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De novo molecular drug design benchmarking
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De novo molecular design for drug discovery is a growing field. Deep neural networks (DNNs) are becoming

more widespread in their use for machine learning models. As more DNN models are proposed for

molecular design, benchmarking methods are crucial for the comparision and validation of these models.

This review looks at recently proposed benchmarking methods Fréchet ChemNet Distance, GuacaMol and

Molecular Sets (MOSES), and provides a commentary on their future potential applications in de novo

molecular drug design and possible next steps for further validation of these benchmarking methods.

Introduction

The prevalence and incidence of multidrug-resistant bacteria
has increased drastically in recent decades, while new
antibiotic development has lagged.1 Similarly, drug resistance
has become rampant in cancer treatment. Today, 90% of
chemotherapy failures are due to drug resistant cancer
metastasis and invasion.2 To find new drug candidates, high-
throughput in vitro chemical screening has been used to test
large physical libraries of up to 107 compounds for their
biological activity.3 However, it has been estimated that 1030

to 1060 potential organic compounds exist in chemical space.4

De novo molecular design has the capacity to explore all of
chemical space efficiently by generating a small number of
molecules using search and optimization procedures.5

Because of this, de novo drug design has the potential to
revolutionize medicinal chemistry and drug discovery. De
novo molecular design can be based on a receptor, often
using known protein structures to find molecules that fit well
in binding pockets. Alternatively, de novo designed molecules
can be built “from scratch” from different ligands.6

Deep neural networks (DNNs) have existed for a few
decades, but their application in de novo molecular design is a
more recent development. It was only within the past decade
that DNNs have been shown to outperform more traditional
machine learning methods and, since 2012, DNN based models
have won multiple competitions in categories such as image
classifications and molecular activity predictions.7

DNNs are often defined as having more than three layers.7

The layers of DNNs fit into three categories: an input layer,
hidden layers, and an output layer. Each layer is made up of
nodes. The input layer will contain as many nodes as there
are features. The output layer, if it is a classifier, contains as
many nodes as there are classes. The hidden layers can have
different numbers of nodes.8 Each node will have an

activation based on an input signal. This activation will tell a
node whether to “fire”, in turn sending an input signal to the
next node.8,9 A basic representation of nodes in a deep neural
network can be seen in Fig. 1.

Different DNNs feature different network architectures such
as recurrent neural networks (RNNs), fully connected neural
networks (FCNNs), and convolutional neural networks (CNNs).
Different architectures have different basic structures. The way
nodes are connected between input, hidden, and output layers
will vary with different architectures.8,10

All DNN de novo molecular generators go through three
steps while producing new molecules. First, molecules are
created, then they are scored and, finally, new and better
molecules are searched for.5,11

Molecules are typically created from ligands or
fragments.12 However, methods for molecule construction
using in silico chemical reactions have also been published
with the goal of increasing the synthetic accessibility of
proposed de novo molecules.13 Once created, molecules need
to be scored by the model.

The way a model scores molecules will depend on whether
the model is receptor or ligand based. Models that suggest
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Fig. 1 A basic representation of a deep neural network where the blue
circles represent the input layer, the orange circles represent nodes in
the hidden layers, and the green circle represents the output layer. Each
layer is connected to the next and each node of the previous layer will
have an impact on the activation of the nodes in the next layer.
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new molecules to bind to a known 3D structure of a protein
will be scored on how well molecules bind to and fit into a
protein site.12,14 These molecular docking scores can be
based on molecular force fields, empirical scoring functions,
or knowledge-based scoring functions, which are discussed
more in depth by Hartenfeller and Schneider.12

Ligand based models do not use a protein structure to
build new molecules. In order to score molecules, these
models can use a reference compound for scoring similarity,
with the hypothesis being that similar molecules will have
similar pharmacological properties.12 This is the basis of
quantitative structure–activity relationship (QSAR) and
quantitative structure–property relationship (QSPR)
modelling.15 Scoring ligand based models can also include
methods for predicting physicochemical properties or a
combination of these scoring methods.5

After scoring molecules, models will look for novel and
more effective molecules. This can be done using stochastic
optimization methods where a local minimum for the most
suitable molecule is found.12 Models based on the
construction of molecules by incrementally adding and
scoring ligands have also been developed.16

The goal of using DNNs for de novo drug design is to
create new lead compounds for drug discovery. Ideally, DNNs
could be used to propose new compounds in underexplored
areas of chemical space. Proposed molecules by DNNs would
need to be chemically stable, synthesizable, and bioactive. As
well, proposed molecules need to be accepted by medicinal
chemists in order to be tested in vivo and in vitro.

