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Abstract

Accurate segmentation of corneal layers depicted on optical coherence tomography (OCT) images
is very helpful for quantitatively assessing and diagnosing corneal diseases (¢e.g., keratoconus

and dry eye). In this study, we presented a novel boundary-guided convolutional neural network
(CNN) architecture (BG-CNN) to simultaneously extract different corneal layers and delineate
their boundaries. The developed BG-CNN architecture used three convolutional blocks to
construct two network modules on the basis of the classical U-Net network. We trained and
validated the network on a dataset consisting of 1,712 OCT images acquired on 121 subjects using
a 10-fold cross-validation method. Our experiments showed an average dice similarity coefficient
(DSC) of 0.9691, an intersection over union (IOU) of 0.9411, and a Hausdorff distance (HD) of
7.4423 pixels. Compared with several other classical networks, namely U-Net, Attention U-Net,
Asymmetric U-Net, BiO-Net, CE-Net, CPFnte, M-Net, and Deeplabv3, on the same dataset,

the developed network demonstrated a promising performance, suggesting its unique strength in
segmenting corneal layers depicted on OCT images.
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1. Introduction

As the clear outer layer at the front of the eye, the cornea plays a critical role in

vision by focusing light so that an object can be seen clearly [1]. Any morphological
changes of the cornea tissue (e.g., bending angle, thickness, and volume) can lead to

vision problems [2,3]. Hence, quantitative analysis of the cornea tissue, especially its
morphological characteristics, may facilitate the detection and diagnosis of various corneal
diseases [4], such as keratoconus [5], corneal graft rejection [6], and dry eye. To accurately
assess the morphological changes, a necessary step is the segmentation of the corneal layers
[7]. In clinical practice, optical coherence tomography (OCT) is widely used to visualize
corneal tissue [8]. However, on OCT images, adjacent corneal layers appear very similar in
density and texture, as demonstrated by the example in Fig. 1, making it very challenging to
accurately delineate individual layers. Manually segmenting these layers is time-consuming
and associated with the higher inter- and intra-reader variability [9,10]. Therefore, it is
extremely desirable to develop computerized methods that can automatically and accurately
segment the corneal layers.

There have been investigative efforts made to develop various computerized methods in

an attempt to accurately segment corneal layers depicted on OCT images [11,12]. Larocca
et al. [13] extracted corneal layers from OCT images using graph theory and dynamic
programming. Eichel et al. [14] used a semi-automatic approach to detect the boundaries of
corneal layers using morphological operations. Elsawy et al. [15] developed a graph-based
method to segment multiple corneal layers. These approaches typically used traditional
computer vision technologies and pre-defined image features [16,17] to identify the corneal
layers. There are limitations with these methods. First, they are sensitive to the image quality
and especially the contrast of the corneal layers with surrounding tissues [18]. Second, there
are many empirical parameters involved in these methods that may affect the segmentation
performance. All these limit their applications to clinical practice.

In the past years, deep learning technology, namely the convolutional neural network
(CNN), is emerging and drawing significant attention in the area of medical image analysis
due to its remarkable performance [19-21]. The strength of the deep learning approach

lies in its capability of automatically learning a large number of image features and
optimally combine them via a sequence of convolutional [22—-24] and activation [25-27]
operations. The widely used CNN architectures include the U-Net [28], Attention U-Net
[29], Asymmetric U-Net [20], BiO-Net [30], CE-Net [31], CPFnet [32], M-Net [33], and
Deeplabv3 [34]. Santos et al. [35] proposed a segmentation network termed CorneaNet,
which is a variant of the U-Net, for segmenting cornea tissues on OCT images. Similarly,
Fabijanska et al. [36] used another variant of the U-Net to extract endothelial cells from
specular microscopy images and assess the health status of the corneal endothelium. The
deep learning approaches demonstrated higher performance, especially along with extensive
data augmentation [19] or adversarial training strategies [37], than the traditional computer
vision approaches. They, however, obtained unsmooth object boundaries, which were
primarily caused by the involved multiple down-sampling operations. These down-sampling
operations largely reduced the amount of features associated with target objects that cannot

Pattern Recognit. Author manuscript; available in PMC 2021 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wang et al.

2.

Page 3

be recovered in the subsequent procedures [38,39]. This limitation may affect the accurate
identification of small corneal layers depicted on OCT images.

