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Abstract

Cluster randomized trials (CRTs), where clusters (for example, schools or clinics) are randomized 

to comparison arms but measurements are taken on individuals, are commonly used to evaluate 

interventions in public health, education, and the social sciences. Because CRTs typically involve 

a small number of clusters (for example, fewer than 20), simple randomization frequently leads 

to baseline imbalance of cluster characteristics across study arms, threatening the internal validity 

of the trial. In CRTs with a small number of clusters, classic approaches to balancing baseline 

characteristics—such as matching and stratification—have several drawbacks, especially when the 

number of baseline characteristics the researcher desires to balance is large (Ivers et al., 2012, 

Trials 13: 120). An alternative design approach is covariate-constrained randomization, whereby a 

randomization scheme is randomly selected from a subset of all possible randomization schemes 

based on the value of a balancing criterion (Raab and Butcher, 2001, Statistics in Medicine 
20: 351–365). Subsequently, a clustered permutation test can be used in the analysis, which 

provides increased power under constrained randomization compared with simple randomization 

(Li et al., 2016, Statistics in Medicine 35: 1565–1579). In this article, we describe covariate­

constrained randomization and the permutation test for the design and analysis of CRTs and 

provide an example to demonstrate the use of our new commands cvcrand and cptest to implement 

constrained randomization and the permutation test.
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1 Introduction

The cluster randomized trial (CRT), which randomizes clusters (for example, schools or 

clinics) of individuals to intervention arms, is a study design used in many fields of 

research. The cluster randomization design is typically chosen for logistical reasons, such 

as when there is a high probability of treatment contamination across study arms, when 

the intervention is group based, or when individual randomization is not feasible (Turner 

et al. 2017a). For example, in the Thinking Healthy Program Peer-Delivered Plus study, 

the researchers recruited depressed women in their third trimester of pregnancy from 40 

villages in Pakistan, and each village was randomized to either the intervention or enhanced 

usual care (Sikander et al. 2015; Turner et al. 2016). Because this was a public health 

intervention delivered by community health workers, the risk of contamination across study 

arms would be too high if individual women were randomized, especially if a woman 

receiving intervention and a woman receiving enhanced usual care live close to each other.

There is a variety of cluster randomization designs described in the literature (Turner et al. 

2017a). Here we focus on the most common one, the two-arm parallel design (for example, 

intervention arm and control arm). In this design, a set of clusters is identified at the 

beginning of the study, and each one is randomly assigned to one of two intervention arms. 

Although the clusters are the units of randomization, outcomes are typically measured at the 

individual level. At the analysis stage, outcomes from both arms are compared to determine 

whether the intervention is effective by accounting for correlation because of the clustered 

design.

A frequent practical limitation of cluster randomization designs is that a small number of 

clusters are randomized mostly because of availability or resource constraints. Fiero et al. 

(2016) found that of the 86 studies included in their review of CRTs, about 50% randomized 

24 or fewer clusters. In CRTs related to cancer published between 2002 and 2006, Murray 

et al. (2008) found similar results, with about 50% randomizing 24 or fewer clusters. 

Additionally, in their review of 300 CRTs published between 2000 and 2008, Ivers et al. 

(2011) found that, of the 285 studies reporting number of clusters randomized, at least 50% 

randomized 21 or fewer clusters.

When a small number of clusters are randomized, cluster characteristics that are expected 

to be predictive of the outcome (“prognostic” covariates) could be unevenly distributed 

across arms under simple randomization. The chance of such baseline covariate imbalance 

increases as the number of available clusters decreases and as the number of predictive 

covariates increases. Implications of baseline imbalance include lack of internal validity 

of the trial, reduced statistical power, insufficient precision of effect estimates, and the 

possibility that additional statistical adjustment will be needed in the analysis phase, which 
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may make the analysis more challenging (Ivers et al. 2012). These concerns could threaten 

the face validity of the trial.

To address these issues, several restricted randomization procedures, such as stratification, 

matching, and minimization, have been proposed to help achieve balance on important 

baseline covariates. When the total number of clusters is small, stratification and matching 

have several limitations. Specifically, stratified randomization is feasible only if the number 

of stratification variables is small. When there is more than a few stratification covariates, 

there is a risk of creating strata with only a single cluster, which may lead to unequal 

allocation of clusters as well as imbalance on the very variables stratification was intended 

to balance (Ivers et al. 2012). Ivers et al. (2012) recommend that the maximum number 

of strata should be limited to about one-fourth to one-half of the total number of clusters, 

and in CRTs with a small number of clusters, this is only possible with no more than a 

few stratification variables. On the other hand, matching may suffer from severe power 

loss when one cluster is lost to follow-up, because its match will be removed from the 

matched analysis (Ivers et al. 2012). Loss to follow-up can occur, for example, if a 

cluster that initially gave consent to participate in the trial withdraws consent before or 

during the follow-up phase. Further, matching may not be effective when the matching 

characteristics are poorly correlated with the outcome, and the subsequent matched analysis 

may lose power (Diehr et al. 1995). Matched clusters will also make it challenging to 

properly calculate the intracluster correlation coefficient, a measure of clustering that is 

recommended to be reported in all CRTs (Donner and Klar 2004; Klar and Donner 1997; 

Campbell et al. 2012). In addition, there is debate on how best to analyze matched trials 

(Diehr et al. 1995). Minimization could be used when clusters are recruited sequentially 

over time, but may have limited application when all clusters individuals to intervention 

arms, is a study design used in many fields of research. The cluster randomization design is 

typically chosen for logistical reasons, such as when there is a high probability of treatment 

contamination across study arms, when the intervention is group based, or when individual 

randomization is not feasible (Turner et al. 2017a). For example, in the Thinking Healthy 

Program Peer-Delivered Plus study, the researchers recruited depressed women in their third 

trimester of pregnancy from 40 villages in Pakistan, and each village was randomized to 

either the intervention or enhanced usual care (Sikander et al. 2015; Turner et al. 2016). 

Because this was a public health intervention delivered by community health workers, 

the risk of contamination across study arms would be too high if individual women were 

randomized, especially if a woman receiving intervention and a woman receiving enhanced 

usual care live close to each other.

There is a variety of cluster randomization designs described in the literature (Turner et al. 

2017a). Here we focus on the most common one, the two-arm parallel design (for example, 

intervention arm and control arm). In this design, a set of clusters is identified at the 

beginning of the study, and each one is randomly assigned to one of two intervention arms. 

Although the clusters are the units of randomization, outcomes are typically measured at the 

individual level. At the analysis stage, outcomes from both arms are compared to determine 

whether the intervention is effective by accounting for correlation because of the clustered 

design.

Gallis et al. Page 3

Stata J. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A frequent practical limitation of cluster randomization designs is that a small number of 

clusters are randomized mostly because of availability or resource constraints. Fiero et al. 

(2016) found that of the 86 studies included in their review of CRTs, about 50% randomized 

24 or fewer clusters. In CRTs related to cancer published between 2002 and 2006, Murray 

et al. (2008) found similar results, with about 50% randomizing 24 or fewer clusters. 

Additionally, in their review of 300 CRTs published between 2000 and 2008, Ivers et al. 

(2011) found that, of the 285 studies reporting number of clusters randomized, at least 50% 

randomized 21 or fewer clusters.

