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Abstract

Accurate segmentation of corneal layers depicted on optical coherence tomography (OCT) images 

is very helpful for quantitatively assessing and diagnosing corneal diseases (e.g., keratoconus 

and dry eye). In this study, we presented a novel boundary-guided convolutional neural network 

(CNN) architecture (BG-CNN) to simultaneously extract different corneal layers and delineate 

their boundaries. The developed BG-CNN architecture used three convolutional blocks to 

construct two network modules on the basis of the classical U-Net network. We trained and 

validated the network on a dataset consisting of 1,712 OCT images acquired on 121 subjects using 

a 10-fold cross-validation method. Our experiments showed an average dice similarity coefficient 

(DSC) of 0.9691, an intersection over union (IOU) of 0.9411, and a Hausdorff distance (HD) of 

7.4423 pixels. Compared with several other classical networks, namely U-Net, Attention U-Net, 

Asymmetric U-Net, BiO-Net, CE-Net, CPFnte, M-Net, and Deeplabv3, on the same dataset, 

the developed network demonstrated a promising performance, suggesting its unique strength in 

segmenting corneal layers depicted on OCT images.
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1. Introduction

As the clear outer layer at the front of the eye, the cornea plays a critical role in 

vision by focusing light so that an object can be seen clearly [1]. Any morphological 

changes of the cornea tissue (e.g., bending angle, thickness, and volume) can lead to 

vision problems [2,3]. Hence, quantitative analysis of the cornea tissue, especially its 

morphological characteristics, may facilitate the detection and diagnosis of various corneal 

diseases [4], such as keratoconus [5], corneal graft rejection [6], and dry eye. To accurately 

assess the morphological changes, a necessary step is the segmentation of the corneal layers 

[7]. In clinical practice, optical coherence tomography (OCT) is widely used to visualize 

corneal tissue [8]. However, on OCT images, adjacent corneal layers appear very similar in 

density and texture, as demonstrated by the example in Fig. 1, making it very challenging to 

accurately delineate individual layers. Manually segmenting these layers is time-consuming 

and associated with the higher inter- and intra-reader variability [9,10]. Therefore, it is 

extremely desirable to develop computerized methods that can automatically and accurately 

segment the corneal layers.

There have been investigative efforts made to develop various computerized methods in 

an attempt to accurately segment corneal layers depicted on OCT images [11,12]. Larocca 

et al. [13] extracted corneal layers from OCT images using graph theory and dynamic 

programming. Eichel et al. [14] used a semi-automatic approach to detect the boundaries of 

corneal layers using morphological operations. Elsawy et al. [15] developed a graph-based 

method to segment multiple corneal layers. These approaches typically used traditional 

computer vision technologies and pre-defined image features [16,17] to identify the corneal 

layers. There are limitations with these methods. First, they are sensitive to the image quality 

and especially the contrast of the corneal layers with surrounding tissues [18]. Second, there 

are many empirical parameters involved in these methods that may affect the segmentation 

performance. All these limit their applications to clinical practice.

In the past years, deep learning technology, namely the convolutional neural network 

(CNN), is emerging and drawing significant attention in the area of medical image analysis 

due to its remarkable performance [19–21]. The strength of the deep learning approach 

lies in its capability of automatically learning a large number of image features and 

optimally combine them via a sequence of convolutional [22–24] and activation [25–27] 

operations. The widely used CNN architectures include the U-Net [28], Attention U-Net 

[29], Asymmetric U-Net [20], BiO-Net [30], CE-Net [31], CPFnet [32], M-Net [33], and 

Deeplabv3 [34]. Santos et al. [35] proposed a segmentation network termed CorneaNet, 

which is a variant of the U-Net, for segmenting cornea tissues on OCT images. Similarly, 

Fabijanska et al. [36] used another variant of the U-Net to extract endothelial cells from 

specular microscopy images and assess the health status of the corneal endothelium. The 

deep learning approaches demonstrated higher performance, especially along with extensive 

data augmentation [19] or adversarial training strategies [37], than the traditional computer 

vision approaches. They, however, obtained unsmooth object boundaries, which were 

primarily caused by the involved multiple down-sampling operations. These down-sampling 

operations largely reduced the amount of features associated with target objects that cannot 
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be recovered in the subsequent procedures [38,39]. This limitation may affect the accurate 

identification of small corneal layers depicted on OCT images.

In this study, we described a novel boundary-guided CNN architecture (termed BG-CNN) to 

automatically and accurately extract different corneal layers on OCT images. The developed 

architecture was formed by three different convolutional blocks, all of which used element

wise subtraction to detect image features associated with object boundaries. We expected 

that this characteristic could alleviate the problem caused by the aforementioned down

sampling operations to some extent and thereby enable an accurate segmentation. A detailed 

description of the methods and the experimental results follows.