In this study, we described a novel boundary-guided CNN architecture (termed BG-CNN) to
automatically and accurately extract different corneal layers on OCT images. The developed
architecture was formed by three different convolutional blocks, all of which used element-
wise subtraction to detect image features associated with object boundaries. We expected
that this characteristic could alleviate the problem caused by the aforementioned down-
sampling operations to some extent and thereby enable an accurate segmentation. A detailed
description of the methods and the experimental results follows.

Method

2.1. Scheme overview

Fig. 2 showed the developed BG-CNN architecture for simultaneously extracting corneal
layers and their boundaries depicted on OCT images. This architecture was formed by

an object extraction module (OEM) and an edge detection module (EDM). The former

was used to encode the input image by learning image features and decode these features

to determine whether each pixel belongs to the object of interest or background. The

latter was used to guide the segmentation by extracting the boundaries of the objects. The
intermediate convolutional features in the two modules were integrated to facilitate accurate
image segmentation. (The source codes of the developed network can be found at https:/
github.com/wmulLei/CornealSegmentation).

2.2. Object extraction module (OEM)

The OEM improved the classical U-Net network by introducing two different convolutional
blocks (7.e., the encoding and decoding blocks), as shown in Fig. 2. The encoding

block utilized three convolutional layers to convert the input images or features to two
different outputs, namely the edge and object convolutional features, respectively. Each layer
included a 3x3 convolutional operation (Conv3x3), a batch normalization (BN) [26], and

an element-wise rectified linear unit (ReLU) activation [25]. The convolutional layers had
the same number of convolutional kernels or filters, and their convolutional features were
processed using the element-wise subtraction and concatenation operations, along with the
image depth dimension, to capture the edge and object convolutional features, respectively
(see Fig. 3a). The captured object convolutional features were down-sampled by using

a 2x2 MaxPooling layer (MaxPooling2x2) to reduce redundant image information. After
alternating the encoding and down-sampling operations, the input images were converted to
object and edge convolutional features with varying dimensions and hierarchies, which were
applied for the object segmentation and its boundary delineation, respectively. The object
convolutional features were processed using a 2x2 UpSampling layer (UpSampling2x2) and
fed into a decoding block, together with another three features (two from the OEM and

one from EDM) via the binary and unary copy operations, respectively. All these features
were concatenated in the decoding block and processed using a similar scheme to the
encoding block (in Fig. 3b). The last decoding features were fed into a 1x1 convolution
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layer (Conv1x1) with a sigmoid activation function to achieve a probability map for the
segmented objects in the entire image regions.

2.3. Edge detection module (EDM)

The EDM was developed to detect the object boundaries and meanwhile largely alleviate

the problem caused by the multiple down-sampling operations. It decoded the obtained edge
convolutional features using a novel convolutional block (termed the edge-aware block). In
this block, two different edge convolutional features were concatenated and processed by

a sequence of two convolutional layers and an element-wise subtraction operation (in Fig.
4). The processed results were then up-sampled and fed into the subsequent edge-aware and
decoding blocks, respectively. After repeating the operations, object boundaries were located
using the Conv1x1 with a sigmoid activation function.

In the developed BG-CNN architecture, the subtraction operation was used to capture a
variety of edge information and detect object morphological changes. Its introduction was
inspired by a traditional edge detection method [40], where the element-wise intensity
differences between a given image and its Gaussian filtered version can highlight a variety
of edge information, as shown by the example in Fig. 5. This characteristic can improve the
sensitivity of the three convolutional blocks to the object boundaries and thus improved the
segmentation accuracy.

2.4. The training of the BG-CNN

The developed BG-CNN architecture was implemented through the Keras library, and
trained on a PC with a 2.20 GHz 2.19 GHz Intel(R) Xeon(R) Gold 5120 CPU, 64 GB

RAM and NVIDIA GeForce GTX 2080Ti. The dice similarity coefficient (DSC) [41] was
used as the loss function for the target objects and their boundaries (termed DSC,and DSCy,
respectively) since it can effectively alleviate the data imbalance problem across the classes
and reduce the impact of the irrelevant image background. The loss function Ly, Was given

by:
Liotas = ADSC,+ (1 — 1)DSCy 1)
2 a;b;
DSC, = DSC, = % @
2oai + Xobi

where A is a non-negative weighting factor and set at 0.5 by default, a;and 6, denote

the segmentation results of pixel 7obtained by a given method and manual annotation,
respectively. Q is the image domain. L, was optimized by the stochastic gradient descent
(SGD) algorithm with an initial learning rate (LR) of 0.01 and a momentum of 0.9. The LR
was reduced by a factor of 0.1 every 20 epochs. A total of 100 epochs were used for the
network training, and the batch size was assigned to 8 with consideration of the capability
of the graphics processing unit (GPU). An early stopping scheme was applied to avoid
unnecessary optimization if the DSC did not improve for continuous 20 epochs. During the
training, we augmented the images to improve the robustness of the trained models. The
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augmentation operations included randomly flip along the vertical axis, translation by —10 to
10 percent per axis, rotation from —10 to 10 in degree, and scaling from 0.9 to 1.1.

