and independent components of the explained
variance in neural dissimilarity in the lateral and ventral OTC for
our image set.

These findings can be visually summarized using the group-
averaged neural RDMs (Fig. 2C), which can be compared with
the model RDMs (Fig. 1C) and their 2D MDS solutions (Fig.
2D). When this is done, one can see that the RDMs for the
LOTC-all and VOTC-all, but not the EVC, show structural simi-
larity to the main model RDMs. Multidimensional scaling also
makes more salient the differences in the commonality analysis
results of the LOTC-all and VOTC-all (Fig. 2D). On the one
hand, the face-body division is much more pronounced in the
2D space for the LOTC-all. On the other hand, the taxonomic hi-
erarchy is more apparent in the VOTC-all, whereas the face-
body division is also still clearly present. Notably, in the VOTC-
all the patterns for the body images tended to be more similar to
those for the natural objects than the face images as reflected in
the clustering in Figure 2D and the bands through the hot bars
on the bottom and ride side of the matrix in Figure 2C. This
could reflect greater shape similarity between the body and natu-
ral object images.

Nuisance models do not explain neural similarity in the OTC
Three nuisance models were considered that might also account
for the structure of the neural RDMs for the EVC, LOTC-all, and
VOTC-all. First, it has been suggested that low-level and midle-
vel image properties may explain away apparent effects of object
category in the OTC, including animacy (Rice et al., 2014; Andrews
et al,, 2015; Coggan et al., 2016; Long et al., 2018). To determine
whether such properties might also account for the present results
we used GIST, a model which captures spatial frequency and orien-
tation information of images (Oliva and Torralba, 2001). Second, to
ensure that familiarity with the animals or recognizability of the
images was not a confound, the subjects performed a naming task
before all experiments. Finally, during scanning, subjects performed
a one-back image preference task. RDMs for these two tasks and
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GIST were weakly correlated with the main model RDMs (Fig. 3)
and could not account for the results observed for the OTC (Fig. 4).
There was a significant median correlation between individual
RDMs for the EVC and the GIST model [W(15) = 106, 1y, = 0.88,
p = 0.001] and also negatively correlates with the Naming model
[W(15) = 70, ry,c = 0.58, p = 0.048], which also exhibited a significant
median correlation with the VOTC-all [W(15) = 74, 1, = 0.62, p =
0.04]. As the Naming RDM was correlated with the Face-Body
and Taxonomy RDMs, we also conducted partial correlations
with the individual neural RDMs for the VOTC-all. In both
cases, the median correlations decreased slightly after controlling
for the naming RDM [both: A median p < 0.01; W(15) = 120,
Ipe = 1.0, p = 6.10e-05].

Face-body and intuitive taxonomy models both explain
neural similarity in face-and body-selective and object-
selective areas of the OTC
OTC is well known to contain regions that show preferential se-
lectivity for face and body images in both the lateral and ventral
OTC (Kanwisher et al., 1997; McCarthy et al., 1997; Downing et
al., 2001; Peelen and Downing, 2005; T'sao et al., 2006) and object
images more generally (Grill-Spector et al., 1999). However, pre-
vious investigations of an intuitive taxonomy organization in the
OTC have generally not functionally isolated these regions.
Therefore, we next assessed whether the results observed in the
LOTC-all and VOTC-all might be maintained in subordinate
face- and body-selective areas; in particular, we sought to assess
whether the Taxonomy model would also show effects in these
areas and not just the lateral and ventral OTC more generally.
To this end we conducted the same analysis as before, that is,
correlating individual neural RDMs for LOTC/VOTC-body/
face areas with the three model RDMs, followed by commona-
lity analysis. These analyses were then also conducted for LOTC/
VOTC-object areas to assess whether they were restricted to face-
and body-selective portions of the OTC.

For all three model RDMs (Fig. 5A) the median correlations
across subjects were all highly significant for all four ROIs [all: W
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(15) > 92, r,c > 0.77, p < 0.007], with the exception being the
median Animacy correlation in the LOTC-face, which was the
only weakly significant effect [W(15) = 78, 1, = 0.65, p = 0.03].
For both the LOTC-body and LOTC-face there were also signifi-
cance differences in the median correlations [all: W(15) > 88, 1y,
> 0.73, p < 0.01]. In contrast in the VOTC-body neither com-
parison was significant [both: W(15) < 28, 1, < 0.23, p > 0.45],
and only Face-Body versus Taxonomy [W(15) = 88, r,. = 0.73,
p = 0.01], and not Animacy versus Face-Body [W(15) = 42, 1, =
0.35, p = 0.25] were significantly different in the VOTC-face.
Although the effect of the Face-Body model is to be expected
based on the category selectivity of these areas, these findings
also show that an intuitive taxonomy effect can be localized sepa-
rately to both face- and body-selective areas.