As more de novo models for molecular design are
proposed, standardized benchmarking procedures are
needed to compare the efficacy of these models.
Benchmarking models can test de novo methods on many
different characteristics such as the novelty of the proposed
molecules, validity, fragment similarity, internal diversity,
and other criteria. Benchmarking will not only allow new de
novo methods to be tested for their efficacy but provide
guidance for future improvement of methods.

Recently, benchmarking methods such as Fréchet
ChemNet Distance,17 MOSES,18 and GuacaMol5 have been
proposed. They represent a first step towards standardized
benchmarking procedures for DNN de novo drug design
models. However, as will be discussed in this review,
there is a lack of research into the biases these
benchmarks can suffer from, including biased scoring
functions for novelty that Renz et al.19 highlights.
Investigation into whether models that scored well on
benchmarks produced molecules medicinal chemists can
actually synthesize and test is another area that should be
explored in the future.

This review will give an overview of the methods used by
the benchmarking models Fréchet ChemNet Distance,17

MOSES,18 and GuacaMol5 before discussing where these
benchmarks could be improved and where future work is
needed to test whether medicinal chemists agree with the
scoring outcomes of these benchmarks.

Fréchet ChemNet Distance

Preuer et al.17 developed Fréchet ChemNet Distance (FCD) as
a metric to evaluate generative models. FCD was designed to
encompass validity, and chemical and biological
meaningfulness into one score. FCD was modelled after
Fréchet Inception Distance (FID),20 which is a metric for
comparing generative models for images. FCD calculates the
distance between the distribution of real-world molecules
and the distribution of molecules produced by a generative
model. Preuer et al.17 calculated numerical representations of
molecules using the penultimate layer of the neural network
ChemNet, a long short-term memory (LSTM) RRN that is
based on SMILES representations of molecules. SMILES
(simplified molecular input line entry system)21 was designed
specifically for computers to represent molecules in two
dimensions using only letters to represent atoms and special
characters to represent different types of bonds. ChemNet
was trained to predict the bioactivities of molecules based on
approximately 6000 bioassays found in the drug databases
ChEMBL,22 Zinc,23 and PubChem.24

From the activation of the penultimate layer of ChemNet,
mean and covariance are calculated for both the distribution
of real-world molecules and the distribution of molecules
from a generative model. The two distributions are then
compared using Fréchet distance,25 also called Wasserstein-2
distance.26 Preuer et al.17 carried out hyperparameter
selection and training using two-thirds of available data, with
the last third being saved for testing. They state that large
enough data sets are needed for both real and generated
molecules to estimate mean and covariance.

Preuer et al.17 compared FCD to four common metrics for
evaluating generative models. The metrics were mean log P,
mean druglikeness, mean synthetic accessibility (SA) score,
and the internal diversity score with Tanimoto distance.
Preuer et al.17 wanted to show that these metrics have
specific flaws and fail to detect biases in generative models.
To do this, they manipulated models to produce molecules
with either low drug likeness, a high log P, low synthetic
accessibility, mode collapse (low internal diversity), or bias
toward certain target families for models designed to produce
molecules active for a specific target. These manipulated
models were compared to real molecules.