2.5. The dataset for development and validation

To develop and validate the GB-CNN architecture, we collected a corneal dataset consisting
of OCT images acquired on 121 patients at the Wenzhou Medical University (WMU)

Eye Hospital. These images were obtained using a three-module superluminescent diode
(SLD) light source (Broadlighter, T840-HP, Superlumdiodes Ltd, Moscow, Russia) with a
center wavelength of 840 nm. A full-width-at-half-maximum bandwidth of 100 nm, had
approximately 3 um of axial resolution in corneal tissue with a scan speed of 24k A-lines
per second. The acquirement of the dataset was approved by the Ethical Review Board of the
Wenzhou Medical University, together with the patients’ informed consent (No. Y-2015032).
This dataset contained a total of 1,712 two-dimensional OCT images with a dimension of
2,048 x 1,365 pixels. The epithelium and stroma layers depicted on these images were
manually annotated as the ground truths for machine learning and performance validation
(in Fig. 6). Notably, due to the very weak contrast, the Bowman’s layer located between the
epithelium and stroma layers was not annotated but contained in the stroma layer (see Fig.
1). In addition, only central regions of the images were processed to reduce the variability

of the subjective annotations. The collected images and their annotated results were resized
to a dimension of 256x256 pixels and randomly divided into three independent parts at the
patient level by a ratio of 0.75, 0.15, and 0.1 for training (7= 1285), interval validation (n=
255), and independent testing (7= 172), respectively.

2.6. Performance validation
We validated the performance of the developed CNN architecture on the independent
testing dataset. The agreement between the computerized results and the manual results
was quantitatively assessed using the DSC, intersection over union (I0OU) [42], balanced
accuracy (BAC), and Hausdorff distance (HD) [21]. The 10U, BAC, and HD can be given,
respectively, by:

b
10U = 2 aib; @

ZQ(“? + b} - aibi)

BAC = %(Se +Sp) Q]

HD =max (d(A, B), d(B, A)) (5)

where Se=Tp/ (Tp+ Fn)and Sp= Tnl (T n+ F p) are the sensitivity and specificity
for a segmentation method. Tp, Tn, Fp, and Fn denote true positive, true negative, false

positive, and false negative, respectively. d(A, B) = max min |u — | i$ the directed Hausdorff
ue AveB

distance from point set A to point set B. A larger value for the DSC, 10U and BAC and a
smaller one for the HD mean a better segmentation result. We compared the segmentation
performance of the developed algorithm with other classical CNN methods, including the
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U-Net, Attention U-Net (AT-Net), Asymmetric U-Net (AS-Net), BiO-Net, CE-Net, CPFnet
with the pre-trained ‘ResNet34’ [32], M-Net, and Deeplabv3 with the backbone network
‘xception’ [34], on the same dataset and configuration. Note that (1) the training dimension
of 448x448 was used for the CE-Net, (2) the LR of the SGD was set to 0.1 and 1 for the
M-Net and CPFnet, respectively, (3) the CPFnet was not activated by the softmax function
but by the sigmoid function, through the Pytorch library, for two different corneal layers.

To statistically assess the performance differences of these segmentation methods, the paired
ttest was performed based on the IOU and HD metrics. A p-value less than 0.05 was
considered statistically significant.

3. Results

3.1. Segmentation of the corneatissues

3.2.

Table 1 summarized the segmentation results of the developed BG-CNN on the collected
OCT images using the 10-fold cross-validation method. As demonstrated by these results,
the developed network achieved the average DSC, 10U, BAC, Se and HD of 0.9691, 0.9411,
0.9834, 0.9703, and 7.4423, respectively for both the epithelium and stroma layers. This
suggested that our developed BG-CNN had promising potential to extract the corneal layers
from OCT images, as compared with the manual annotations. Fig. 7 visually displayed the
performance of the BG-CNN on several OCT images.