When all three predictors were regressed on the group-aver-
aged neural dissimilarities (Fig. 5B), the full model explained sig-
nificant variance in the group neural RDMs (all: R* > 0.25, p <
0.001). There was a notable difference, however, in the portion-
ing of the explained variance between the lateral and ventral
ROIs (Fig. 5B). In the LOTC-body, both the Face-Body and
Taxonomy models uniquely explained large portions of the var-
iance. In the LOTC-face virtually all the explained variance was
uniquely accounted for by the Face-Body model. For the ventral
areas, both Face-Body and Taxonomy, and their common compo-
nents, were substantive contributors to the explained variance.
Some of the characteristics of the group-averaged RDMs for the
face- and body-selective areas include the hot bands for the division
between animal and natural objects and the face-body checkering
(Fig. 5C); and MDS plots again show a clear face-body division as
well as an intuitive taxonomic continuum (Fig. 5D).

Similar results were also found for object-selective areas of
the OTC. The median correlations for all three model RDMs
(Fig. 6A) were very significant for both the LOTC-object and
VOTC-object [all: W(15) > 94, rp,c > 0.78, p < 0.006], with the
exception of a weaker median effect for the animacy model in
the VOTC-object [W(15) = 82, rp. = 0.68, p = 0.02]. For the
LOTC-object, there were also significant differences in the me-
dian correlations for Animacy versus Face-Body [W(15) = 82, 1,
=0.68, p = 0.02] and Face-Body versus Taxonomy [W(15) = 108,
Ipe = 0.90, p = 8.54e-04]. This was not the case for the VOTC-
object [both: W(15) < 28, 1, < 0.23, p > 0.45]. The full model
also explained a significant amount of the variance in the group-
averaged RDMs for both ROIs (both: R> > 0.15, p < 0.001).
Commonality analysis revealed that the vast majority of the

explained variance was unique to the Face-Body model in the
LOTC-object, whereas the explained variance was more equita-
ble between the unique and shared components in the VOTC-
object (Fig. 6B). Visualizations of the group-averaged results
were also similar to the face and body areas (Fig. 6C,D). These
results show that the effect of the intuitive taxonomy model is
also independent of that for the Face-Body model outside of the
face- and body-selective cortex.

Taken as a whole, these findings show that the independent
effect of the Taxonomy model relative to the Face-Body and
Animacy models is not a result of analyzing large portions of
OTC but is also consistently observed in category-selective
subregions.

Neural similarity in the OTC may partially reflect the
univariate responses in face- and body-selective areas
Previous investigations of the intuitive taxonomic organization
of the OTC have relied on multivariate methods, like RSA.
However, given that the category-selective ROIs were defined by the
univariate response to human face and body images, we next asked
whether differences in the magnitude of this response might predict
the position in the intuitive taxonomic hierarchy of the stimuli.
Figure 7A shows the univariate results by averaging across the
four face/body images for each level of the intuitive taxonomic
hierarchy. This served to verify that face and body animal stimuli
showed greater activity in the face- and body-selective areas,
respectively, and in each case, greater activity than for the natural
objects across levels of the hierarchy. As can be seen, there is a
very robust difference between face images and the other stimuli
for both face-selective regions. However, the difference is weaker,
and less reliable, for the LOTC-body, and is wholly absent in the
VOTC-body. For the LOTC-face and VOTC-face, an intuitive
taxonomy effect is suggested, at least for the face stimuli. To
quantify these univariate differences, we correlated individual
univariate RDMs with the three main model RDMs (Fig. 7B).
For the LOTC-body, a significant median correlation was
observed for Face-Body [W(15) = 86, 1, = 0.72, p = 0.01]. For
the LOTC-face, the median correlations for the Face-Body model
were highly significant [W(15) = 120, ry,. = 1.0, p = 6.10e-05], but
only marginally significant for the Animacy [W(15) = 70, 1, =
0.58, p = 0.048] and Taxonomy [W(15) = 76, rp. = 0.63, p = 0.03]
models. There were also significant differences in the median
correlations [both: W(15) > 100, r,. > 0.83, p < 0.003]. For the
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individual subjects and the three main model RDMs, for all four ROls. B, Results of commonality analysis for all ROIs, visualized with Euler diagrams. C, Group-averaged neural RDMs for the
four ROIs. D, Two-dimensional multidimensional scaling applied to the dissimilarity matrices for each ROI. Conventions follow those of Figure 2.