FCD was the only evaluation method able to consistently
score the manipulated models worse than the real
molecules. Preuer et al.17 also tested their hypothesis that
chemical information alone is not enough to test a
generative model. To do this they tested what they termed
the Fréchet Fingerprint Distance (FFD), which was based on
2048 bit ECFP_4 fingerprints and on purely chemical
representation of generated molecules. They found that FCD
was able to make stronger distinctions between the
manipulated and real sets compared to FFD. This was
especially true when looking at biologically relevant
information such as when the manipulated model was
biased towards a certain target family.
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Applications of FCD in the literature

FCD has been incorporated into other benchmarking tools
such as GuacaMol and MOSES, which are also discussed in
this review. On its own FCD has also been used to compare
different models for de novo drug design. Skalic et al.27 used
FCD as part of their evaluation and comparison of their
shape-based generative model to other generative models
such as an adversarial autoencoder (AAE), a character-level
recurrent neural network (CharRNN), a variational
autoencoder (VAE), and an objective-reinforced generative
adversarial network (ORGAN). The shape-based model was
found to be comparable to other methods tested.

Grisoni et al.28 also used FCD as part of their evaluation
for their new method for SMILES string generation. In their
new model, SMILES strings were generated both left-to-right
(forwards) and right-to-left (backwards). In their BIMODAL
(bidirectional molecule design by alternate learning) model,
two RNN's are used. One RNN reads the SMILES strings
forward and another backwards. These are then combined
for a joint prediction.

For evaluation of their method, Grisoni et al.28 looked at
structural novelty defined as “not contained in the training
set”, uniqueness defined as the percentage of unique SMILES
strings generated, and validity defined as the percentage of
chemically valid SMILES strings generated. Grisoni et al.28 also
looked at scaffold diversity and novelty using Bemis–Murcko
scaffolds.29 Finally, they used FCD to evaluate the chemical
and biological relevance of the generated SMILES strings.

For the FCD evaluation, Grisoni et al.28 found the BIMODAL
model had a slightly worse FCD score than the traditional
forward running RNN when there were 512 hidden units.
However, when there were 1024 hidden units, the forward RNN
and BIMODAL had comparable scores, with both improving
from their 512 scores. This combined with BIMODAL's good
scaffold diversity scores made Grisoni et al.28 conclude that the
BIMODAL model was worth further investigation.

GuacaMol

GuacaMol5 uses a set of benchmarks to assess a model's ability
to learn from a data set of molecules and to create new
molecules with similar properties. GuacaMol5 splits models for
de novo molecular design into two categories: distribution-
learning and goal-directed. Distribution-learning models aim
to generate new molecules based on the chemical distribution
of a training set of molecules. Goal-directed models are
designed to generate molecules for a specific goal.

GuacaMol5 evaluates distribution-learning models based on
validity, uniqueness, novelty, FCD, and the Kullback–Leibler
(KL) divergence. Validity is an assessment of whether the
generated molecules are realistic, at least theoretically. The
validity benchmark scores molecules lower for incorrect SMILES
syntax or if they have an invalid valence. Uniqueness measures
the ability of a model to produce unique molecules. If a model
produces a molecule more than once, it is penalized.

For novelty, GuacaMol uses the ChEMBL training set to
represent a tiny portion of chemical space. Brown et al.5 state
that a good model for de novo molecular design should be
able to explore a large part of chemical space and would,
therefore, be unlikely to reproduce molecules from the
training set. Models that overfit receive a low score on this
task. However, a bad model could potentially score well on
this benchmarking task if that model produces many
different simple molecules, such as carbon chains.

The FCD is measured as described previously. Lastly, the
KL divergence is a measure of how well a probability
distribution approximates another distribution. For
GuacaMol, KL divergence is used to measure how diverse the
generated molecules are from the training set. Low diversity
will lead to a low KL divergence score. All scores are on a
scale of 0 to 1.

Since goal-directed models are trying to design one
optimized molecule to complete a specific task, generated
molecules need to be scored individually. For evaluation,
GuacaMol5 has goal-directed models produce a set number
of high scoring molecules. The models are allowed to
iteratively improve their molecules using the scoring
function, but the models do not have access to what the
scoring function is explicitly calculating. The optimizing
function of a model is evaluated by looking at a combination
of the structural features (molecular weight, number of
aromatic rings, etc.), physicochemical properties, similarity or
dissimilarity to other molecules, and presence or absence of
substructures, functional groups, or atom types.