2. Method

2.1. Scheme overview

Fig. 2 showed the developed BG-CNN architecture for simultaneously extracting corneal 

layers and their boundaries depicted on OCT images. This architecture was formed by 

an object extraction module (OEM) and an edge detection module (EDM). The former 

was used to encode the input image by learning image features and decode these features 

to determine whether each pixel belongs to the object of interest or background. The 

latter was used to guide the segmentation by extracting the boundaries of the objects. The 

intermediate convolutional features in the two modules were integrated to facilitate accurate 

image segmentation. (The source codes of the developed network can be found at https://

github.com/wmuLei/CornealSegmentation).

2.2. Object extraction module (OEM)

The OEM improved the classical U-Net network by introducing two different convolutional 

blocks (i.e., the encoding and decoding blocks), as shown in Fig. 2. The encoding 

block utilized three convolutional layers to convert the input images or features to two 

different outputs, namely the edge and object convolutional features, respectively. Each layer 

included a 3×3 convolutional operation (Conv3×3), a batch normalization (BN) [26], and 

an element-wise rectified linear unit (ReLU) activation [25]. The convolutional layers had 

the same number of convolutional kernels or filters, and their convolutional features were 

processed using the element-wise subtraction and concatenation operations, along with the 

image depth dimension, to capture the edge and object convolutional features, respectively 

(see Fig. 3a). The captured object convolutional features were down-sampled by using 

a 2×2 MaxPooling layer (MaxPooling2×2) to reduce redundant image information. After 

alternating the encoding and down-sampling operations, the input images were converted to 

object and edge convolutional features with varying dimensions and hierarchies, which were 

applied for the object segmentation and its boundary delineation, respectively. The object 

convolutional features were processed using a 2×2 UpSampling layer (UpSampling2×2) and 

fed into a decoding block, together with another three features (two from the OEM and 

one from EDM) via the binary and unary copy operations, respectively. All these features 

were concatenated in the decoding block and processed using a similar scheme to the 

encoding block (in Fig. 3b). The last decoding features were fed into a 1×1 convolution 

Wang et al. Page 3

Pattern Recognit. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/wmuLei/CornealSegmentation
https://github.com/wmuLei/CornealSegmentation


layer (Conv1×1) with a sigmoid activation function to achieve a probability map for the 

segmented objects in the entire image regions.

2.3. Edge detection module (EDM)

The EDM was developed to detect the object boundaries and meanwhile largely alleviate 

the problem caused by the multiple down-sampling operations. It decoded the obtained edge 

convolutional features using a novel convolutional block (termed the edge-aware block). In 

this block, two different edge convolutional features were concatenated and processed by 

a sequence of two convolutional layers and an element-wise subtraction operation (in Fig. 

4). The processed results were then up-sampled and fed into the subsequent edge-aware and 

decoding blocks, respectively. After repeating the operations, object boundaries were located 

using the Conv1×1 with a sigmoid activation function.

In the developed BG-CNN architecture, the subtraction operation was used to capture a 

variety of edge information and detect object morphological changes. Its introduction was 

inspired by a traditional edge detection method [40], where the element-wise intensity 

differences between a given image and its Gaussian filtered version can highlight a variety 

of edge information, as shown by the example in Fig. 5. This characteristic can improve the 

sensitivity of the three convolutional blocks to the object boundaries and thus improved the 

segmentation accuracy.

2.4. The training of the BG-CNN

The developed BG-CNN architecture was implemented through the Keras library, and 

trained on a PC with a 2.20 GHz 2.19 GHz Intel(R) Xeon(R) Gold 5120 CPU, 64 GB 

RAM and NVIDIA GeForce GTX 2080Ti. The dice similarity coefficient (DSC) [41] was 

used as the loss function for the target objects and their boundaries (termed DSCo and DSCb, 

respectively) since it can effectively alleviate the data imbalance problem across the classes 

and reduce the impact of the irrelevant image background. The loss function Ltotal was given 

by:

Ltotal  = λDSCo + (1 − λ)DSCb (1)

DSCo = DSCb =
2∑Ωaibi

∑Ωai2 + ∑Ωbi
2 (2)

where λ is a non-negative weighting factor and set at 0.5 by default, ai and bi denote 

the segmentation results of pixel i obtained by a given method and manual annotation, 

respectively. Ω is the image domain. Ltotal was optimized by the stochastic gradient descent 

(SGD) algorithm with an initial learning rate (LR) of 0.01 and a momentum of 0.9. The LR 

was reduced by a factor of 0.1 every 20 epochs. A total of 100 epochs were used for the 

network training, and the batch size was assigned to 8 with consideration of the capability 

of the graphics processing unit (GPU). An early stopping scheme was applied to avoid 

unnecessary optimization if the DSC did not improve for continuous 20 epochs. During the 

training, we augmented the images to improve the robustness of the trained models. The 
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augmentation operations included randomly flip along the vertical axis, translation by −10 to 

10 percent per axis, rotation from −10 to 10 in degree, and scaling from 0.9 to 1.1.