VOTC-body, there were significant median correlations with the
Animacy [W(15) = 80, rp. = 0.67, p = 0.02] and Taxonomy [W
(15) = 106, rp, = 0.88, p = 0.01] models. There was also a signifi-
cant difference in the median correlations for Animacy versus
Face-Body [W(15) = 74, 1, = 0.62, p = 0.035]. Finally, for the
VOTC-face, there were significant median correlations with all
three model RDMs [all: W(15) > 82, 1y > 0.68, p < 0.01]. There
was also a significant difference in median correlations for Face-
Body versus Taxonomy [W(15) = 72, 1, = 0.60, p = 0.04]. As to
be expected from the results in Figure 5A, the Face-Body RDM
correlations were substantially higher in the face-selective ROIs.

Most notably, these results show that to the extent there is an
ordering of the univariate responses that is equivalent to an intu-
itive taxonomy of the stimuli, the ordering effect is far weaker
than what is revealed using multivariate methods.

Visual similarity to human templates, not intuitive
taxonomy, best explains multivariate neural similarity in
face- and body-selective areas of the OTC

The results so far suggest that the effect of intuitive taxonomy in
regions of the OTC is independent of that for faces versus bodies,
which implies that patterns of activity for the faces and bodies
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same as in Figure 2.

both separately exhibit an intuitive taxonomic structure. Several
lines of evidence suggest that regions of the OTC code for visual
features that are diagnostic of different object categories (Jozwik
et al., 2016; Bracci et al., 2017). Thus, we next sought to assess
the patterns of neural dissimilarity of face and body images sepa-
rately in each of the face- and body-selective ROIs and how their
apparent taxonomic organization relates to the perceptual simi-
larity of the stimuli. For the images, two kinds of visual similarity
judgments were collected. First, separate groups of subjects
judged the pairwise visual similarity of face or body images using
a 6-point scale. These judgments provided a general measure of
perceived visual similarity of any two images. Second, other
groups of subjects judged how visually similar the animal face or
body images were to a particular reference—an imagined human
face or body. The inclusion of these human similarity tasks was
inspired by the finding that relative similarity to humans can also
generate an animacy continuum (Contini et al., 2020) and the
conjecture that this continuum may in fact reflect gradation in
selectivity for the visual characteristics of animal faces and
bodies. Both types of judgments were converted to group-

averaged behavioral RDMs, which were compared with a
Taxonomy model RDM constructed for just the 24 face and
body images (Fig. 84,B). These models allowed us to assess the
extent to which taxonomic effects for the face and body images
in the OTC might be accounted for by forms of perceived visual
similarity.

The two behavioral RDMs and truncated Taxonomy
model RDM were all highly correlated with each other for
both the face and body images (all p > 0.4, p < 0.0001). As
seen in Figure 8, A and B, the human body RDM suggests a
grouping of the mammals and birds separate from the rep-
tiles/amphibians, fish, and invertebrates, with a similar di-
vision for the human face RDM, although with greater
similarity between the judgments for the bird and reptile/
amphibian faces. These aspects that differentiate the human
similarity matrices from the intuitive taxonomy model are
reliable, given that our estimate of the split-half reliability
of these matrices was r = 0.92 (human body) and r = 0.89
(human face) and so was much higher than the respective
correlations with the Taxonomy RDM.
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We correlated the pairwise similarity, human visual similar-
ity, and Taxonomy RDMs with the separate neural RDMs for the
face and body images across the face- and body-selective ROIs.
For the body images (Fig. 8A), there were significant median cor-
relations between each of the model RDMs and individual neural
RDMs for all but one ROI [all: W(15) > 86, rp,e > 0.72, p <
0.01]. The exception was the LOTC-face where a significant me-
dian correlation was only observed for the human body RDM
[W(15) = 82, rpc = 0.68, p = 0.02], but not the Pairwise [W(15) =
62, 1, = 0.52, p = 0.08] or Taxonomy [W(15) = 12, 1y = 0.10,
p = 0.76] models. For the face images (Fig. 8B), all three predictor
RDMs showed significant median correlations across all four
ROIs [all: W(15) > 88, r,. > 0.73, p < 0.01], with the median
correlation of the Taxonomy model only barely in the LOTC-
face [W(15) = 70, rp. = 0.58, p = 0.048]. In light of the correla-
tions between the human visual similarity and Taxonomy RDMs
for both the face and body images, we also conducted partial
rank-order correlations between the Taxonomy RDM and the
individual neural RDMs, controlling for the human visual simi-
larity models. When this was done, there was no significant me-
dian correlation of the Taxonomy model for either image type,
in any of the four ROIs [all: median p < 0.05, W(15) < 58, rp,. <
0.48, p > 0.11]. This result suggests that intuitive taxonomy is
not a substantial predictor of neural dissimilarity in regions of
the OTC once controlling for the human visual similarity of the
images.