When a small number of clusters are randomized, cluster characteristics that are expected 

to be predictive of the outcome (“prognostic” covariates) could be unevenly distributed 

across arms under simple randomization. The chance of such baseline covariate imbalance 

increases as the number of available clusters decreases and as the number of predictive 

covariates increases. Implications of baseline imbalance include lack of internal validity 

of the trial, reduced statistical power, insufficient precision of effect estimates, and the 

possibility that additional statistical adjustment will be needed in the analysis phase, which 

may make the analysis more challenging (Ivers et al. 2012). These concerns could threaten 

the face validity of the trial.

To address these issues, several restricted randomization procedures, such as stratification, 

matching, and minimization, have been proposed to help achieve balance on important 

baseline covariates. When the total number of clusters is small, stratification and matching 

have several limitations. Specifically, stratified randomization is feasible only if the number 

of stratification variables is small. When there is more than a few stratification covariates, 

there is a risk of creating strata with only a single cluster, which may lead to unequal 

allocation of clusters as well as imbalance on the very variables stratification was intended 

to balance (Ivers et al. 2012). Ivers et al. (2012) recommend that the maximum number 

of strata should be limited to about one-fourth to one-half of the total number of clusters, 

and in CRTs with a small number of clusters, this is only possible with no more than a 

few stratification variables. On the other hand, matching may suffer from severe power 

loss when one cluster is lost to follow-up, because its match will be removed from the 

matched analysis (Ivers et al. 2012). Loss to follow-up can occur, for example, if a 

cluster that initially gave consent to participate in the trial withdraws consent before or 

during the follow-up phase. Further, matching may not be effective when the matching 

characteristics are poorly correlated with the outcome, and the subsequent matched analysis 

may lose power (Diehr et al. 1995). Matched clusters will also make it challenging to 

properly calculate the intracluster correlation coefficient, a measure of clustering that is 

recommended to be reported in all CRTs (Donner and Klar 2004; Klar and Donner 1997; 

Campbell et al. 2012). In addition, there is debate on how best to analyze matched trials 

(Diehr et al. 1995). Minimization could be used when clusters are recruited sequentially 

over time, but may have limited application when all clusters are recruited at the beginning 

of the trial, which is the setting of interest in this article. individuals to intervention arms, 

is a study design used in many fields of research. The cluster randomization design is 

typically chosen for logistical reasons, such as when there is a high probability of treatment 

contamination across study arms, when the intervention is group based, or when individual 

randomization is not feasible (Turner et al. 2017a). For example, in the Thinking Healthy 
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Program Peer-Delivered Plus study, the researchers recruited depressed women in their third 

trimester of pregnancy from 40 villages in Pakistan, and each village was randomized to 

either the intervention or enhanced usual care (Sikander et al. 2015; Turner et al. 2016). 

Because this was a public health intervention delivered by community health workers, 

the risk of contamination across study arms would be too high if individual women were 

randomized, especially if a woman receiving intervention and a woman receiving enhanced 

usual care live close to each other.

There is a variety of cluster randomization designs described in the literature (Turner et al. 

2017a). Here we focus on the most common one, the two-arm parallel design (for example, 

intervention arm and control arm). In this design, a set of clusters is identified at the 

beginning of the study, and each one is randomly assigned to one of two intervention arms. 

Although the clusters are the units of randomization, outcomes are typically measured at the 

individual level. At the analysis stage, outcomes from both arms are compared to determine 

whether the intervention is effective by accounting for correlation because of the clustered 

design.

A frequent practical limitation of cluster randomization designs is that a small number of 

clusters are randomized mostly because of availability or resource constraints. Fiero et al. 

(2016) found that of the 86 studies included in their review of CRTs, about 50% randomized 

24 or fewer clusters. In CRTs related to cancer published between 2002 and 2006, Murray 

et al. (2008) found similar results, with about 50% randomizing 24 or fewer clusters. 

Additionally, in their review of 300 CRTs published between 2000 and 2008, Ivers et al. 

(2011) found that, of the 285 studies reporting number of clusters randomized, at least 50% 

randomized 21 or fewer clusters.

When a small number of clusters are randomized, cluster characteristics that are expected 

to be predictive of the outcome (“prognostic” covariates) could be unevenly distributed 

across arms under simple randomization. The chance of such baseline covariate imbalance 

increases as the number of available clusters decreases and as the number of predictive 

covariates increases. Implications of baseline imbalance include lack of internal validity 

of the trial, reduced statistical power, insufficient precision of effect estimates, and the 

possibility that additional statistical adjustment will be needed in the analysis phase, which 

may make the analysis more challenging (Ivers et al. 2012). These concerns could threaten 

the face validity of the trial.

To address these issues, several restricted randomization procedures, such as stratification, 

matching, and minimization, have been proposed to help achieve balance on important 

baseline covariates. When the total number of clusters is small, stratification and matching 

have several limitations. Specifically, stratified randomization is feasible only if the number 

of stratification variables is small. When there is more than a few stratification covariates, 

there is a risk of creating strata with only a single cluster, which may lead to unequal 

allocation of clusters as well as imbalance on the very variables stratification was intended 

to balance (Ivers et al. 2012). Ivers et al. (2012) recommend that the maximum number 

of strata should be limited to about one-fourth to one-half of the total number of clusters, 

and in CRTs with a small number of clusters, this is only possible with no more than a 
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few stratification variables. On the other hand, matching may suffer from severe power 

loss when one cluster is lost to follow-up, because its match will be removed from the 

matched analysis (Ivers et al. 2012). Loss to follow-up can occur, for example, if a 

cluster that initially gave consent to participate in the trial withdraws consent before or 

during the follow-up phase. Further, matching may not be effective when the matching 

characteristics are poorly correlated with the outcome, and the subsequent matched analysis 

may lose power (Diehr et al. 1995). Matched clusters will also make it challenging to 

properly calculate the intracluster correlation coefficient, a measure of clustering that is 

recommended to be reported in all CRTs (Donner and Klar 2004; Klar and Donner 1997; 

Campbell et al. 2012). In addition, there is debate on how best to analyze matched trials 

(Diehr et al. 1995). Minimization could be used when clusters are recruited sequentially 

over time, but may have limited application when all clusters are recruited at the beginning 

of the trial, which is the setting of interest in this article. individuals to intervention arms, 

is a study design used in many fields of research. The cluster randomization design is 

typically chosen for logistical reasons, such as when there is a high probability of treatment 

contamination across study arms, when the intervention is group based, or when individual 

randomization is not feasible (Turner et al. 2017a). For example, in the Thinking Healthy 

Program Peer-Delivered Plus study, the researchers recruited depressed women in their third 

trimester of pregnancy from 40 villages in Pakistan, and each village was randomized to 

either the intervention or enhanced usual care (Sikander et al. 2015; Turner et al. 2016). 

Because this was a public health intervention delivered by community health workers, 

the risk of contamination across study arms would be too high if individual women were 

randomized, especially if a woman receiving intervention and a woman receiving enhanced 

usual care live close to each other.

There is a variety of cluster randomization designs described in the literature (Turner et al. 

2017a). Here we focus on the most common one, the two-arm parallel design (for example, 

intervention arm and control arm). In this design, a set of clusters is identified at the 

beginning of the study, and each one is randomly assigned to one of two intervention arms. 

Although the clusters are the units of randomization, outcomes are typically measured at the 

individual level. At the analysis stage, outcomes from both arms are compared to determine 

whether the intervention is effective by accounting for correlation because of the clustered 

design.

A frequent practical limitation of cluster randomization designs is that a small number of 

clusters are randomized mostly because of availability or resource constraints. Fiero et al. 

(2016) found that of the 86 studies included in their review of CRTs, about 50% randomized 

24 or fewer clusters. In CRTs related to cancer published between 2002 and 2006, Murray 

et al. (2008) found similar results, with about 50% randomizing 24 or fewer clusters. 

Additionally, in their review of 300 CRTs published between 2000 and 2008, Ivers et al. 

(2011) found that, of the 285 studies reporting number of clusters randomized, at least 50% 

randomized 21 or fewer clusters.

When a small number of clusters are randomized, cluster characteristics that are expected 

to be predictive of the outcome (“prognostic” covariates) could be unevenly distributed 

across arms under simple randomization. The chance of such baseline covariate imbalance 
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increases as the number of available clusters decreases and as the number of predictive 

covariates increases. Implications of baseline imbalance include lack of internal validity 

of the trial, reduced statistical power, insufficient precision of effect estimates, and the 

possibility that additional statistical adjustment will be needed in the analysis phase, which 

may make the analysis more challenging (Ivers et al. 2012). These concerns could threaten 

the face validity of the trial.

To address these issues, several restricted randomization procedures, such as stratification, 

matching, and minimization, have been proposed to help achieve balance on important 

baseline covariates. When the total number of clusters is small, stratification and matching 

have several limitations. Specifically, stratified randomization is feasible only if the number 

of stratification variables is small. When there is more than a few stratification covariates, 

there is a risk of creating strata with only a single cluster, which may lead to unequal 

allocation of clusters as well as imbalance on the very variables stratification was intended 

to balance (Ivers et al. 2012). Ivers et al. (2012) recommend that the maximum number 

of strata should be limited to about one-fourth to one-half of the total number of clusters, 

and in CRTs with a small number of clusters, this is only possible with no more than a 

few stratification variables. On the other hand, matching may suffer from severe power 

loss when one cluster is lost to follow-up, because its match will be removed from the 

matched analysis (Ivers et al. 2012). Loss to follow-up can occur, for example, if a 

cluster that initially gave consent to participate in the trial withdraws consent before or 

during the follow-up phase. Further, matching may not be effective when the matching 

characteristics are poorly correlated with the outcome, and the subsequent matched analysis 

may lose power (Diehr et al. 1995). Matched clusters will also make it challenging to 

properly calculate the intracluster correlation coefficient, a measure of clustering that is 

recommended to be reported in all CRTs (Donner and Klar 2004; Klar and Donner 1997; 

Campbell et al. 2012). In addition, there is debate on how best to analyze matched trials 

(Diehr et al. 1995). Minimization could be used when clusters are recruited sequentially 

over time, but may have limited application when all clusters are recruited at the beginning 

of the trial, which is the setting of interest in this article. individuals to intervention arms, 

is a study design used in many fields of research. The cluster randomization design is 

typically chosen for logistical reasons, such as when there is a high probability of treatment 

contamination across study arms, when the intervention is group based, or when individual 

randomization is not feasible (Turner et al. 2017a). For example, in the Thinking Healthy 

Program Peer-Delivered Plus study, the researchers recruited depressed women in their third 

trimester of pregnancy from 40 villages in Pakistan, and each village was randomized to 

either the intervention or enhanced usual care (Sikander et al. 2015; Turner et al. 2016). 

Because this was a public health intervention delivered by community health workers, 

the risk of contamination across study arms would be too high if individual women were 

randomized, especially if a woman receiving intervention and a woman receiving enhanced 

usual care live close to each other.

There is a variety of cluster randomization designs described in the literature (Turner et al. 

2017a). Here we focus on the most common one, the two-arm parallel design (for example, 

intervention arm and control arm). In this design, a set of clusters is identified at the 

beginning of the study, and each one is randomly assigned to one of two intervention arms. 
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Although the clusters are the units of randomization, outcomes are typically measured at the 

individual level. At the analysis stage, outcomes from both arms are compared to determine 

whether the intervention is effective by accounting for correlation because of the clustered 

design.

A frequent practical limitation of cluster randomization designs is that a small number of 

clusters are randomized mostly because of availability or resource constraints. Fiero et al. 

(2016) found that of the 86 studies included in their review of CRTs, about 50% randomized 

24 or fewer clusters. In CRTs related to cancer published between 2002 and 2006, Murray 

et al. (2008) found similar results, with about 50% randomizing 24 or fewer clusters. 

Additionally, in their review of 300 CRTs published between 2000 and 2008, Ivers et al. 

(2011) found that, of the 285 studies reporting number of clusters randomized, at least 50% 

randomized 21 or fewer clusters.

When a small number of clusters are randomized, cluster characteristics that are expected 

to be predictive of the outcome (“prognostic” covariates) could be unevenly distributed 

across arms under simple randomization. The chance of such baseline covariate imbalance 

increases as the number of available clusters decreases and as the number of predictive 

covariates increases. Implications of baseline imbalance include lack of internal validity 

of the trial, reduced statistical power, insufficient precision of effect estimates, and the 

possibility that additional statistical adjustment will be needed in the analysis phase, which 

may make the analysis more challenging (Ivers et al. 2012). These concerns could threaten 

the face validity of the trial.

To address these issues, several restricted randomization procedures, such as stratification, 

matching, and minimization, have been proposed to help achieve balance on important 

baseline covariates. When the total number of clusters is small, stratification and matching 

have several limitations. Specifically, stratified randomization is feasible only if the number 

of stratification variables is small. When there is more than a few stratification covariates, 

there is a risk of creating strata with only a single cluster, which may lead to unequal 

allocation of clusters as well as imbalance on the very variables stratification was intended 

to balance (Ivers et al. 2012). Ivers et al. (2012) recommend that the maximum number 

of strata should be limited to about one-fourth to one-half of the total number of clusters, 

and in CRTs with a small number of clusters, this is only possible with no more than a 

few stratification variables. On the other hand, matching may suffer from severe power 

loss when one cluster is lost to follow-up, because its match will be removed from the 

matched analysis (Ivers et al. 2012). Loss to follow-up can occur, for example, if a 

cluster that initially gave consent to participate in the trial withdraws consent before or 

during the follow-up phase. Further, matching may not be effective when the matching 

characteristics are poorly correlated with the outcome, and the subsequent matched analysis 

may lose power (Diehr et al. 1995). Matched clusters will also make it challenging to 

properly calculate the intracluster correlation coefficient, a measure of clustering that is 

recommended to be reported in all CRTs (Donner and Klar 2004; Klar and Donner 1997; 

Campbell et al. 2012). In addition, there is debate on how best to analyze matched trials 

(Diehr et al. 1995). Minimization could be used when clusters are recruited sequentially 

over time, but may have limited application when all clusters are recruited at the beginning 
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of the trial, which is the setting of interest in this article. individuals to intervention arms, 

is a study design used in many fields of research. The cluster randomization design is 

typically chosen for logistical reasons, such as when there is a high probability of treatment 

contamination across study arms, when the intervention is group based, or when individual 

randomization is not feasible (Turner et al. 2017a). For example, in the Thinking Healthy 

Program Peer-Delivered Plus study, the researchers recruited depressed women in their third 

trimester of pregnancy from 40 villages in Pakistan, and each village was randomized to 

either the intervention or enhanced usual care (Sikander et al. 2015; Turner et al. 2016). 

Because this was a public health intervention delivered by community health workers, 

the risk of contamination across study arms would be too high if individual women were 

randomized, especially if a woman receiving intervention and a woman receiving enhanced 

usual care live close to each other.

There is a variety of cluster randomization designs described in the literature (Turner et al. 

2017a). Here we focus on the most common one, the two-arm parallel design (for example, 

intervention arm and control arm). In this design, a set of clusters is identified at the 

beginning of the study, and each one is randomly assigned to one of two intervention arms. 