For similarity, the model is assessed on its ability to produce
molecules that are similar to a target compound. Brown et al.5

describe this as a sort of inverse virtual screening because,
instead of looking up molecules in a large data base, molecules
are generated based on a target molecule. A rediscovery
benchmark is also included. This is like the similarity
benchmark, except the goal is to rediscover the target molecule
and not produce many molecules like it. An isomer benchmark
is also included for which the model is tasked with producing
isomers from a given molecular formula. This is used to test
the flexibility of the model. Lastly, the median molecules
benchmark is included to assess a models ability to produce a
molecule that is similar to several different molecules. This
task is designed to be conflicting, as it is useful for assessing
how a model explores chemical space.

GuacaMol5 also includes rule sets for assessing the quality
of the compounds produced by distribution-learning and goal-
directed models. A model that suggests molecules that are
potentially unstable, reactive, or too difficult to synthesize will
not be used by medicinal chemists. The set of rules used by
GuacaMol are designed to determine if suggested molecules
could be included in a high-throughput screen. Brown et al.5 note
that the list of filters they include for assessing compound quality
is probably incomplete. However, it is likely that any molecules
filtered out by the rule set would not be chosen for synthesis.

Brown et al.5 used GuacaMol to evaluate and compare
different types of distribution-learning and goal-directed
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models. For the generative-models, a random sampler was
included for a baseline comparison. The random sampler
took a set number of molecules from the training set at
random for evaluation. The random sampler showed high
values for KL divergence and FCD, which were considered to
be baselines for good models. The GuacaMol5 benchmark
results showed that the SMILES LSTM model was the most
consistently high-scoring model across benchmarks.

For comparison of goal-directed models, a “Best of Data
Set” was used. The “Best of Data Set” used the highest
scoring molecules in the data set. These molecules are used
to set the bar for the goal-directed models because the
purpose of goal-directed models is to return molecules that
are better than the original data set. If models do not
perform better than the best data from the data set, then they
provide no advantage over virtual screening. Of the tested
models, the graph genetic algorithm performed the best on
all the benchmarks.

Applications of GuacaMol in the
literature

Winter et al.30 tested their proposed method for optimizing
molecules, molecular swarm optimization (MSO), using
GuacaMol. MSO uses a ‘light weight’ heuristic optimization
method, particle swarm optimization (PSO), proposed by
Hartenfeller et al.31 applied to their previously reported
continuous chemical representation.32 Winter et al.30

retrained their model using the same subset of ChEMBL
originally used for the GuacaMol benchmark. Winter et al.30

found that their method had a higher average score than the
baseline models included in GuacaMol.

Kwon et al.33 proposed an improved VAE method for
efficient molecular graph generation. To improve the molecular
graph generation, they included three additional learning
objectives. These objectives were: approximate graph matching,
reinforcement learning, and auxiliary property prediction.
Kwon et al.33 tested their generative model for validity,
uniqueness, novelty, KL divergence, and FCD. On the tests for
validity, uniqueness, and novelty, the proposed method
performed as well as or out-performed the baseline SMILES
models, LSTM, VAE, AAE, and ORGAN and the molecular graph
generation model GraphMCTS. Their model did not perform
well on KL divergence or FCD, which suggests that their model
was not able to reproduce the property distribution of the
training set. Overall, the graph method was superior to the
SMILES string generators at producing chemically valid and
diverse molecules but struggled to represent the data-
distribution of the training set.

EvoMol34 is another molecular generation model. It
sequentially builds molecular graphs using an evolutionary
algorithm. This algorithm was developed with the goal to
explore both known and unknown chemical space. Leguy
et al.34 used the goal-directed benchmarks from GuacaMol to
assess EvoMol.

EvoMol performed exceptionally well on the isomer
benchmark task in comparison to other molecular
generators. EvoMol also outperformed other models on the
multi-property objective (MPO) benchmark. Overall, EvoMol
performed very well on the GuacaMol benchmark.