To further determine the unique versus common contribu-
tions of the three predictors, we conducted commonality analysis
across image types and ROIs (Fig. 8A,B). The full model
explained a significant amount of the variance across ROIs for
the body images (all: 0.04 < R* < 0.42, p < 0.002) and face
images (all: 0.05 < R* < 0.26, p < 0.003) based on permutation
tests. Although, notably, the explained variance was consid-
erably lower for the LOTC-face for both stimulus types.
Such a result is somewhat expected in light of the compara-
tively low individual model correlations, which are antici-
pated by the lower Taxonomy correlations in the ROI for
the full stimulus set (Fig. 54). For the body images, across
all ROIs, the human body similarity judgments were consis-
tently the best unique predictor of variance with both pair-
wise similarity and Taxonomy predicting very little of the
remaining variance uniquely. For the face images, the same
picture emerged, with the exception of the LOTC-face
where pairwise face judgments uniquely predicted slightly
more of the variance. Taken as a whole, these results suggest
that any observed effect of the Taxonomy model is almost
entirely a reflection of commonly explained variance with
the human face and body visual similarity judgments.

Face-body and intuitive taxonomy, but not animacy, models
explain activation dissimilarity in DNNs

The preceding results suggest that the apparent intuitive taxo-
nomic organization of the OTC may in fact reflect gradation in
the neural representation of animal faces and bodies based on
their visual similarity to humans. Another way to assess this pos-
sibility is to evaluate how our stimulus set is represented in a
model system, which in contrast to humans has no knowledge of
intuitive taxonomic relations between animal categories. If a sim-
ilar organization is revealed, then this would suggest that the
effects observed in the OTC can be explained without positing
the representation of an intuitive taxonomic hierarchy. Here,
DNNs provide a useful foil.

Ritchie etal.  Untangling Animacy Organization

DNNGs are typically trained solely to carry out a first-order
classification of animal types without explicit instructions to
represent superordinate relationships between animal cate-
gories. Nevertheless, several studies have reported correla-
tions between FC layers of DNNs and category-selective
areas in the human OTC, suggesting that the animacy divi-
sion is represented in these networks when trained to dis-
criminate classes of natural images, including many types of
animals (Khaligh-Razavi and Kriegeskorte, 2014; Jozwik et
al., 2017; Bracci et al., 2019; Zeman et al., 2020). These previ-
ous studies did not assess whether DNNs exhibit an intuitive
taxonomic organization similar to what we describe in our
study for the OTC. If present, then such a representational
structure would be wholly dependent on between-category
generalizations learned from comparing the visual proper-
ties of exemplar images of different animal categories. This
would provide further evidence that one need not suggest
an overt representation of a taxonomic hierarchy to account
for gradation in the animacy organization of the OTC.
Therefore, we correlated the layer RDMs for five well-
known DNNs to the main model RDMs, the broadly
defined ROIs, and finally the similarity judgment RDMs for
the face and body images.

Across all five networks, the correlations with the Face-Body
model increased and peaked close to the first FC layers, or
CORnet’s decoding layer, followed by the Taxonomy model cor-
relations peaking at the final FC/decoding layers (Fig. 9A).
Unlike previous studies, the layer RDMs tended to be negligibly,
or even negatively, correlated with the Animacy model. These
findings show that the trained networks exhibit an organization
in their final layers that is highly correlated with an intuitive tax-
onomic hierarchy, although they have not been trained to com-
pare superordinate relationships for any of the categories they
have learned to classify.

