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Summary

Machine learning (ML) for classification and prediction based on a set of features is used to 

make decisions in healthcare, economics, criminal justice and more. However, implementing an 

ML pipeline including preprocessing, model selection, and evaluation can be time-consuming, 

confusing, and difficult. Here, we present mikropml (prononced “meek-ROPE em el”), an easy-to

use R package that implements ML pipelines using regression, support vector machines, decision 

trees, random forest, or gradient-boosted trees. The package is available on GitHub, CRAN, and 

conda.
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Statement of need

Most applications of machine learning (ML) require reproducible steps for data pre

processing, cross-validation, testing, model evaluation, and often interpretation of why 

the model makes particular predictions. Performing these steps is important, as failure to 

implement them can result in incorrect and misleading results (Teschendorff, 2019; Wiens et 

al., 2019).

Supervised ML is widely used to recognize patterns in large datasets and to make 

predictions about outcomes of interest. Several packages including caret (Kuhn, 2008) and 

tidymod els (Kuhn et al., 2020) in R, scikitlearn (Pedregosa et al., 2011) in Python, and the 

H2O autoML platform (H2O.ai, 2020) allow scientists to train ML models with a variety of 

algorithms. While these packages provide the tools necessary for each ML step, they do not 

implement a complete ML pipeline according to good practices in the literature. This makes 

it difficult for practitioners new to ML to easily begin to perform ML analyses.

To enable a broader range of researchers to apply ML to their problem domains, we created 

mikropml, an easy-to-use R package (R Core Team, 2020) that implements the ML pipeline 

created by Topçuoğlu et al. (Topçuoğlu et al., 2020) in a single function that returns a trained 
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model, model performance metrics and feature importance. mikropml leverages the caret 

package to support several ML algorithms: linear regression, logistic regression, support 

vector machines with a radial basis kernel, decision trees, random forest, and gradient 

boosted trees. It incorporates good practices in ML training, testing, and model evaluation 

(Teschendorff, 2019; Topçuoğlu et al., 2020). Furthermore, it provides data preprocessing 

steps based on the FIDDLE (FlexIble Data-Driven pipeLinE) framework outlined in Tang 

et al. (Tang et al., 2020) and post-training permutation importance steps to estimate the 

importance of each feature in the models trained (Breiman, 2001; Fisher et al., 2018).

mikropml can be used as a starting point in the application of ML to datasets from many 

different fields. It has already been applied to microbiome data to categorize patients with 

colorectal cancer (Topçuoğlu et al., 2020), to identify differences in genomic and clinical 

features associated with bacterial infections (Lapp et al., 2020), and to predict gender-based 

biases in academic publishing (Hagan et al., 2020).

mikropml package

The mikropml package includes functionality to preprocess the data, train ML models, 

evaluate model performance, and quantify feature importance (Figure 1). We also provide 

vignettes and an example Snakemake workflow (Köster & Rahmann, 2012) to showcase 

how to run an ideal ML pipeline with multiple different train/test data splits. The results can 

be visualized using helper functions that use ggplot2 (Wickham, 2016).

While mikropml allows users to get started quickly and facilitates reproducibility, it is not a 

replacement for understanding the ML workflow which is still necessary when interpreting 

results (Pollard et al., 2019). To facilitate understanding and enable one to tailor the code 

to their application, we have heavily commented the code and have provided supporting 

documentation which can be read online.

Preprocessing data

We provide the function preprocess_data() to preprocess features using several different 

functions from the caret package. preprocess_data() takes continuous and categorical data, 

re-factors categorical data into binary features, and provides options to normalize continuous 

data, remove features with near-zero variance, and keep only one instance of perfectly 

correlated features. We set the default options based on those implemented in FIDDLE 

(Tang et al., 2020). More details on how to use preprocess_data() can be found in the 

accompanying vignette.

Running ML

The main function in mikropml, run_ml(), minimally takes in the model choice and a 

data frame with an outcome column and feature columns. For model choice, mikropml 

currently supports logistic and linear regression (glmnet: Friedman et al., 2010), support 

vector machines with a radial basis kernel (kernlab: Karatzoglou et al., 2004), decision 

trees (rpart: Therneau et al., 2019), random forest (randomForest: Liaw & Wiener, 2002), 

and gradient-boosted trees (xgboost: Chen et al., 2020). run_ml() randomly splits the data 
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into train and test sets while maintaining the distribution of the outcomes found in the 

full dataset. It also provides the option to split the data into train and test sets based on 

categorical variables (e.g. batch, geographic location, etc.). mikropml uses the caret package 

(Kuhn, 2008) to train and evaluate the models, and optionally quantifies feature importance. 

The output includes the best model built based on tuning hyperparameters in an internal and 

repeated cross-validation step, model evaluation metrics, and optional feature importances. 

Feature importances are calculated using a permutation test, which breaks the relationship 

between the feature and the true outcome in the test data, and measures the change in model 

performance. This provides an intuitive metric of how individual features influence model 

performance and is comparable across model types, which is particularly useful for model 

interpretation (Topçuoğlu et al., 2020). Our introductory vignette contains a comprehensive 

tutorial on how to use run_ml().

Ideal workflow for running mikropml with many different train/test splits

To investigate the variation in model performance depending on the train and test set used 

(Lapp et al., 2020; Topçuoğlu et al., 2020), we provide examples of how to run_ml() many 

times with different train/test splits and how to get summary information about model 

performance on a local computer or on a high-performance computing cluster using a 

Snakemake workflow.

Tuning & visualization

One particularly important aspect of ML is hyperparameter tuning. We provide a reasonable 

range of default hyperparameters for each model type. However practitioners should 

explore whether that range is appropriate for their data, or if they should customize the 

hyperparameter range. Therefore, we provide a function plot_hp_performance() to plot the 

cross-validation performance metric of a single model or models built using different train/

test splits. This helps evaluate if the hyperparameter range is being searched exhaustively 

and allows the user to pick the ideal set. We also provide summary plots of test performance 

metrics for the many train/test splits with different models using plot_model_performance(). 

Examples are described in the accompanying vignette on hyperparameter tuning.

Dependencies

mikropml is written in R (R Core Team, 2020) and depends on several packages: dplyr 

(Wickham et al., 2020), rlang (Henry et al., 2020) and caret (Kuhn, 2008). The ML 

algorithms supported by mikropml require: glmnet (Friedman et al., 2010), e1071 (Meyer 

et al., 2020), and MLmetrics (Yan, 2016) for logistic regression, rpart2 (Therneau et al., 

2019) for decision trees, randomForest (Liaw & Wiener, 2002) for random forest, xgboost 

(Chen et al., 2020) for xgboost, and kernlab (Karatzoglou et al., 2004) for support vector 

machines. We also allow for parallelization of cross-validation and other steps using the 

foreach, doFuture, future.apply, and future packages (Bengtsson & Team, 2020). Finally, we 

use ggplot2 for plotting (Wickham, 2016).
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Figure 1: 
mikropml pipeline
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