Performance comparison

Tables 2-4 presented the performance differences among the U-Net, AT-Net, AS-Net, BiO-
Net, CE-Net, CPFnet, M-Net, Deeplabv3 and BG-CNN in identifying the epithelium and
stroma layers depicted on the collected OCT images using the 10-fold cross-validation
method. It can be seen from their segmentation results that the U-Net, AT-Net, AS-Net,
BiO-Net, CE-Net, and BG-CNN had very similar performance, all of which outperformed
the CPFnet, M-Net and Deeplabv3 significantly. Specifically, the BG-CNN achieved the
average DSC, 10U and HD of 0.9691, 0.9411, and 7.4423 respectively for two different
corneal layers. It was very slightly inferior to the BiO-Net (0.9690, 0.9410, and 7.1981), but
superior to the U-Net (0.9684, 0.9397, and 7.3044), AT-Net (0.9682, 0.9395, and 7.1852),
AS-Net (0.9685, 0.9402, and 7.395), CE-Net (0.9682, 0.9395, and 7.4599), CPFnet (0.9586,
0.9227, and 7.5743), M-Net (0.9599, 0.9243, and 7.4672) and Deeplabv3 (0.9605, 0.9254,
and 7.5064). The examples in Fig. 8 showed the computerized results by the developed
algorithm, the U-Net, AT-Net, AS-Net, BiO-Net, CE-Net, CPFnet, M-Net, and Deeplabv3 in
identifying the epithelium and stroma layers depicted on OCT images.

3.3. Ablation study

Tables 5 and 6 demonstrated the impact of the parameter A and the LR for the SGD
algorithm, respectively, on the performance of the developed CNN model. The parameter
was set to 0.3, 0.5, and 0.7 separately for the same segmentation experiments, while the LR
was set to 0.1, 0.01, and 0.001 for the SGD algorithm. The experiments showed that the
developed network had the best performance when the parameter and LR were set to 0.5 and
0.01, as compared with those of the other values in image segmentation.
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Table 7 presented the impact of the subtraction operation on the segmentation performance
of the developed CNN architecture, which was combined with different element-wise
operations (/.¢., the addition [42], multiplication [43], and subtraction [20]) to extract two
corneal layers depicted on OCT images. As showed by the results, the model with the
subtraction operation had the higher accuracy than its counterparts with the addition and
multiplication operations in terms of the DSC, 10U and HD.

4. Discussion

We developed a novel CNN architecture called BG-CNN to automatically segment corneal
layers on OCT images and validated it using the 10-fold cross-validation method. The
developed architecture used two different network modules to extract target objects and
their boundaries. The integration of the two modules aims to largely alleviate the problems
caused by the multiple down-sampling operations and thus effectively deal with the object
boundaries with limited sensitivity to image artifact or noise. As a way to highlight

the advantage of the developed method in segmentation performance, we compared the
performance of the developed CNN model with the other eight available networks (/.e., the
U-Net, AT-Net, AS-Net, BiO—Net, CE-Net, CPFnet, M-Net, and Deeplabv3) on the same
dataset. Our quantitative experiments demonstrated the developed BG-CNN was slightly
inferior to the BiO-Net, but significantly superior to the other seven segmentation models
based on the same dataset (see Tables 2-4). However, the developed network needs much
more time for the training procedures (7.329 h) than the U-Net (6.968 h), AS-Net (6.810 h),
M-Net (7.046 h), and CPFnet (4.4727 h), but less than the AT-Net (8.127 h), BiO—Net (7.496
h), CE-Net (19.551 h), and Deeplabv3 (15.247 h).

The involved networks demonstrated very different segmentation performance when
compared with previous studies [31-33]. For example, the CE-Net and CPFnet were inferior
to the U-Net in our experiment, but superior to it in the studies [32,33]. The performance
differences of these networks in different studies may be caused by the following facts: First,
many different backbone networks were used for the involved networks (e.g., U-Net and
Deeplabv3), making their performance very different. Second, the involved networks were
trained using different image dimensions, data augmentation technologies, cost functions,
optimization algorithms as well as the learning rates. This can lead to a large performance
difference for a given network in different segmentation experiments. Third, some invovled
networks were performed using different deep learning libraries (/.e., Keras and Pytorch),
making some convolutional operations have slight different results, and thus giving rise

to different segmentation performance. However, given the same dataset and experiment
configuration, the developed network showed reasonable potential to identify corneal layers
depicted on OCT images, as compared with the other eight segmentation networks.

In CNN-based deep learning, the cost function is used to assess the agreement between the
output of a segmentation network and the ground truth (e.g., manual annotations by human
experts). In our application, there are two target objects. Hence, it is natural to use two
cost functions for each object, thereby leading to a weighted loss function. The weighted
loss function was optimized to assure that the segmented regions agree with their manual
annotations as well as possible. If only one loss function was used (7.e., A=0 or 1), the
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target objects and their boundaries cannot be taken into account simultaneously, ultimately
leading to the degradation of the segmentation performance. That is why the weighting
parameter A was set to 0.5 (Table 5). For segmentation purposes, the DSC has some unique
characteristics, such as (1) DSC considers both the false positive and the false negative and
(2) can effectively alleviate the class imbalance problem that the image backgrounds contain
much more pixels than the foreground regions.

We are aware that there are limitations with this study. First, the developed CNN architecture
may not identify the cornea layers well for some images with very poor qualities, such

as those in Fig. 10. The extremely low contrast reduced the sensitivity of the introduced
convolutional blocks to the object boundaries. It remains a challenge to identify the cornea
layers on the images with very poor quality. Second, the introduction of the EDM module
leads to an increase of the parameter number in the BG-CNN models, which makes it
relatively time-consuming to train the model. Third, we trained the CNN models using a
small image size (7.e., 256x256 pixels) due to the limited GPU memory of the computer.
Due to the small image size or resolution, some detailed structures may be lost and thus
lead to inaccurate segmentation. This can be partly alleviated by using a larger image size
(e.g., 512 x512 pixels), but need a very high requirement on computer hardware for the
training procedures [44-46]. Despite these limitations, the developed network demonstrated
an exciting performance in segmenting various corneal layers depicted on OCT images.

Conclusion

We described a novel CNN architecture, namely BG-CNN, for automated segmentation of
the corneal layers depicted on OCT images. Its novelty lies in the introduction of three
convolutional blocks and two network modules. The underlying motivation was to extract
target objects and their boundaries. Given the correlation between the objects and their
boundaries, the integration of two modules can accelerate the detection / location of the
objects and lead to a more accurate and reliable segmentation of the corneal layers depicted
on OCT images. Our experiments demonstrated that the developed CNN architecture
consistently outperforms the available classical CNN models under the same training and
validation conditions. In the future, we will test the developed architecture on other types of
medical images (e.g., color fundus images) to verify its generic characteristic.
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Stroma layer

Fig. 1.
An example showing the corneal tissue on an OCT image (left) and its local enlargement

(right), where three different corneal layers are labeled.
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Fig. 2.
The developed BG-CNN architecture for extracting corneal layers and their boundaries from

OCT images. This architecture was formed by an object extraction module and an edge
detection module, which were defined by three convolutional blocks.
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The introduced encoding (a) and decoding (b) blocks in the developed BG-CNN
architecture, both of which included three convolutional layers, the element-wise
subtraction, and concatenation operations to obtain the image features.
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Fig. 4.
The developed edge-aware convolutional block in the EDM module.
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Fig. 5.
An example showing the intensity differences (right) between a given image (left) and its

Gaussian filtered version (middle). On the difference image (right), the subtle features can
be effectively highlighted, as indicated by the arrows.

Pattern Recognit. Author manuscript; available in PMC 2021 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wang et al. Page 17

Fig. 6.
Examples showing the OCT images from our collected dataset (the top row) and their

manual annotations (the bottom row).
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Fig. 7.
[llustration of the performance of the developed BG-CNN network. The first three rows are

the OCT images and their segmentation results by manual annotations and the BG-CNN,
respectively. The last two rows are the boundaries of different corneal layers obtained by
manual annotations and the BG-CNN, respectively.
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Fig. 8.
Performance differences of the involved eight segmentation networks in identifying the

epithelium and stroma layers from four OCT images. The first row is the manual annotations
of the given OCT images. The last seven rows are the segmentation results obtained by

the U-Net, AT-Net, AS-Net, BiO-Net, CE-Net, CPFnet, M-Net, Deeplabv3, and BG-CNN,
respectively.
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Fig. 9.
The boundaries of the epithelium and stroma layers identified by the BG-CNN for the

OCT images in Fig. 8. The first two rows are the original OCT images and their manually
annotated boundaries. The last row is the results obtained by the BG-CNN network.
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Fig. 10.
The segmentation results of the developed network on three different OCT images with very

weak contrast or severe artifact.
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