Although the clusters are the units of randomization, outcomes are typically measured at the 

individual level. At the analysis stage, outcomes from both arms are compared to determine 

whether the intervention is effective by accounting for correlation because of the clustered 

design.

A frequent practical limitation of cluster randomization designs is that a small number of 

clusters are randomized mostly because of availability or resource constraints. Fiero et al. 

(2016) found that of the 86 studies included in their review of CRTs, about 50% randomized 

24 or fewer clusters. In CRTs related to cancer published between 2002 and 2006, Murray 

et al. (2008) found similar results, with about 50% randomizing 24 or fewer clusters. 

Additionally, in their review of 300 CRTs published between 2000 and 2008, Ivers et al. 

(2011) found that, of the 285 studies reporting number of clusters randomized, at least 50% 

randomized 21 or fewer clusters.

When a small number of clusters are randomized, cluster characteristics that are expected 

to be predictive of the outcome (“prognostic” covariates) could be unevenly distributed 

across arms under simple randomization. The chance of such baseline covariate imbalance 

increases as the number of available clusters decreases and as the number of predictive 

covariates increases. Implications of baseline imbalance include lack of internal validity 

of the trial, reduced statistical power, insufficient precision of effect estimates, and the 

possibility that additional statistical adjustment will be needed in the analysis phase, which 

may make the analysis more challenging (Ivers et al. 2012). These concerns could threaten 

the face validity of the trial.

To address these issues, several restricted randomization procedures, such as stratification, 

matching, and minimization, have been proposed to help achieve balance on important 

baseline covariates. When the total number of clusters is small, stratification and matching 

have several limitations. Specifically, stratified randomization is feasible only if the number 

of stratification variables is small. When there is more than a few stratification covariates, 
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there is a risk of creating strata with only a single cluster, which may lead to unequal 

allocation of clusters as well as imbalance on the very variables stratification was intended 

to balance (Ivers et al. 2012). Ivers et al. (2012) recommend that the maximum number 

of strata should be limited to about one-fourth to one-half of the total number of clusters, 

and in CRTs with a small number of clusters, this is only possible with no more than a 

few stratification variables. On the other hand, matching may suffer from severe power 

loss when one cluster is lost to follow-up, because its match will be removed from the 

matched analysis (Ivers et al. 2012). Loss to follow-up can occur, for example, if a 

cluster that initially gave consent to participate in the trial withdraws consent before or 

during the follow-up phase. Further, matching may not be effective when the matching 

characteristics are poorly correlated with the outcome, and the subsequent matched analysis 

may lose power (Diehr et al. 1995). Matched clusters will also make it challenging to 

properly calculate the intracluster correlation coefficient, a measure of clustering that is 

recommended to be reported in all CRTs (Donner and Klar 2004; Klar and Donner 1997; 

Campbell et al. 2012). In addition, there is debate on how best to analyze matched trials 

(Diehr et al. 1995). Minimization could be used when clusters are recruited sequentially over 

time, but may have limited application when all clusters are recruited at the beginning of the 

trial, which is the setting of interest in this article. are recruited at the beginning of the trial, 

which is the setting of interest in this article. Therefore, given the limitations of stratification 

and matching for this setting, alternative strategies for restricted randomization are needed, 

especially when only a few clusters are randomized or a number of baseline covariates need 

to be balanced.

1.1 Covariate constrained randomization

An alternative form of restricted randomization that can be used to achieve baseline 

covariate balance in CRTs with all clusters enrolled before randomization is covariate 

constrained randomization (sometimes referred to simply as “constrained randomization”). 

Under simple randomization, a randomization scheme (that is, a unique allocation of clusters 

to study arms) is randomly chosen from the space of all 
k
g  randomization schemes, where k 

is the total number of clusters and g is the number of clusters assigned to one study arm. For 

example, if we design a CRT with 12 clusters, 6 of which are assigned to intervention and 6 

to control, there are 
12
6 = 924 unique allocations of 12 clusters evenly assigned to two arms.

In a review of 300 randomly selected CRTs published between 2000 and 2008, 

approximately half randomized 21 or fewer clusters, but 44% of the 300 did not use any 

form of restricted randomization in the trial design even though the probability of baseline 

covariate imbalance is not small (Ivers et al. 2011, 2012). Of the 56% that used some 

form of restricted randomization, most (57%) used stratification; very few used covariate 

constrained randomization. One reason for the infrequent use of covariate constrained 

randomization versus stratification or matching may be that practitioners find it challenging 

to implement. Therefore, to address this potential barrier, we have created a user-friendly, 

easy-to-implement command, cvcrand, to perform covariate constrained randomization for 

the design of CRTs and to implement an appropriate method in the analysis phase. Before 
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introducing the commands, we briefly review key features of the approach, including the 

choice of balance metrics.

When a researcher applies covariate-constrained randomization, a randomization scheme is 

randomly selected from a subset of all possible schemes based on the value of a prespecified 

balance metric (Raab and Butcher 2001; Moulton 2004; Carter and Hood 2008; de Hoop et 

al. 2012; Li et al. 2016). A full description of covariate-constrained randomization designs 

is provided in Li et al. (2017). In brief, to carry out a covariate-constrained randomization 

design, a researcher will i) specify important cluster-level covariates; ii) either enumerate 

all randomization schemes or simulate a large number of potential randomization schemes; 

iii) remove the duplicate randomization schemes, if any; iv) choose a constrained space 

containing a subset of schemes where sufficient balance across covariates is achieved 

according to some prespecified balance metric; and v) randomly sample one randomization 

scheme from this constrained space. This randomly sampled scheme will be used to assign 

clusters to study arms. Note that cluster-level data supplied for constrained randomization 

may also be aggregated from individual-level data. In practice, however, it is not always 

possible to obtain individual-level data at the design phase.

In principle, any sensible method for creating a balance metric may be selected. Here we 

describe two commonly used metrics. First, the l2 balance metric was proposed by Raab and 

Butcher (2001) and studied by Li et al. (2016) and Li et al. (2017). Following the notation of 

Li et al. (2017), for a given randomization scheme, this balance metric is defined as

B l2 = ∑
j = 1

n
ωj xT j − xCj

2
(1)

where n is the total number of variables to balance, ωj is a variable-specific weight, xT j is 

the average of the jth variable in the intervention clusters, and xCj is the average of the jth 

variable in the control clusters. Using the balance metric, we can compute balance scores for 

every potential randomization scheme. The l2 balance metric is defined for both continuous 

and binary variables (including p − 1 dummy variables created from a p-level categorical 

variable). For binary variables, the mean is simply the proportion with level “1” of the 

variable. The weights are often chosen to be the inverse of the standard deviation of the 

jth cluster-level covariate across the two intervention arms. Thus, any number of continuous 

or categorical variables can be included to compute the balance score using this balance 

metric. In practice, we recommend to include only variables that are hypothesized to be 

correlated with the outcome. If the number of variables to be constrained on is quite large 

relative to the number of clusters, then when these variables are accounted for in the analysis 

stage, a subset may need to be selected to avoid overfitting. This subset should include the 

variables that are identified a priori to be the most predictive of the outcome, based on expert 

knowledge (Li et al. 2017).