Molecular Sets (MOSES)

Molecular Sets (MOSES)18 is another benchmarking suite for
molecular generators. It includes a standardized dataset and
evaluation metrics. MOSES compares distribution-learning
models using fragment similarity, scaffold similarity, nearest
neighbour similarity, internal diversity, and Fréchet ChemNet
Distance (FCD). These metrics are used to evaluate how well
a generative model approximates an unknown distribution
when given a set of training samples from the unknown
distribution. MOSES first computes the validity of generated
molecules and then only evaluates valid molecules.

Valid molecules are determined using RDKit, which can
be used to evaluate molecules for proper atom valency. The
authors suggest that, for evaluation, 30 000 molecules should
be generated, and molecules labelled valid should make up
the generated set for comparison with the reference set.

The benchmarks that compare the generated set to the
reference set include novelty. This metric calculates the
number of molecules in the generated set that are not present
in the reference set. Novelty can be used to evaluate if a model
is overfitting. Next, fragment similarity looks at the distribution
of BRICS fragments in the generated set compared to the
reference set. BRICS is a set of rules for breaking up chemical
substructures of biologically active compounds that was
developed for medicinal and computational chemists.35 The
fragment similarity metric is large if the generated set has
similar fragments to the reference set. If the generated set over
(or under) represents fragments from the reference set, then
the fragment similarity value will be low. Scaffold similarity is
another metric; it operates in the same manner as fragment
similarity except using Bemis–Murcko scaffolds instead of
BRICS fragments. Bemis–Murcko scaffolds is a list of common
drug shapes in a graphical representation based on rings,
linker atoms, and sidechains.29

MOSES also calculates similarity to a nearest neighbour
(SNN) based on Tanimoto similarity between the fingerprint
of molecules in the generated set and its nearest neighbour
molecule in the reference set. This is used as a precision
metric: the lower the score the poorer the precision of the
model. MOSES also calculates the FCD for comparison
between the generated set and the reference set.

MOSES also looks at various property distributions
between the generated and reference sets. The molecular
weight distribution shows whether the generated set is biased
towards either heavier or lighter molecules. log P and
synthetic accessibility (SA) scores are also included. Lastly,
the quantitative estimation of drug-likeness (QED) score is
included, which evaluates molecules on how likely they are to
be viable drug candidates on a scale of 0 to 1. QED is meant
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to approximate the abstract knowledge held by medicinal
chemists on what molecules may be good drug candidates
and was proposed by Bickerton et al.36 However, a limitation
of QED is that it is only dependent on molecular properties
such as molecular weight, octanol–water partition coefficient,
number of hydrogen bond donors, and number of hydrogen
bond acceptors. Factors such as absorption, distribution,
metabolism, excretion, and toxicity (important in vivo and
in vitro properties) are not considered.37

Polykovskiy et al.18 applied MOSES to multiple different
models that covered many different approaches to molecular
generation. The tested models included character-level neural
networks (CharRNN), variational autoencoders (VAE), adversarial
autoencoders (AAE), junction tree variational autoencoders (JTN-
VAE), LatentGAN, and non-neural baselines. The non-neural
baselines included a hidden Markov model (HMM), an n-gram
model which collects the frequency of n-grams in a training set
and uses the distribution for new strings, and a combinatorial
generator that uses BRICS fragments of the training set to
randomly assemble new molecules.

Polykovskiy et al.18 found that the VAE and AAE models
had low novelty scores, which is an indication of overfitting.
The VAE had the best SNN score, but that was likely due to
overfitting. The best FCD, fragment, and scaffold scores were
obtained by the CharRNN model. Because of this, the
CharRNN was concluded to be the best model tested. This
model did not have a problem with overfitting but was still
able to represent the distribution of the training set.
Polykovskiy et al.18 conclude that MOSES will allow for fair
and comprehensive evaluation of generative models for de
novo drug design. They also plan to update MOSES with new
baseline models and evaluation metrics in the future.

Applications of MOSES in the literature

In addition to calculating FCD as discussed previously, Skalic
et al.27 also used the MOSES benchmark to evaluate their
shape-based generative model. Skalic et al.27 compared their
shape based model to models tested by Polykovskiy et al.,18

including the CharRNN, VAE, AAE, ORGAN, and JTN-VAE. It
was found that Skalic et al.'s27 model performed similarly to
the other models with good validity and uniqueness scores.
The shape-based model produced molecules with the highest
level of internal diversity, but this seemed to be at the cost of
lower compound desirability and increased reactivity.

Boitreaud et al.38 proposed a new graph to selfies VAE.
This graph2selfies model was tested using the MOSES
benchmarking platform. Graph2selfies performed well on all
benchmarks and outperformed the state-of-the-art graph to
graph model JTVAE while also being 18 times faster.

Issues with current benchmarking
models

One issue with benchmarking platforms, which has been
brought up by Renz et al.,19 is the copy problem. Renz et al.19

benchmarked a model they called AddCarbon. This
generative model creates “new” molecules by taking random
molecules from the training set and adding one carbon
randomly in the SMILES string. As long as the new SMILES
string is valid and is not a molecule already in the training
set it is used as a new random sample.

The AddCarbon model was tested using GuacaMol and
received a perfect score for novelty, validity, and
uniqueness and scored high on KL divergence. The
AddCarbon model outperformed all the baseline models
except for the LSTM model.

Renz et al.19 concluded that since their “useless” model
scored so well on the GuacaMol benchmark, it calls into
question the usefulness of the benchmark. They suggest that
better metrics for quantifying novelty would be beneficial.

Renz et al.19 also looked at the shortcomings of
benchmarking goal-directed models. It is difficult to compile
all the desirable qualities of a molecule into one score, and
molecules generated to optimize a specific score might not
be useful. Renz et al.19 provide a few examples of molecules
produced by various goal-directed models that score well on
GuacaMol's benchmarks, but have unstable, synthetically
unrealistic, or highly uncommon substructures.

There were two main biases explored for goal-directed
models: model specific biases and data specific biases. Model
specific biases exploit unique features of a model while
failing to capture the actual desired characteristics that
model is supposed to capture. Data specific biases refers to
how models will perform much better on data they have been
trained on compared to hold-out data.

Renz et al.19 showed both model specific biases and data
specific biases by comparing an optimization score to a
model control score and a data control score. They took a set
of data and split it in half. The optimization score was
calculated from a classifier trained on split 1 and optimized.
The model control score was calculated from a second
classifier trained on split 1 but using a different random seed
than the optimized score model. Lastly, the data control
score was calculated by training a third classifier using split
2 and then using this model to score optimized molecules
from split 1. This was done to see if a model trained on
different data scores molecules similarly.

In all cases, the optimized score was higher than model
control scores, and data control scores were even lower. This
showed that model and data specific biases are likely present
in optimization. Renz et al.19 point out that since the goal of
de novo design is to explore all of chemical space, data
specific biases suggests models are failing.

Another major issue with de novo molecular design
benchmarking is the synthesizability of molecules proposed by
high scoring models. A model may preform well on
benchmarking platforms such as GuacaMol5 and MOSES,18 but
if proposed molecules are synthetically inaccessible, they are
useless. Gao and Coley39 found that, especially for goal-
directed models, a high score on benchmarking does not mean
the model will produce synthetically accessible molecules.
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Specifically, of the multiple goal-directed models tested by
Brown et al.,5 the graph genetic algorithm model scored the
best. This model was found by Gao and Coley39 to produce
no synthesizable molecules when tested by their data-driven
computer-aided synthesis planning program. The SMILES
genetic algorithm also scored well when tested by GuacaMol,5

but did not produce any synthetically accessible molecules
when tested by Gao and Coley.39

Since benchmarking methods such as GuacaMol5 and
MOSES18 are new, there is not a lot of research evaluating
their efficacy. Therefore, it is difficult to determine if
medicinal chemists would agree with the scores given by
these benchmarks to various de novo molecular generators.