To verify that the networks also showed some correspon-
dence to patterns of responses in the OTC, the layers of the net-
work were also correlated with individual neural RDMs for the
three initial ROIs (Fig. 9B). The peak median correlations with
the EVC tended to occur for middle conv layers, whereas those
for the LOTC-all and VOTC-all tended to occur at the later conv
or FC/decoding layers. These findings are consistent with the
claim that FC/decoding layers better reflect the structure of
regions of the OTC. Visualization of the final layer RDMs (Fig.
9C) and MDS plots (Fig. 9D) provide some insight into these
findings. For each network, the layer activity patterns for the
mammal and bird face images tend to cluster separately, whereas
those for the other intuitive taxonomy groups and the body
images cluster with those for the natural images.

We also investigated whether the dissimilarity structure of the
network layers might be better captured by pairwise and human
similarity judgment RDMs for the face and body images. For the
body image models (Fig. 10A), we found that for all but one net-
work (CaffeNet), the human body RDM tended to show the
highest correlations across layers of networks, with the pairwise
body RDM peaking at a similar or higher level at the final layers.
In contrast, the Taxonomy model only showed a significant cor-
relation with the final layer of the VGG-16. For the face image
models (Fig. 10B), all three models showed a consistent increase
in correlation effect sizes with network depth. Again, as with the
neural data, the human face model tended to show the highest
correlations. The Taxonomy model also consistently correlated
with many of the layers of the different networks. These results
suggest that correlation with the Taxonomy model for the full
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(positive) correlations at p << . 05 (FDR adjusted), based on two-sided permutation tests. C, RDMs for the final layers of each of the DNNs. D, Two-dimensional multidimensional scaling applied

to the dissimilarity matrices for each DNN. Conventions follow those of Figure 2.

stimulus set (Fig. 9A) was likely being driven by the face images
(compare Fig. 9D). This result is notable because faces are not a
category the networks were trained to classify.

We next conducted commonality analysis across image types
and the final layers of the DNNs, which consistently showed the
peak correlation with the Taxonomy model for the full image set
(Fig. 10A,B). This allowed us to assess, like with face- and body-
selective regions of the OTC, whether the effects of the
Taxonomy model in these layers can be accounted for by the per-
ceptual similarity of the stimuli. For the body images, the full
model explained a significant amount of the variance for the final
layers of all networks (0.05 < R* < 0.3, all p < 0.004). For all but

CaffeNet (for which the R* was low), the human body RDM was
consistently the best unique predictor, followed by the pairwise
body RDM. For the face images, the full model explained a sig-
nificant amount of the variance for the final layers of all networks
(0.1 < R* < 0.23,all p =0.001). For all networks, either the pair-
wise or human face RDMs were the best unique predictor of var-
iance, whereas the Taxonomy explained virtually no unique
variance.

These findings are broadly consistent with those observed for
the face- and body-selective areas (Fig. 8). There are two notable
differences. First, the pairwise similarity RDMs consistently ri-
valed, or surpassed, the human similarity RDMs as predictors of
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layer dissimilarity values; second, the Taxonomy RDM was only
a significant predictor for layer dissimilarity values for the face
images. Crucially, when it came to the final network layers, any
effect of the intuitive taxonomy model was enveloped by the var-
iance components shared with the human face RDM.

In sum, the apparent effect of Taxonomy in these networks
cannot be the result of an overt representation of superordinate
relationships among animal classes, which further suggests that
correlations of the Taxonomy model with neural RDMs from
regions of the OTC likewise do not suffice to provide evidence of
an intuitive taxonomic organization. Similarly, the observed rep-
resentational structure of the final FC layers of the networks,
which also correlated with the perceptual similarity judgments,
further suggests that gradation in the representations of the faces
and bodies of animals of different species can emerge simply
from a first-order representation of image classes.

Discussion
Animacy is an important organizing principle in the OTC
(Behrmann and Plaut, 2013; Grill-Spector and Weiner, 2014).