Researchers may choose to assign larger weights to cluster characteristics considered “more 

important” than others. For example, suppose that, at the design stage, researchers have 

variables they consider more important to balance than others. This can be accomplished by 

Gallis et al. Page 11

Stata J. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specifying a larger weight on these variables. Such user-defined weights are distinct from the 

inverse standard deviation weights ωj in (1). We can add a weight to (1) by

B l2 = ∑
j = 1

n
djωj xT j − xCj

2
(2)

where dj is the user-defined weight for variable j. If not specified, dj defaults to 1 for each 

variable.

An alternative metric is the l1 balance metric, in which the square in (1) is replaced with an 

absolute value:

B l1 = ∑
j = 1

n
ωj xT j − xCj (3)

User-defined weights can be added to this equation in a similar manner to (2). It can be seen 

from (1) and (3) that the smaller the value of the balance score, the more balanced the n 
selected baseline cluster-level covariates will be between the two intervention arms.

1.2 Clustered permutation tests

After performing covariate-constrained randomization to balance cluster-level characteristics 

in the design of a CRT, the researcher should select an appropriate analysis technique 

to analyze the data collected during the implementation phase of the CRT. Using a 

simulation study, Li et al. (2016) provide evidence that even after balancing baseline 

cluster-level covariates in the design stage, analysis-based adjustment for prognostic 

covariates is necessary. Two prominent options include mixed model F-tests and clustered 

permutation tests (Li et al. 2016; Turner et al. 2017b). Li et al. (2016) showed that under 

covariate constrained randomization, adjusted clustered permutation tests provide increased 

power under constrained randomization compared with simple randomization. Clustered 

permutation tests are carried out in the constrained space and have the desirable property 

that they preserve the nominal type I error rate even for very small CRTs as long as the 

design is not overly constrained (Li et al. 2016). In a later article, Li et al. (2017) show that 

only a subset of prognostic variables that are balanced for in the constrained randomization 

design must be adjusted for in the analysis, although in practice the researcher may wish 

to include all covariates on which the design was balanced. In addition, individual-level 

covariates may be included in the analysis to increase the precision of the test (Li et al. 

2017).

To perform a valid clustered permutation test using data collected in a CRT, the researcher 

must analyze the outcome data at the individual level to avoid loss of information from 

aggregating up to the cluster level. In a clustered permutation test, the individual-level data 

are first analyzed using a regression that omits intervention arm as a variable. The regression 

method (for example, linear or logistic) depends on the distribution of the outcome. From 

this regression, the residuals are obtained (for example, on the logit scale for logistic 

regression), then the cluster-level average residual is computed for each cluster. From these 
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residuals, we calculate the observed test statistic by multiplying this vector of residuals by 

the vector of the selected scheme with −1 substituted for 0, then taking the absolute value. 

For example, suppose that the final randomization scheme for a trial with six clusters is 

given by

1 1 0 0 1 0

where 1 is assignment to intervention, 0 is assignment to control, and the average cluster­

level residuals are

0.84
0.54

−0.19
−0.22

0.43
−0.32

Thus, the observed test statistic is

1 1 −1 −1 1 −1

0.84
0.54

−0.19
−0.22

0.43
−0.32

= 2.54 = 2.54

Next, we calculate the null “permutational distribution” by computing the value of the 

test statistic under all other possible randomization schemes in the randomization space. 

Under simple randomization, this space consists of all 
k
g  randomization schemes; under 

constrained randomization, the space includes only those randomization schemes where 

the balance score is below the cutoff (that is, the constrained space from which the final 

randomization scheme was chosen). The observed test statistic is referenced against this 

permutational distribution to obtain a p-value for the intervention effect that accounts for 

both the clustered design of the CRT and the covariate constrained randomization used 

in selecting the final randomization scheme. This p-value is obtained by computing the 

percentage of times test statistics corresponding to other randomization schemes in the 

constrained space are greater than the test statistic corresponding to the randomization 

scheme used to assign clusters to intervention arms. For an adjusted permutation test, we 

simply control for the relevant cluster- and individual-level covariates in the regression 

model and use those residuals to obtain an adjusted test statistic. A sufficient condition under 

which the permutation test is valid is that an equal number of clusters are assigned to each 

arm (Gail et al. 1996). This means that if the number of clusters randomized to intervention 

is not the same as the number randomized to control, the test may be anticonservative 

(that is, the type I error may be larger than the nominal level). See Gail et al. (1996) for 

more technical details. Our command cptest implements the permutation test in both its 

unadjusted and adjusted forms. The steps are illustrated in the example in section 4.
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2 The cvcrand command

In this section, we introduce the cvcrand command, explaining the available options in detail 

and “going under the hood” to examine the inner workings of the program. The command 

implements covariate-constrained randomization and can handle a variety of situations. The 

command requires that the user provide a dataset where each row of data corresponds to 

one cluster and each column contains information on characteristics of the clusters. Those 

characteristics can be either cluster-level characteristics or individual-level data aggregated 

to the cluster level (for example, percentage of cluster that is female). All continuous 

variables must be numeric, but categorical variables can be of either numeric or string type. 

Categorical variables should be supplied to the categorical() option because they will be 

converted to dummy variables for the command. The results of the command are sensitive 

to which level of a multicategorical variable is removed. The user may wish to recode some 

categorical variables before running cvcrand to set which level of the categorical variable 

will be removed after transformation to dummy variables.

The cvcrand command requires that ntotal_cluster() and ntrt_cluster() be specified by the 

user. The total number of clusters (ntotal_cluster()) specified must equal the number of rows 

in the dataset. The number of clusters in the treatment (intervention) arm (ntrt_cluster()) 

must be less than the total number of clusters. The command can be used whether an equal 

number or an unequal number of clusters are assigned to each study arm. In addition, the 

command can handle an odd total number of clusters. However, if the number assigned to 

each study arm is unequal, then when analyzing the final data, the clustered permutation test 

may be anticonservative, as mentioned in section 1.2.

To avoid prohibitive computations associated with matrices with extremely high dimensions, 

the command will automatically simulate 50,000 randomization schemes if the simple 

randomization space contains more than 50,000 schemes. This can be overridden by the user 

if the user specifies the nosim option. The command allows the user to implement one of the 

two balance metrics mentioned in section 1.1, the l1 and l2, with l2 being the default.

The default cutoff of the balance score below which a randomization scheme is selected is 

0.1, but this can be modified using the cutoff() option. Simulations have shown that a cutoff 

of 10% works well in some scenarios (number of clusters k = 16 and 26) (Li et al. 2017). 

Ideally, this number should be small, but not too small. In practice, if the number of clusters 

is even less than 10, the researcher may wish to choose a larger value of the cutoff to avoid 

overly constraining the design, in which case there would be few randomization schemes in 

the constrained space.

All the randomization schemes that make up the selected constrained space can be saved to 

a dataset by specifying the savedata() option, and we strongly recommend that this option 

be selected. The dataset obtained from this command is required to implement the clustered 

permutation test in the analysis. In addition, the user may specify the savebscores() option to 

save the column vector of balance scores to a dataset and produce a histogram of the balance 

scores.
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Inside the program, the user-supplied data are passed to a Mata program. As noted above, 

if the total number of randomization schemes is less than or equal to 50,000, the entire 

randomization space is enumerated; otherwise, the program simulates 50,000 randomization 

schemes, of which the unique schemes are kept. To create a vector of balance scores 

corresponding to (1), we first create a cluster-level design matrix, with each row indicating 

a cluster and each column corresponding to a variable in varlist. This cluster-level design 

matrix is standardized such that each element is centered by the column-specific (that 

is, variable-specific) mean and scaled by the column-specific standard deviation. In other 

words, each column has zero mean and unit variance. The matrix of unique randomization 

schemes (with a value of 0 corresponding to control and 1 corresponding to intervention) is 

then multiplied by the standardized design matrix to obtain a new matrix. The row sums of 

squared elements from this new matrix are proportional to the l2 balance metric, and these 

computed balance scores will be used to rank the balance of each randomization scheme. 