2.5. The dataset for development and validation

To develop and validate the GB-CNN architecture, we collected a corneal dataset consisting 

of OCT images acquired on 121 patients at the Wenzhou Medical University (WMU) 

Eye Hospital. These images were obtained using a three-module superluminescent diode 

(SLD) light source (Broadlighter, T840-HP, Superlumdiodes Ltd, Moscow, Russia) with a 

center wavelength of 840 nm. A full-width-at-half-maximum bandwidth of 100 nm, had 

approximately 3 μm of axial resolution in corneal tissue with a scan speed of 24k A-lines 

per second. The acquirement of the dataset was approved by the Ethical Review Board of the 

Wenzhou Medical University, together with the patients’ informed consent (No. Y-2015032). 

This dataset contained a total of 1,712 two-dimensional OCT images with a dimension of 

2,048 × 1,365 pixels. The epithelium and stroma layers depicted on these images were 

manually annotated as the ground truths for machine learning and performance validation 

(in Fig. 6). Notably, due to the very weak contrast, the Bowman’s layer located between the 

epithelium and stroma layers was not annotated but contained in the stroma layer (see Fig. 

1). In addition, only central regions of the images were processed to reduce the variability 

of the subjective annotations. The collected images and their annotated results were resized 

to a dimension of 256×256 pixels and randomly divided into three independent parts at the 

patient level by a ratio of 0.75, 0.15, and 0.1 for training (n = 1285), interval validation (n = 

255), and independent testing (n = 172), respectively.

2.6. Performance validation

We validated the performance of the developed CNN architecture on the independent 

testing dataset. The agreement between the computerized results and the manual results 

was quantitatively assessed using the DSC, intersection over union (IOU) [42], balanced 

accuracy (BAC), and Hausdorff distance (HD) [21]. The IOU, BAC, and HD can be given, 

respectively, by:

IOU =
∑Ωaibi

∑Ω ai2 + bi
2 − aibi

(3)

BAC = 1
2(Se + Sp) (4)

HD = max (d(A, B), d(B, A)) (5)

where Se = T p / (T p + F n) and Sp = T n / (T n + F p) are the sensitivity and specificity 

for a segmentation method. Tp, Tn, Fp, and Fn denote true positive, true negative, false 

positive, and false negative, respectively. d(A, B) = max
u ∈ A

min
v ∈ B

u − v  is the directed Hausdorff 

distance from point set A to point set B. A larger value for the DSC, IOU and BAC and a 

smaller one for the HD mean a better segmentation result. We compared the segmentation 

performance of the developed algorithm with other classical CNN methods, including the 
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U-Net, Attention U-Net (AT-Net), Asymmetric U-Net (AS-Net), BiO-Net, CE-Net, CPFnet 

with the pre-trained ‘ResNet34’ [32], M-Net, and Deeplabv3 with the backbone network 

‘xception’ [34], on the same dataset and configuration. Note that (1) the training dimension 

of 448×448 was used for the CE-Net, (2) the LR of the SGD was set to 0.1 and 1 for the 

M-Net and CPFnet, respectively, (3) the CPFnet was not activated by the softmax function 

but by the sigmoid function, through the Pytorch library, for two different corneal layers. 

To statistically assess the performance differences of these segmentation methods, the paired 

t-test was performed based on the IOU and HD metrics. A p-value less than 0.05 was 

considered statistically significant.

3. Results

3.1. Segmentation of the cornea tissues

Table 1 summarized the segmentation results of the developed BG-CNN on the collected 

OCT images using the 10-fold cross-validation method. As demonstrated by these results, 

the developed network achieved the average DSC, IOU, BAC, Se and HD of 0.9691, 0.9411, 

0.9834, 0.9703, and 7.4423, respectively for both the epithelium and stroma layers. This 

suggested that our developed BG-CNN had promising potential to extract the corneal layers 

from OCT images, as compared with the manual annotations. Fig. 7 visually displayed the 

performance of the BG-CNN on several OCT images.

3.2. Performance comparison

Tables 2–4 presented the performance differences among the U-Net, AT-Net, AS-Net, BiO

Net, CE-Net, CPFnet, M-Net, Deeplabv3 and BG-CNN in identifying the epithelium and 

stroma layers depicted on the collected OCT images using the 10-fold cross-validation 

method. It can be seen from their segmentation results that the U-Net, AT-Net, AS-Net, 

BiO-Net, CE-Net, and BG-CNN had very similar performance, all of which outperformed 

the CPFnet, M-Net and Deeplabv3 significantly. Specifically, the BG-CNN achieved the 

average DSC, IOU and HD of 0.9691, 0.9411, and 7.4423 respectively for two different 

corneal layers. It was very slightly inferior to the BiO-Net (0.9690, 0.9410, and 7.1981), but 

superior to the U-Net (0.9684, 0.9397, and 7.3044), AT-Net (0.9682, 0.9395, and 7.1852), 

AS-Net (0.9685, 0.9402, and 7.395), CE-Net (0.9682, 0.9395, and 7.4599), CPFnet (0.9586, 

0.9227, and 7.5743), M-Net (0.9599, 0.9243, and 7.4672) and Deeplabv3 (0.9605, 0.9254, 

and 7.5064). The examples in Fig. 8 showed the computerized results by the developed 

algorithm, the U-Net, AT-Net, AS-Net, BiO-Net, CE-Net, CPFnet, M-Net, and Deeplabv3 in 

identifying the epithelium and stroma layers depicted on OCT images.

3.3. Ablation study

Tables 5 and 6 demonstrated the impact of the parameter λ and the LR for the SGD 

algorithm, respectively, on the performance of the developed CNN model. The parameter 

was set to 0.3, 0.5, and 0.7 separately for the same segmentation experiments, while the LR 

was set to 0.1, 0.01, and 0.001 for the SGD algorithm. The experiments showed that the 

developed network had the best performance when the parameter and LR were set to 0.5 and 

0.01, as compared with those of the other values in image segmentation.
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Table 7 presented the impact of the subtraction operation on the segmentation performance 

of the developed CNN architecture, which was combined with different element-wise 

operations (i.e., the addition [42], multiplication [43], and subtraction [20]) to extract two 

corneal layers depicted on OCT images. As showed by the results, the model with the 

subtraction operation had the higher accuracy than its counterparts with the addition and 

multiplication operations in terms of the DSC, IOU and HD.

4. Discussion

We developed a novel CNN architecture called BG-CNN to automatically segment corneal 

layers on OCT images and validated it using the 10-fold cross-validation method. The 

developed architecture used two different network modules to extract target objects and 

their boundaries. The integration of the two modules aims to largely alleviate the problems 

caused by the multiple down-sampling operations and thus effectively deal with the object 

boundaries with limited sensitivity to image artifact or noise. As a way to highlight 

the advantage of the developed method in segmentation performance, we compared the 

performance of the developed CNN model with the other eight available networks (i.e., the 

U-Net, AT-Net, AS-Net, BiO–Net, CE-Net, CPFnet, M-Net, and Deeplabv3) on the same 

dataset. Our quantitative experiments demonstrated the developed BG-CNN was slightly 

inferior to the BiO–Net, but significantly superior to the other seven segmentation models 

based on the same dataset (see Tables 2–4). However, the developed network needs much 

more time for the training procedures (7.329 h) than the U-Net (6.968 h), AS-Net (6.810 h), 

M-Net (7.046 h), and CPFnet (4.4727 h), but less than the AT-Net (8.127 h), BiO–Net (7.496 

h), CE-Net (19.551 h), and Deeplabv3 (15.247 h).

The involved networks demonstrated very different segmentation performance when 

compared with previous studies [31–33]. For example, the CE-Net and CPFnet were inferior 

to the U-Net in our experiment, but superior to it in the studies [32,33]. The performance 

differences of these networks in different studies may be caused by the following facts: First, 

many different backbone networks were used for the involved networks (e.g., U-Net and 

Deeplabv3), making their performance very different. Second, the involved networks were 

trained using different image dimensions, data augmentation technologies, cost functions, 

optimization algorithms as well as the learning rates. This can lead to a large performance 

difference for a given network in different segmentation experiments. Third, some invovled 

networks were performed using different deep learning libraries (i.e., Keras and Pytorch), 

making some convolutional operations have slight different results, and thus giving rise 

to different segmentation performance. However, given the same dataset and experiment 

configuration, the developed network showed reasonable potential to identify corneal layers 

depicted on OCT images, as compared with the other eight segmentation networks.