Two conflicting explanations for this organization are suggested
in the literature, the face-body division and an intuitive taxon-
omy continuum. Each factor has been studied extensively. The
presence of face versus body selectivity in the OTC is well estab-
lished, and more recently a number of studies have investigated
whether the animacy organization of the OTC might reflect a
more nuanced intuitive taxonomic structure. However, ours is
the first in which these two important factors have been studied
together and dissociated, which is crucial to understand their
relationship and relative importance (Bracci et al, 2017). We
found that both factors independently explained variance in
the dissimilarities between activity patterns in the OTC. When
the OTC was partitioned, the same result was also observed
in the face-, body-, and even object-selective areas. However,
human visual similarity judgments were better predictors than
taxonomy when data for face and body images were analyzed
separately. Finally, the later layers of DNNs also correlated with
the Face-Body and Taxonomy, but not Animacy, models, and
the pairwise and human similarity judgments for the face and
body images. These results have important implications for the
following: (1) the claimed taxonomic organization of the OTC,
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(2) whether OTC in fact represents animacy, (3) and whether
DNNs distinguish the animacy of objects in images.

No evidence that the occipitotemporal cortex represents an
intuitive taxonomy

Previous studies suggest that animacy organization of the OTC
may reflect the representation of a continuum, rather than a di-
chotomy, between animate and inanimate objects. For example,
Sha et al,, (2015) found that neural dissimilarity in the LOTC
showed no such division. Their stimuli formed an intuitive taxo-
nomic hierarchy with humans/primates as the most animate
compared with invertebrates, other mammals, birds, and fish in
between. Other studies have also found that pattern dissimilarity
in the OTC exhibits an intuitive taxonomy for similar collections
of animals (Connolly et al., 2012, 2016; Nastase et al., 2017).
Similarly, Thorat et al. (2019) report that neural dissimilarity in
the VOTC was well captured by judgments of the relative
capacity for thoughts and feelings, or agency, although notably
these are properties of entity subjectivity not agency (Gray et al,,
2007). Still, the resulting ranking of the images was very similar
to what one would predict based on an intuitive taxonomic
grouping of the object images.

Our results differ from these previous studies in a few ways.
First, we consistently found a robust animate-inanimate dichot-
omy in neural dissimilarity across ROIs, in direct contrast to the
results of Sha et al. (2015), Second, no previous studies controlled
for the face-body division in the stimulus designs. Therefore, it is
significant that the Taxonomy model independently contributes
to explaining the neural dissimilarity in the OTC for both face
and body images. This finding on its own can be interpreted as
evidence of an intuitive taxonomic continuum in the OTC.
However, third, we also considered the possibility that the appa-
rent continuum does not reflect representation in the OTC of in-
tuitive taxonomic relations per se but rather graded responses to
the images based on coding for diagnostic visual features in face-
and body-selective areas of the OTC. We compared the neural
dissimilarity of face- and body-selective ROIs to pairwise and
human similarity judgments for the face and body images and
found that human visual similarity was the dominant predictor
over and above the Taxonomy model. Furthermore, layers of
DNNs correlated with the Taxonomy model, yet clearly do not
represent intuitive hierarchical taxonomic relations among ani-
mal stimuli, and the representational structure of the final layers
was also better captured by our behavioral measures of visual
similarity.

Taken as a whole, these results suggest that the apparent ani-
macy continuum may not reflect the representation of an intui-
tive taxonomy. Instead, they point to an alternative hypothesis,
that is, perhaps there is no intuitive taxonomic organization in
the OTC at all. As the OTC is well known to display distributed
and differential selectivity for faces and bodies, the apparent con-
tinuum effect reflects variation in response of animal faces and
bodies based on visual similarity to human faces and bodies,
which are considered the most preferential stimuli for the ROIs.
Such a possibility is acknowledged by Thorat et al. (2019), and
the present results provide some support for this alternative pro-
posal concerning the OTC. Of course, what accounts for the
morphologic differences between faces and bodies between spe-
cies is their evolutionary history, and our intuitive grouping of
animals based on their visual features in part reflects this. Nor
does our study rule out the possibility that intuitive taxonomy
might capture the organization of other portions of the OTC or
in the same regions if alternative intuitive taxonomy models are
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used as could be constructed from a semantic feature model
(Clarke and Tyler, 2014; Jozwik et al., 2016). Still, the most parsi-
monious explanation at present is that the OTC represents the
resemblance of animal faces/bodies to human faces/bodies, based
on the principle that face and body areas code for diagnostic vis-
ual features of region-defining categories and not an intuitive
taxonomic continuum per se.

Does the occipitotemporal cortex represent animacy?

Given that the apparent animacy continuum may reflect in part
gradation in the face- and body-selectivity throughout the OTC,
our results also raise the question of whether the OTC represents
animacy at all. It is well known that category-selective areas spa-
tially pool depending on whether they represent animate stimuli
with face- and body-selective areas in the lateral VOTC contrast-
ing with medial portions selective for scenes. Based on this divi-
sion, one popular hypothesis is that animacy is represented at a
broader spatial scale, which subsumes areas that represent more
specific animate or inanimate categories such as faces or scenes
(Grill-Spector and Weiner, 2014; Bao et al., 2020). However,
alternatively it is possible that animacy may not be represented at
all, although the spatial layout of the areas respects the animate-
inanimate division. It might be tempting to consider animacy as
a parsimonious explanation for why face and body regions end
up being close together, but there are other explanations for this
proximity that do not refer to animacy. For example, faces and
bodies co-occur in nearby positions in a visual image, and such
spatial relationships could result in anatomic proximity (Orlov et
al.,, 2010). Based on our results, it is worth asking whether the
apparent representation of animacy in the OTC may simply be a
by-product of (principally) strong selectivity for faces and
bodies.

Although this deflationary hypothesis is in need of further
study, it gains some support from the results of Bracci et al,
(2019), who selected trios of animals, artefacts, and look-alike
artefacts (e.g., duck, kettle, and duck-shaped kettle) as stimuli.
They found that neural dissimilarity in the VOTC correlated
with the object appearance (animals and look-alikes vs artefacts)
and not the object identity (animals vs look-alikes and artefacts)
and proposed that the VOTC does not represent the animate-in-
animate division but selectivity for diagnostically important vis-
ual features. We would further suggest these features are
specifically diagnostic for faces and bodies, as part of a feature-
based neural code for object categories (Bracci et al, 2017).
Indeed, in a recent study Proklova and Goodale (2020) found
that the VOTC did not exhibit a robust animate-inanimate divi-
sion between patterns of activity for faceless animals versus arti-
fact objects, in further support of our conjecture. At the same
time, other studies suggest that animacy organization may not
simply reduce to the representation of faces and bodies in the
OTC. Neuropsychological results suggest that lesions to the vis-
ual cortex can cause selective deficits in naming animals but not
body parts (Caramazza and Shelton, 1998). Furthermore, con-
verging behavioral and neural evidence suggests that the OTC
may subserve the holistic representation of whole persons, which
does not reduce to separate selectivity for faces and bodies (Hu et
al., 2020). Such a framework may also run counter to the defla-
tionary hypothesis we propose.

Deep neural networks do not represent object animacy

DNNes are increasingly being used as models of visual processing
(Kriegeskorte, 2015; Cichy and Kaiser, 2019; Serre, 2019). The
use of DNNs in this capacity has in part been motivated by
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similarities in the activity patterns of the later FC layers to
regions of the OTC for networks trained on the ImageNet data-
set. In particular, several studies using ImageNet-trained net-
works have reported that FC layers exhibit a similar animacy
organization to the OTC (Khaligh-Razavi and Kriegeskorte,
2014; Jozwik et al., 2017; Bracci et al., 2019; Zeman et al., 2020).
In light of these previous findings, it is striking that we did not
observe a consistent animacy organization across five ImageNet-
trained DNNS. Yet, when the data for the face and body images
were analyzed separately, we found that the pairwise and human
similarity RDM explained most of the variance in the final layer
RDMs. So the ImageNet-trained DNNs plausibly do not repre-
sent either an intuitive taxonomic continuum or a categorical di-
vision between animate and inanimate objects but rather graded
representations of face- and body-related visual features. This is
also consistent with the training history of these networks with
still images, which do not contain direct information about ani-
macy, agency, or self-initiated motion, and it further confirms
the visual nature of the human face/body similarity judgments.

Summary and conclusion

The animacy organization of the OTC may reflect either the rep-
resentation of an intuitive taxonomic hierarchy or selectivity for
faces and bodies. We attempted to disentangle these factors. Our
results suggest that graded visual selectivity for faces and bodies
in the OTC may masquerade as an animacy continuum and that
intuitive taxonomy may not be a separate factor underlying the
organization of the OTC. In this respect, our results provide new
insights into the functional organization of the ventral visual
pathway more generally.
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