A subset of randomization schemes is obtained by applying the prespecified cutoff value to 

the set of balance scores, and a final randomization scheme is sampled from this subset. A 

similar algorithm is used to implement constrained randomization with the l1 balance metric 

corresponding to (3). A complete description of this algorithm is available in Li et al. (2017).

2.1 Syntax

cvcrand varlist, ntotal_cluster(#) ntrt_cluster(#) [clustername(varname) categorical(varlist) 
balancemetric(string) cutoff(#) numschemes(#) nosim size(#) weights(numlist) 
stratify(varlist) seed(#) directory(string) savedata(string) savebscores(string)]

2.2 Options

ntotal_cluster(#) specifies the total number of clusters to be randomized. This value must be 

a positive integer and must be equal to the number of rows in the dataset. ntotal_cluster() is 

required.

ntrt_cluster(#) specifies the number of clusters that the researcher desires to assign to the 

treatment (intervention) arm. It must be a positive integer less than the total number of 

clusters. Often, this is equal to half the number of total clusters. ntrt_cluster() is required.

clustername(varname) specifies the name of the variable that is the identification variable 

of the cluster. This is used when the command summarizes the variables after constrained 

randomization. If no cluster identification variable is specified, the default is to label the 

clusters by the order they appear in the dataset (that is, 1, 2, 3, …).

categorical(varlist) specifies categorical variables. Each categorical variable will be turned 

into p−1 dummy variables, where p is the number of levels of the categorical variable. Note 

that the results are sensitive to which level is excluded. Categorical variables may be recoded 

to specify which level to exclude by setting this level to be the lowest number or earliest in 

the alphabet. If the weights() option is used, then all categorical variables must be specified 

last in the overall varlist for the command to work correctly.

balancemetric(string) sets the balance metric. The default is balancemetric(12). The l1 

metric may be specified instead if desired.
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cutoff(#) specifies the percentile cutoff of the distribution of the balance score below which 

we randomly sample the final randomization scheme. The value will range between 0 and 

1. The default is cutoff(0.1) (that is, 10%). A smaller balance score indicates better balance 

based on our balancing criterion. Therefore, we are “constraining” the randomization space 

and sampling only from the set of randomization schemes corresponding to the “best” values 

of balance score. The cutoff can be overridden by the numschemes() option.

numschemes(#) specifies the number of randomization schemes to form the constrained 

space from which the final randomization scheme is selected. This overrides the 

cutoff() option. If this option is specified, the command will randomly sample the final 

randomization scheme from the randomization schemes corresponding to the S smallest 

balance scores, as in numschemes(S).

nosim overrides the command’s default procedure of simulating when the number of 

randomization schemes is over 50,000 and will instead enumerate all randomization 

schemes, regardless of the size of the randomization space. Note: this can consume a lot 

of memory and may cause Stata to produce an error message and stop the command. For 

example, with 30 clusters and 15 assigned to treatment, the total randomization space is a 
30
15 = 155, 117, 520 row by 30 column matrix.

size(#) specifies the number of randomization schemes to simulate if the size of the 

simple randomization space is greater than 50,000 unique schemes (as happens when, for 

example, there are 20 clusters and 10 assigned to intervention: 
20
10 = 184, 756). The default is 

size(50000). Simulation can be overridden by the nosim option.

weights(numlist) allows the specification of user-defined weights. These are distinct from 

the inverse standard deviation ωj weights in (1) and (3). Instead, these user-defined weights 

correspond to dj in (2). Note that these weights could be used to induce stratification on 

variables. For instance, if one variable is given a large weight, say, 1,000, and all other 

variables are given a weight of 1, the randomization scheme chosen will be stratified by 

the variable with the large weight, assuming a reasonably low cutoff value has been chosen. 

Stratification is directly implemented by the stratify() option. The weights() option cannot be 

specified at the same time as the stratify() option. See section 4.3 for more details.

Weights must be replicated for categorical variables (for example, a three-category variable 

must be given two weights, one for each dummy variable), and categorical variables should 

be specified last in varlist if weights() is specified.

stratify(varlist) specifies variables the user wishes to stratify on. These variables must be 

categorical variables and placed last in the overall varlist. Variables specified in stratify() 

will be assigned an arbitrarily large weight of 1,000, which will induce stratification on these 

variables (if possible). Stratification will not be possible, for example, if one of the levels of 

a categorical variable contains an odd number of clusters. See section 4.3 for more details. 

This option cannot be used with the weights() option.
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seed(#) specifies the seed for simulation and random sampling, which is needed so that the 

randomization can be replicated if desired. The default is seed(12345).

directory(string) is the directory in which the constrained randomization space and balance 

scores are saved. The default is to save them in the current working directory.

savedata(string) saves the constrained randomization space into a dataset specified by string. 

The dataset will be saved into the current working directory or the directory specified in 

the directory() option and will also contain an indicator variable specifying which row 

of the constrained space was chosen as the final randomization space. The constrained 

randomization space will be needed for the analysis once the CRT is completed.

savebscores(string) saves the vector of all balance scores (across the entire randomization 

space) as a dataset specified by string. When this option is specified, a histogram is also 

produced that displays the distribution of all balance scores with a red line on the graph 

indicating the selected cutoff. The histogram will not be automatically produced when either 

the stratify() or weights() option is specified.

3 The cptest command

In this section, we introduce the cptest command, which is used to implement a clustered 

permutation test. The command requires the user to provide a list of variables that will be 

passed to a regression procedure. Therefore, the first variable in varlist must be the outcome 

variable, and all variables following are the independent variables in the regression model. 

Outcome data must be at the individual level, not the cluster level. The independent variables 

passed to the regression procedures should not include the intervention assignment variable.

The user must indicate which variable identifies clusters using clustername(). This cluster 

identification variable must be the same across all individuals in the same cluster. The user 

must also specify the name of the dataset containing the constrained randomization space 

(saved in Stata format by the cvcrand command) using cspacedatname(), along with the 

directory where this dataset is stored using the directory() option.

In the command, Stata takes the varlist provided by the user and runs a regression model 

with type of model determined by the required outcometype() option. Residuals are obtained 

and then averaged by cluster. The vector of residuals and the permutation matrix are passed 

to Mata, at which point Stata carries out the procedure described in section 1.2 to produce 

the p-value for the clustered permutation test.

It is possible to provide the command with only the outcome and no independent variables 

(an unadjusted permutation test) or only a subset of the variables constrained on in the 

design phase of the study. To achieve higher power, one should include all variables that 

are predictive of the outcome (Li et al. 2017). However, the permutation tests are robust 

to regression model misspecification and will maintain the nominal type I error even when 

some prognostic variables are left out (Gail et al. 1996). Note that this command could also 

be used to perform a clustered permutation test under simple randomization by supplying the 

design matrix containing the simple randomization space.
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3.1 Syntax

cptest varlist, clustername(varname) directory(string) cspacedatname(string) 

outcometype(#) [categorical(varlist)]

3.2 Options

clustername(varname) specifies the name of the variable that is the identification variable of 

the cluster. clustername() is required.

directory(string) specifies the directory where the constrained randomization space (saved 

by command cvcrand) dataset is saved. directory() is required.

cspacedatname(string) gives the name of the dataset containing the saved randomization 

space. This dataset contains the permutation matrix, as well as a variable indicating which 

row of the permutation matrix was saved as the final scheme. cspacedatname() is required.

outcometype(string) specifies the type of regression model that should be run. Options are 

continuous for linear regression fit by Stata’s regress command (suitable for continuous 

outcomes) and binary for logistic regression fit by Stata’s logit command (suitable for binary 

outcomes). outcometype() is required.

categorical(varlist) specifies categorical variables. These variables will be turned into p − 

1 dummy variables, where p is the number of levels of the categorical variable. The user 

must ensure that the same level of the categorical variable is excluded as was excluded when 

running cvcrand by coding the variables the same way as in the design phase.

