
mikropml: User-Friendly R Package for Supervised Machine 
Learning Pipelines

Begüm D. Topçuoğlu*,3,4, Zena Lapp†,1, Kelly L. Sovacool‡,1, Evan Snitkin3,5, Jenna Wiens2, 
Patrick D. Schloss§,3

1Department of Computational Medicine & Bioinformatics, University of Michigan

2Department of Electrical Engineering & Computer Science, University of Michigan

3Department of Microbiology & Immunology, University of Michigan

4Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA.

5Department of Internal Medicine/Division of Infectious Diseases, University of Michigan

Summary

Machine learning (ML) for classification and prediction based on a set of features is used to 

make decisions in healthcare, economics, criminal justice and more. However, implementing an 

ML pipeline including preprocessing, model selection, and evaluation can be time-consuming, 

confusing, and difficult. Here, we present mikropml (prononced “meek-ROPE em el”), an easy-to

use R package that implements ML pipelines using regression, support vector machines, decision 

trees, random forest, or gradient-boosted trees. The package is available on GitHub, CRAN, and 

conda.

Graphical Abstract

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
§corresponding author.
*co-first author
†co-first author
‡co-first author
Author contributions
BDT, ZL, and KLS contributed equally. Author order among the co-first authors was determined by time since joining the project.
BDT, ZL, and KLS conceptualized the study and wrote the code. KLS structured the code in R package form. BDT, ZL, JW, and PDS 
developed methodology. PDS, ES, and JW supervised the project. BDT, ZL, and KLS wrote the original draft. All authors reviewed 
and edited the manuscript.

Conflicts of interest
None.

HHS Public Access
Author manuscript
J Open Source Softw. Author manuscript; available in PMC 2021 August 18.

Published in final edited form as:
J Open Source Softw. 2021 ; 6(61): . doi:10.21105/joss.03073.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.schlosslab.org/mikropml/
https://github.com/SchlossLab/mikropml/
http://www.schlosslab.org/mikropml/
https://anaconda.org/conda-forge/r-mikropml
https://creativecommons.org/licenses/by/4.0/


Statement of need

Most applications of machine learning (ML) require reproducible steps for data pre

processing, cross-validation, testing, model evaluation, and often interpretation of why 

the model makes particular predictions. Performing these steps is important, as failure to 

implement them can result in incorrect and misleading results (Teschendorff, 2019; Wiens et 

al., 2019).

Supervised ML is widely used to recognize patterns in large datasets and to make 

predictions about outcomes of interest. Several packages including caret (Kuhn, 2008) and 

tidymod els (Kuhn et al., 2020) in R, scikitlearn (Pedregosa et al., 2011) in Python, and the 

H2O autoML platform (H2O.ai, 2020) allow scientists to train ML models with a variety of 

algorithms. While these packages provide the tools necessary for each ML step, they do not 

implement a complete ML pipeline according to good practices in the literature. This makes 

it difficult for practitioners new to ML to easily begin to perform ML analyses.

To enable a broader range of researchers to apply ML to their problem domains, we created 

mikropml, an easy-to-use R package (R Core Team, 2020) that implements the ML pipeline 

created by Topçuoğlu et al. (Topçuoğlu et al., 2020) in a single function that returns a trained 

Topçuoğlu et al. Page 2

J Open Source Softw. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/SchlossLab/mikropml/


model, model performance metrics and feature importance. mikropml leverages the caret 

package to support several ML algorithms: linear regression, logistic regression, support 

vector machines with a radial basis kernel, decision trees, random forest, and gradient 

boosted trees. It incorporates good practices in ML training, testing, and model evaluation 

(Teschendorff, 2019; Topçuoğlu et al., 2020). Furthermore, it provides data preprocessing 

steps based on the FIDDLE (FlexIble Data-Driven pipeLinE) framework outlined in Tang 

et al. (Tang et al., 2020) and post-training permutation importance steps to estimate the 

importance of each feature in the models trained (Breiman, 2001; Fisher et al., 2018).

mikropml can be used as a starting point in the application of ML to datasets from many 

different fields. It has already been applied to microbiome data to categorize patients with 

colorectal cancer (Topçuoğlu et al., 2020), to identify differences in genomic and clinical 

features associated with bacterial infections (Lapp et al., 2020), and to predict gender-based 

biases in academic publishing (Hagan et al., 2020).

mikropml package

The mikropml package includes functionality to preprocess the data, train ML models, 

evaluate model performance, and quantify feature importance (Figure 1). We also provide 

vignettes and an example Snakemake workflow (Köster & Rahmann, 2012) to showcase 

how to run an ideal ML pipeline with multiple different train/test data splits. The results can 

be visualized using helper functions that use ggplot2 (Wickham, 2016).

While mikropml allows users to get started quickly and facilitates reproducibility, it is not a 

replacement for understanding the ML workflow which is still necessary when interpreting 

results (Pollard et al., 2019). To facilitate understanding and enable one to tailor the code 

to their application, we have heavily commented the code and have provided supporting 

documentation which can be read online.