In CNN-based deep learning, the cost function is used to assess the agreement between the 

output of a segmentation network and the ground truth (e.g., manual annotations by human 

experts). In our application, there are two target objects. Hence, it is natural to use two 

cost functions for each object, thereby leading to a weighted loss function. The weighted 

loss function was optimized to assure that the segmented regions agree with their manual 

annotations as well as possible. If only one loss function was used (i.e., λ=0 or 1), the 
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target objects and their boundaries cannot be taken into account simultaneously, ultimately 

leading to the degradation of the segmentation performance. That is why the weighting 

parameter λ was set to 0.5 (Table 5). For segmentation purposes, the DSC has some unique 

characteristics, such as (1) DSC considers both the false positive and the false negative and 

(2) can effectively alleviate the class imbalance problem that the image backgrounds contain 

much more pixels than the foreground regions.

We are aware that there are limitations with this study. First, the developed CNN architecture 

may not identify the cornea layers well for some images with very poor qualities, such 

as those in Fig. 10. The extremely low contrast reduced the sensitivity of the introduced 

convolutional blocks to the object boundaries. It remains a challenge to identify the cornea 

layers on the images with very poor quality. Second, the introduction of the EDM module 

leads to an increase of the parameter number in the BG-CNN models, which makes it 

relatively time-consuming to train the model. Third, we trained the CNN models using a 

small image size (i.e., 256×256 pixels) due to the limited GPU memory of the computer. 

Due to the small image size or resolution, some detailed structures may be lost and thus 

lead to inaccurate segmentation. This can be partly alleviated by using a larger image size 

(e.g., 512 ×512 pixels), but need a very high requirement on computer hardware for the 

training procedures [44–46]. Despite these limitations, the developed network demonstrated 

an exciting performance in segmenting various corneal layers depicted on OCT images.

Conclusion

We described a novel CNN architecture, namely BG-CNN, for automated segmentation of 

the corneal layers depicted on OCT images. Its novelty lies in the introduction of three 

convolutional blocks and two network modules. The underlying motivation was to extract 

target objects and their boundaries. Given the correlation between the objects and their 

boundaries, the integration of two modules can accelerate the detection / location of the 

objects and lead to a more accurate and reliable segmentation of the corneal layers depicted 

on OCT images. Our experiments demonstrated that the developed CNN architecture 

consistently outperforms the available classical CNN models under the same training and 

validation conditions. In the future, we will test the developed architecture on other types of 

medical images (e.g., color fundus images) to verify its generic characteristic.
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Fig. 1. 
An example showing the corneal tissue on an OCT image (left) and its local enlargement 

(right), where three different corneal layers are labeled.
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Fig. 2. 
The developed BG-CNN architecture for extracting corneal layers and their boundaries from 

OCT images. This architecture was formed by an object extraction module and an edge 

detection module, which were defined by three convolutional blocks.
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Fig. 3. 
The introduced encoding (a) and decoding (b) blocks in the developed BG-CNN 

architecture, both of which included three convolutional layers, the element-wise 

subtraction, and concatenation operations to obtain the image features.

Wang et al. Page 14

Pattern Recognit. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The developed edge-aware convolutional block in the EDM module.
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Fig. 5. 
An example showing the intensity differences (right) between a given image (left) and its 

Gaussian filtered version (middle). On the difference image (right), the subtle features can 

be effectively highlighted, as indicated by the arrows.
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Fig. 6. 
Examples showing the OCT images from our collected dataset (the top row) and their 

manual annotations (the bottom row).
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Fig. 7. 
Illustration of the performance of the developed BG-CNN network. The first three rows are 

the OCT images and their segmentation results by manual annotations and the BG-CNN, 

respectively. The last two rows are the boundaries of different corneal layers obtained by 

manual annotations and the BG-CNN, respectively.
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Fig. 8. 
Performance differences of the involved eight segmentation networks in identifying the 

epithelium and stroma layers from four OCT images. The first row is the manual annotations 

of the given OCT images. The last seven rows are the segmentation results obtained by 

the U-Net, AT-Net, AS-Net, BiO-Net, CE-Net, CPFnet, M-Net, Deeplabv3, and BG-CNN, 

respectively.
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Fig. 9. 
The boundaries of the epithelium and stroma layers identified by the BG-CNN for the 

OCT images in Fig. 8. The first two rows are the original OCT images and their manually 

annotated boundaries. The last row is the results obtained by the BG-CNN network.
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Fig. 10. 
The segmentation results of the developed network on three different OCT images with very 

weak contrast or severe artifact.
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