4 Example: Increasing up-to-date immunization rates

We now illustrate the use of cvcrand and cptest through an example. We use the data 

described and published in Dickinson et al. (2015). In this CRT, the researchers wished to 

compare two approaches (interventions) for increasing the “up-to-date” immunization rate in 

19- to 35-month-old children. They planned to randomize 16 counties in Colorado in a 1:1 

ratio to either a population-based reminder or recall approach or practice-based reminder or 

recall approach. These approaches are described in detail in Kempe et al. (2015).

4.1 Covariate-constrained randomization

Prior to randomization, the researchers identified eight county-level variables potentially 

related to the outcome. For illustration, we will randomize by constraining on a subset of 

these variables. This subset contains the following five variables: % of children ages 19–35 

months with ≥2 immunization records in the Colorado Immunization Information System, 

estimated % of children already up to date on their immunizations, % Hispanic, location 

(urban or rural), and average income categorized into tertiles. Note that we could have left 

average income as a continuous variable, but we chose to categorize it to illustrate the 

use of cvcrand on multicategory variables. Note also that we truncated the % in Colorado 

Immunization Information System variable at 100%, because the value for one county 

published in Dickinson et al. (2015) exceeded 100%.
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After loading this county-level data into Stata, we performed covariate-constrained 

randomization with an equal number of counties in each intervention arm. The command 

cvcrand requires mm_subsets() from the moremata package (Jann 2005) and the table1 

command from the table1 package (Clayton 2013). The user will be prompted to download 

these if not already installed.

. use dickinson_data.dta

. label variable number “# of children”

. label variable upt “% up-to-date”

. label variable incomecat “Average income”

We used the default balance metric (12) and the default cutoff (0.1). We specified that two 

of the variables are categorical and used the savedata() option to save the constrained space 

as a dataset named dickinson_constrained, which will be needed for later analysis. Selected 

output from the program is given below.

. cvcrand inciis uptodate hispanic location incomecat,

> categorical(location incomecat) ntotal_cluster(16) ntrt_cluster(8)

> clustername(county) seed(10125) cutoff(.1) balancemetric(12)

> savedata(dickinson_constrained) savebscores(dickinson_bscores)

(output omitted)

Summary Stats Balance Score

Mean 24.00

Std. Dev. 14.88

Min 1.16

p5 5.85

p10 7.72

p20 10.94

p25 12.38

p30 14.03

p50 21.07

p75 32.25

p95 52.98

Max 97.71

Cutoff value = 7.72

Value of selected balance score = 7.07

Row of constrained matrix = 903
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county _allocation

1. 1 0

2. 2 1

3. 3 0

4. 4 1

5. 5 0

6. 6 0

7. 7 0

8. 8 1

9. 9 0

10. 10 1

11. 11 1

12. 12 1

13. 13 0

14. 14 0

15. 15 1

16. 16 1

(output omitted)

First, the command provides summary statistics of the balance scores and the selected cutoff 

value. This is equal to p10 (10th percentile of the distribution) because we decided to use 

the default value. We are also given the value of the selected balance score, which is slightly 

below the 10th percentile of the balance score distribution. Any randomization scheme with 

a balance score of less than or equal to 7.72 could have been selected.

The command automatically saves a variable named _allocation (which contains the final 

selected randomization scheme) back onto the input dataset. To summarize balance across 

arms, it then summarizes or tabulates each variable by _allocation, using the table1 

command on each variable in varlist individually. However, we may run the community­

contributed table1 command on all variables in varlist together to easily summarize the 

results in one table:

. table1, by(_allocation)

> vars(inci contn \ uptod contn \ hisp contn \ loc cat \ incomecat cat)

> format(%2.1f)

Factor Level _allocation = 0 _allocation = 1 p-value

N 8 8

% in CIIS, mean (SD) 88.2 (5.8) 85.8 (8.8) 0.51

% up-to-date, mean (SD) 40.4 (9.1) 41.2 (8.0) 0.84
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Factor Level _allocation = 0 _allocation = 1 p-value

% Hispanic, mean (SD) 21.6 (14.8) 23.0 (11.7) 0.84

Location Rural 5 (62%) 3 (38%) 0.32

Urban 3 (38%) 5 (62%)

Average income Low 3 (38%) 2 (25%) 0.82

Med 3 (38%) 3 (38%)

High 2 (25%) 3 (38%)

We see that all covariates are reasonably well balanced between the intervention arms. Note, 

for example, that the binary variable location is not perfectly balanced between intervention 

arms, because five out of eight rural counties are in one of the interventions compared with 

three out of eight in the other intervention. If the researchers desired to stratify on this 

variable (to obtain perfect balance) while also constraining on other variables, they can use 

user-defined weights. We will show an example of this functionality in section 4.3.

4.2 Clustered permutation test analysis

At the end of the study, the researchers will have ascertained the outcome in the 16 counties. 

As discussed in section 1.2, the outcome data must be at the individual level. In the case 

of the Dickinson et al. (2015) data, the researchers will have up-to-date immunization 

information on a subset of children from the 16 counties. For this example, we have 

created a simulated dataset to illustrate how to use cptest. Suppose that _allocation = 1 

denotes the practice-based intervention and that this intervention succeeds in improving 

up-to-date immunization rates much more than the community-based intervention. Suppose 

also that the researchers were able to assess 300 children in each cluster. We simulated 

correlated outcome data at the individual level using a generalized linear mixed model 

to induce correlation by including a random effect. The intracluster correlation was set 

to be 0.01, using the latent response definition provided in Eldridge, Ukoumunne, and 

Carlin (2009). This is a reasonable value of the intracluster correlation for population health 

studies (Hannan et al. 1994). We simulated one dataset, with the outcome data dependent 

on the county-level covariates used in the constrained randomization design, and a positive 

intervention effect so that the practice-based intervention increases up-to-date immunization 

rates more than the community-based intervention. Summarizing the data, we find that about 

86% of the children in the practice-based intervention (_allocation = 1) are up to date on 

immunization at the end of the study, while 79% of the children in the community-based 

intervention (_allocation = 0) are up to date.

. use dickinson_data_corr_outcome, clear

. label define scheme 1 “Practice” 0 “Community”

. label values _allocation scheme

. tab _allocation, summarize(outcome)
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Summary of outcome

_allocation Mean Std. Dev. Freq.

Community .78916667 .40798529 2,400

Practice .85958333 .34749121 2,400

Total .824375 .38054044 4,800

After loading these data into Stata, we run an adjusted clustered permutation test by 

including the outcome variable (outcome) followed by all the variables we used in the 

constrained randomization in varlist. We specify where the constrained randomization space 

dataset is located and use outcometype(Binary) to indicate that we would like to perform 

logistic regression. In the analysis, one should ensure that for a p-category variable, the same 

level of the variable is excluded when converting into the p − 1 dummy variables as was 

removed when cvcrand was run.

. cptest outcome inciis uptodate hispanic location incomecat,

> clustername(county) directory(P:\Program\Stata Journal)

> cspacedatname(dickinson_constrained)

> outcometype(binary) categorical(location incomecat)

Logistic regression was performed

Final chosen scheme used by the cptest program: 1

1 0

2 1

3 0

4 1

5 0

6 0

7 0

8 1

9 0

10 1

11 1

12 1

13 0

14 0

15 1

16 1

Clustered permutation test p-value = 0.0047

Gallis et al. Page 22

Stata J. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note: test may be anti-conservative if number of intervention clusters does 

not > equal number of control clusters

The command outputs a column vector displaying the randomization scheme implemented 

in the study. The user can compare this with his or her dataset to check that it matches 

the order of clusters in the dataset. Following the procedure laid out in section 1.2, we 

obtain an adjusted clustered permutation test p-value, which in this case shows evidence 

of a difference in effect between the interventions. For illustration, we assume that only 

county-level covariates are available in the analysis. In practice, if individual-level data are 

available, we may also include those individual-level variables in the permutation test to 

improve power (Li et al. 2017).

More details about the programs and the above example can be found in our recent Stata 

conference presentation slides (Gallis et al. 2017).

4.3 Stratified covariate constrained randomization

As discussed in section 1.1, user-defined weights can be used to allow researchers to 

provide more weight to variables of their choice. For example, larger weights can be given 

to variables considered more important to balance than other covariates [see (2)]. These 

user-defined weights can also be used to induce stratification on categorical variables by 

setting very large weights for such variables. This is implemented with the stratify() option. 

For example, suppose we specify a weight of 1,000 to the location variable. Then, in all 

cases where location is not perfectly balanced between arms, at least 1,000 will be added 

to the balance score (if location is perfectly balanced, then xT j − xCj reduces to 0 for j 

= location). Thus, for a reasonably low cutoff value, the randomization schemes where 

location is unbalanced will have no chance of being included in the constrained space and 

hence no chance to be selected as the final randomization scheme.

This can be illustrated by the code below. Because of the way cvcrand processes macros, 

all categorical variables should be placed at the end of the overall varlist if the stratify() 

or weights() option is specified. In addition, variables specified in the stratify() option 

should be placed at the very end of the overall varlist and at the end of the varlist in 

the categorical() option. Below we place the location variable in the stratify() option. This 

assigns the location variable a weight of 1,000, while all other variables receive the default 

weight of 1.

. use dickinson_data, clear

. label variable number “# of children”

. label variable upt “% up-to-date”

. label variable incomecat “Average income”

. cvcrand inciis uptodate hispanic incomecat location,

> categorical(incomecat location) ntotal_cluster(16) ntrt_cluster(8)

> clustername(county) seed(10125) cutoff(0.1) balancemetric(12)

> savedata(dickinson_constrained_strat) stratify(location)
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Number of clusters assigned to treatment is 8; number assigned to control is 

8

You have specified the stratify option. Please be sure the stratification > 

variables are placed at the end of the overall variable list, and last in 

the variable list of the categorical option.

Using the 12 (squared) balance metric

Summary Stats Balance Score

Mean 4.00e+06

Std. Dev. 5.49e+06

Min 1.16

p5 6.22

p10 9.22

p20 16.45

p25 21.00

p30 28.37

p50 3.75e+06

p75 3.75e+06

p95 1.50e+07

Max 6.00e+07

Cutoff value = 9.22

Value of selected balance score = 4.76

Row of constrained matrix = 903

(output omitted)

. table1, by(_allocation)

> vars(inci contn \ number contn \ uptod contn \ hisp contn \ loc cat \

> incomecat cat) format(%2.1f)

Factor Level _allocation = 0 _allocation = 1 p-value

N 8 8

% in CIIS, mean (SD) 85.4 (5.2) 88.6 (9.0) 0.39

# of children, mean (SD) 3000.4 (3356.6) 5392.6 (5249.3) 0.30

% up-to-date, mean (SD) 40.4 (9.2) 41.2 (7.9) 0.84

% Hispanic, mean (SD) 23.2 (15.1) 21.4 (11.3) 0.78

Location Rural 4 (50%) 4 (50%) 1.00

Urban 4 (50%) 4 (50%)

Average income Low 3 (38%) 2 (25%) 0.82
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Factor Level _allocation = 0 _allocation = 1 p-value

Med 3 (38%) 3 (38%)

High 2 (25%) 3 (38%)

Equivalently, this stratification can be accomplished with the following code, using the 

weights() option:

. cvcrand inciis uptodate hispanic location incomecat,

> categorical(location incomecat) ntotal_cluster(16) ntrt_cluster(8)

> clustername(county) seed(10125) cutoff(0.1) balancemetric(12)

> savedata(dickinson_constrained_strat) weights(1 1 1 1000 1 1)

(output omitted)

Now any randomization scheme with imbalance on location is appreciably larger than 

randomization schemes where location is balanced, ensuring that a randomization scheme 

stratified on location is chosen and assuming the user has specified a cutoff below the 50th 

percentile (because randomization schemes at the 50th percentile and above correspond to 

huge balance scores related to imbalance on location). We see from the table1 output that 

location is now perfectly balanced across arms, because there are four out of eight rural 

counties in each arm.

An alternative strategy to achieving stratification is to perform covariate constrained 

randomization within each strata defined by location. This strategy could be carried out 

by applying the code in section 4.1 to subsets of the full data.

5 Discussion

We have introduced the cvcrand command to aid in the design of CRTs and the 

cptest command to aid in the subsequent analysis of CRTs designed using covariate 

constrained randomization. These commands are simple to use and do not require advanced 

programming skills, making them accessible to many researchers. Still, researchers should 

carefully consider features of the design—such as important baseline characteristics related 

to the outcome—and analysis, and a priori decide which covariates to include and which 

options to specify (for example, what metric and cutoff value to use). Importantly, the 

cvcrand command should be run only once on any given dataset rather than rerunning until 

a desirable randomization scheme is selected, because this would technically alter the type I 

error.

There are some limitations to the commands. The cvcrand command will not work for a 

trial with more than two intervention arms. In addition, it handles only randomization for 

a parallel-arm CRT design. These limitations reflect the current state of the research on 

constrained randomization. As the literature develops more, we plan to add more features 

and options to the command. Additionally, the command does not currently allow for 

modeling count outcomes using a Poisson regression. Most cluster trials have binary or 
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continuous outcomes (Fiero et al. 2016), but we plan to extend the program to handle 

Poisson regression in the future.

Another consideration is that the permutation test provides only a test of significance 

without reporting an intervention effect estimate or confidence interval. In practice, 

researchers may wish to use mixed-effects regression models or generalized estimating 

equations to obtain the intervention effect estimate and its confidence interval. Such 

procedures have been shown to perform satisfactorily if the prognostic covariates used to 

perform covariate-constrained randomization in the design phase are appropriately adjusted 

for in the analysis phase (Li et al. 2016, 2017). Nevertheless, the permutation test is 

attractive because it maintains the nominal test size, so it could be used to evaluate the 

statistical significance of the intervention effect, even when a model-based approach is used.

We recommend using some form of restricted randomization when designing and 

implementing CRTs. Constrained randomization is ideally suited for this task when the 

number of clusters to be studied is small, especially when there are a relatively large number 

of baseline characteristics to balance. Our new command cvcrand and cptest will facilitate 

constrained randomization and clustered permutation test analysis in CRTs, with the goal 

of providing more efficient design and analysis of CRTs, particularly those with a small 

number of clusters.
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