Preprocessing data

We provide the function preprocess_data() to preprocess features using several different 

functions from the caret package. preprocess_data() takes continuous and categorical data, 

re-factors categorical data into binary features, and provides options to normalize continuous 

data, remove features with near-zero variance, and keep only one instance of perfectly 

correlated features. We set the default options based on those implemented in FIDDLE 

(Tang et al., 2020). More details on how to use preprocess_data() can be found in the 

accompanying vignette.

Running ML

The main function in mikropml, run_ml(), minimally takes in the model choice and a 

data frame with an outcome column and feature columns. For model choice, mikropml 

currently supports logistic and linear regression (glmnet: Friedman et al., 2010), support 

vector machines with a radial basis kernel (kernlab: Karatzoglou et al., 2004), decision 

trees (rpart: Therneau et al., 2019), random forest (randomForest: Liaw & Wiener, 2002), 

and gradient-boosted trees (xgboost: Chen et al., 2020). run_ml() randomly splits the data 

Topçuoğlu et al. Page 3

J Open Source Softw. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.schlosslab.org/mikropml/articles/index.html
https://github.com/SchlossLab/mikropml-snakemake-workflow
http://www.schlosslab.org/mikropml/
http://www.schlosslab.org/mikropml/articles/preprocess.html


into train and test sets while maintaining the distribution of the outcomes found in the 

full dataset. It also provides the option to split the data into train and test sets based on 

categorical variables (e.g. batch, geographic location, etc.). mikropml uses the caret package 

(Kuhn, 2008) to train and evaluate the models, and optionally quantifies feature importance. 

The output includes the best model built based on tuning hyperparameters in an internal and 

repeated cross-validation step, model evaluation metrics, and optional feature importances. 

Feature importances are calculated using a permutation test, which breaks the relationship 

between the feature and the true outcome in the test data, and measures the change in model 

performance. This provides an intuitive metric of how individual features influence model 

performance and is comparable across model types, which is particularly useful for model 

interpretation (Topçuoğlu et al., 2020). Our introductory vignette contains a comprehensive 

tutorial on how to use run_ml().

Ideal workflow for running mikropml with many different train/test splits

To investigate the variation in model performance depending on the train and test set used 

(Lapp et al., 2020; Topçuoğlu et al., 2020), we provide examples of how to run_ml() many 

times with different train/test splits and how to get summary information about model 

performance on a local computer or on a high-performance computing cluster using a 

Snakemake workflow.

Tuning & visualization

One particularly important aspect of ML is hyperparameter tuning. We provide a reasonable 

range of default hyperparameters for each model type. However practitioners should 

explore whether that range is appropriate for their data, or if they should customize the 

hyperparameter range. Therefore, we provide a function plot_hp_performance() to plot the 

cross-validation performance metric of a single model or models built using different train/

test splits. This helps evaluate if the hyperparameter range is being searched exhaustively 

and allows the user to pick the ideal set. We also provide summary plots of test performance 

metrics for the many train/test splits with different models using plot_model_performance(). 

Examples are described in the accompanying vignette on hyperparameter tuning.

Dependencies

mikropml is written in R (R Core Team, 2020) and depends on several packages: dplyr 

(Wickham et al., 2020), rlang (Henry et al., 2020) and caret (Kuhn, 2008). The ML 

algorithms supported by mikropml require: glmnet (Friedman et al., 2010), e1071 (Meyer 

et al., 2020), and MLmetrics (Yan, 2016) for logistic regression, rpart2 (Therneau et al., 

2019) for decision trees, randomForest (Liaw & Wiener, 2002) for random forest, xgboost 

(Chen et al., 2020) for xgboost, and kernlab (Karatzoglou et al., 2004) for support vector 

machines. We also allow for parallelization of cross-validation and other steps using the 

foreach, doFuture, future.apply, and future packages (Bengtsson & Team, 2020). Finally, we 

use ggplot2 for plotting (Wickham, 2016).

Topçuoğlu et al. Page 4

J Open Source Softw. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.schlosslab.org/mikropml/articles/introduction.html
http://www.schlosslab.org/mikropml/articles/parallel.html
https://github.com/SchlossLab/mikropml-snakemake-workflow
http://www.schlosslab.org/mikropml/articles/tuning.html


Acknowledgments

We thank members of the Schloss Lab who participated in code clubs related to the initial development of the 
pipeline, made documentation improvements, and provided general feedback. We also thank Nick Lesniak for 
designing the mikropml logo.

We thank the US Research Software Sustainability Institute (NSF #1743188) for providing training to KLS at the 
Winter School in Research Software Engineering.

Funding

Salary support for PDS came from NIH grant 1R01CA215574. KLS received support from the NIH Training 
Program in Bioinformatics (T32 GM070449). ZL received support from the National Science Foundation Graduate 
Research Fellowship Program under Grant No. DGE 1256260. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of 
the National Science Foundation.

References

Bengtsson H, & Team RC (2020). Future.apply: Apply Function to Elements in Parallel using Futures.