In another study, Bush et al.40 evaluated three molecular
generators on their ability to produce molecules deemed
acceptable by medicinal chemists. To do this, they used three
tests.

For the first test, 13 medicinal chemists were asked to
suggest 20 molecules to explore the structure–activity
relationship based on four hit molecules. These suggested
molecules were meant to capture human “ideation”. The four
hit molecules were then fed into the molecular generators
being tested. The molecular generators were then evaluated
on their ability to propose the “ideal” molecules suggested by
medicinal chemists.

The second test had medicinal chemists evaluate
molecules suggested by the algorithms. For each hit
molecule, medicinal chemists were presented with 75 ideas
generated algorithmically and 25 ideas designed by medicinal
chemists. Molecules were categorized as “like” or “dislike”
based on whether the medicinal chemist would consider
each molecule for synthesis.

For the last test, molecular generators were evaluated on
their ability to generate molecules from six drug patents.
One molecule was chosen as a seed molecule, typically the
marketed drug, from each patent. The seed molecules were
fed to each algorithm. Generated molecules were compared
to the patent. Any generated molecules that matched
molecules in the patent were refed to the algorithm. This
was done in an iterative process meant to mimic design-
make-test cycles.

Bush et al.40 designed these tests to assist medicinal
chemists in picking the best algorithms for generating new
molecules. If a molecular generator is supported by
medicinal chemists, it will hopefully produce more
synthetically accessible molecules with better biochemical
and physicochemical properties. Indeed Bush et al.40 found
that one of the algorithms tested was beneficial. This
algorithm could potentially be incorporated into a
computational based medicinal chemistry design procedure.

Of the three molecular generators tested by Bush et al.,40

none were also tested by Preuer et al.,17 Brown et al.,5 or
Polykovskiy et al.18 In the future it would be interesting to
compare results using methods proposed by Bush et al.40 to
the results of benchmarking models. If GuacaMol5 or
MOSES18 are found to score molecular generators similarly to

how medicinal chemists score them, this would be evidence
that these benchmarks are practical and will be useful for
assessing molecular generators developed in the future.

Conclusions

Herein we have discussed multiple benchmarking methods
for de novo molecular design, which is a growing field in the
realm of drug discovery. As such, there is a need for valid
methods for comparing new models.

Preuer et al.17 proposed the benchmark FCD. They also
showed that including both chemical and biological
information is important for testing generative models. FCD
was incorporated into the benchmarking models GuacaMol
and MOSES.

GuacaMol5 and MOSES18 seem to be, overall, more
complete benchmarking platforms. Not only do they include
datasets for testing, but also multiple different benchmarking
metrics for comparing models. GuacaMol evaluates both
distribution-learning and goal-directed models, while MOSES
focuses primarily on distribution-learning models.

Both GuacaMol and MOSES mention the need for future
improvement of their benchmarking platforms. Brown et al.5

note that some of their benchmarking tasks were too easily
solved by baseline models. This indicates a need for harder
benchmarks. Polykovskiy et al.18 note that in the future they
will expand MOSES' repository with new baseline models and
evaluation metrics.

The shortcomings of benchmarking techniques pointed
out by Renz et al.19 should be considered for future updates
of GuacaMol and MOSES, and for any new benchmarking
models proposed in the future.

To validate benchmarking models in the future it would
be beneficial to compare how medicinal chemists score
molecular generators using methods such as those proposed
by Bush et al.40 to scores generated by benchmarking models.
One of the more difficult areas for benchmarking molecular
generators is assessing synthetic accessibility. Generated
molecules may score well on benchmarks if they are valid
chemical structures that fit well into the desired distribution
of molecules. However, if chemists cannot physically make
suggested molecules for testing, then they are useless.

In the future, benchmarking suites could help
computational medicinal chemists evaluate and improve
models for de novo molecular drug design. This is crucial as
computational models for drug discovery have the potential to
unlock so much of chemical space not currently being explored
by other methods such as high-throughput screening. However,
further studies are needed to validate the efficacy of
benchmarking models such a GuacaMol5 and MOSES18
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