Breiman L (2001). Random forests. Machine Learning, 45(1), 5–32. 10.1023/A:1010933404324

Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T, Li M, 
Xie J, Lin M, Geng Y, Li Y, & implementation), X. contributors (base. X. (2020). Xgboost: Extreme 
Gradient Boosting.

Fisher A, Rudin C, & Dominici F (2018). All models are wrong, but many are useful: Learning a 
variable’s importance by studying an entire class of prediction models simultaneously.

Friedman JH, Hastie T, & Tibshirani R (2010). Regularization Paths for Generalized Linear Models via 
Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. 10.18637/jss.v033.i01 [PubMed: 
20808728] 

H2O.ai. (2020). H2O: Scalable machine learning platform [Manual].

Hagan AK, Topçuoğlu BD, Gregory ME, Barton HA, & Schloss PD (2020). Women Are 
Underrepresented and Receive Differential Outcomes at ASM Journals: A Six-Year Retrospective 
Analysis. mBio, 11(6). 10.1128/mBio.01680-20

Henry L, Wickham H, & RStudio. (2020). Rlang: Functions for Base Types and Core R and 
‘Tidyverse’ Features.

Karatzoglou A, Smola A, Hornik K, & Zeileis A (2004). Kernlab - An S4 Package for Kernel Methods 
in R. Journal of Statistical Software, 11(1), 1–20. 10.18637/jss.v011.i09

Köster J, & Rahmann S (2012). Snakemakea scalable bioinformatics workflow engine.Bioinformatics, 
28(19), 2520–2522. 10.1093/bioinformatics/bts480 [PubMed: 22908215] 

Kuhn M (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical 
Software, 28(1), 1–26. 10.18637/jss.v028.i05 [PubMed: 27774042] 

Kuhn M, Wickham H, & RStudio. (2020). Tidymodels: Easily Install and Load the ‘Tidymodels’ 
Packages.

Lapp Z, Han J, Wiens J, Goldstein EJ, Lautenbach E, & Snitkin E (2020). Machine learning models 
to identify patient and microbial genetic factors associated with carbapenem-resistant Klebsiella 
pneumoniae infection. medRxiv, 2020.07.06.20147306. 10.1101/2020.07.06.20147306

Liaw A, & Wiener M (2002). Classification and Regression by randomForest. 2, 5.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, C++-code), C.-C. C. (libsvm., & 
C++-code), C.-C. L. (libsvm. (2020). E1071: Misc Functions of the Department of Statistics, 
Probability Theory Group (Formerly: E1071), TU Wien.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, 
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, & Duchesnay 
É (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 
12(85), 2825–2830.

Topçuoğlu et al. Page 5

J Open Source Softw. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pollard TJ, Chen I, Wiens J, Horng S, Wong D, Ghassemi M, Mattie H, Lindemer E, & Panch T 
(2019). Turning the crank for machine learning: Ease, at what expense? The Lancet Digital Health, 
1(5), e198–e199. 10.1016/S2589-7500(19)30112-8 [PubMed: 33323266] 

R Core Team. (2020). R: A Language and Environment for Statistical Computing.

Tang S, Davarmanesh P, Song Y, Koutra D, Sjoding MW, & Wiens J (2020). Democratizing EHR 
analyses with FIDDLE: A flexible data-driven preprocessing pipeline for structured clinical data. J 
Am Med Inform Assoc. 10.1093/jamia/ocaa139

Teschendorff AE (2019). Avoiding common pitfalls in machine learning omic data science. Nature 
Materials, 18(5), 422–427. 10.1038/s41563-018-0241-z [PubMed: 30478452] 

Therneau T, Atkinson B, port BR(producer. of the initial R., & 1999–2017), maintainer. (2019). Rpart: 
Recursive Partitioning and Regression Trees.

Topçuoğlu BD, Lesniak NA, Ruffin MT, Wiens J, & Schloss PD (2020). A Framework for Effective 
Application of Machine Learning to Microbiome-Based Classification Problems. mBio, 11(3). 
10.1128/mBio.00434-20

Wickham H (2016). Ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing. 
10.1007/978-3-319-24277-4

Wickham H, François R, Henry L, Müller K, & RStudio. (2020). Dplyr: A Grammar of Data 
Manipulation.

Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale 
D, Saeed M, Ossorio PN, Thadaney-Israni S, & Goldenberg A (2019). Do no harm: A 
roadmap for responsible machine learning for health care. Nat. Med, 25(9), 1337–1340. 10.1038/
s41591-019-0548-6 [PubMed: 31427808] 

Yan Y (2016). MLmetrics: Machine Learning Evaluation Metrics.

Topçuoğlu et al. Page 6

J Open Source Softw. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
mikropml pipeline

Topçuoğlu et al. Page 7

J Open Source Softw. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Graphical Abstract
	Statement of need
	mikropml package
	Preprocessing data
	Running ML
	Ideal workflow for running mikropml with many different train/test splits
	Tuning & visualization
	Dependencies
	References
	Figure 1:

