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Abstract

We develop an agent-based model on a network meant to capture features unique to

COVID-19 spread through a small residential college. We find that a safe reopening requires

strong policy from administrators combined with cautious behavior from students. Strong

policy includes weekly screening tests with quick turnaround and halving the campus popu-

lation. Cautious behavior from students means wearing facemasks, socializing less, and

showing up for COVID-19 testing. We also find that comprehensive testing and facemasks

are the most effective single interventions, building closures can lead to infection spikes in

other areas depending on student behavior, and faster return of test results significantly

reduces total infections.

1 Introduction

Amid Fall 2020 of the COVID-19 pandemic, universities rolled out a variety of interventions

in hopes of safely offering in-person instruction [1]. Wrighton and Lawrence argued that “best

practices” should be followed, which include: testing, quarantine, contact tracing, facemask

usage, and dedensification [2]. While colleges in some parts of the world successfully opened

[3], the interventions utilized in the United States were largely untested. A prominent example

was the pivot by the University of North Carolina at Chapel Hill to remote instruction after an

“untenable” COVID-19 outbreak occurred during the first week of instruction [4]. Other

major universities subsequently followed suit in response to similar infection spikes upon

reopening [5, 6]. In light of this uncertainty, simulation evidence may help inform policy and

guide student behavior.

Some models addressed COVID-19 spread on college campuses [7–11]. We discuss these

in more detail in Section 1.4, but note that their primary focus was medium-sized colleges.

Given that there are more than 500 colleges in the United States with a student body of 4,000

or less that, in aggregate, serve over a million students, it seems important to specifically

address this setting. We develop an agent-based model on a network to simulate COVID-19

spread through a small residential college. The smaller population and campus allow us to

make a relatively detailed model. Beyond colleges, we believe that adaptations of our approach
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could be useful for modeling the effectiveness of interventions in other small, closed-commu-

nity residential settings such as military bases, single-industry towns, and retirement commu-

nities [12, 13].

1.1 Base Assumption

Our model contains 2,000 students and 380 faculty. To standardize results, we start each trial

with 10 students initially exposed to COVID-19. These agents progress to either the asymp-

tomatic or symptomatic state during which they possibly infect others. The main statistic is the

total number of resulting infections after 100 days. Since we seek to compare the effectiveness

of different interventions, we require a base model to compare against. There is no data for

what would happen during a full semester of regular instruction with unmitigated COVID-19

spread. Our analysis starts with the following assumption.

Base Assumption. Over 80% of the population of a small, residential college would become
infected with COVID-19 during a semester with no intervention.

We stress that our Base Assumption is in the hypothetical situation that no policy and

behavior changes occur in response to rising infection counts. Even when a large portion of

the population is infected, symptomatic and asymptomatic individuals continue their typical

routines: attending class, socializing, and using common spaces on campus as usual. Face-

masks are never worn. The administration enacts no mitigating strategies such as: class cancel-

lations, building closures, infection testing and quarantine, contact tracing, and social

distancing measures. Complete details about the base model are in Section 2.

We believe that 80% total infections after a semester is conservative given that the popula-

tion lacks innate antibodies against COVID-19 [14] and the average reproduction number R0

with no intervention is quite high [15–17] in some settings. Additionally college settings are

believed to be worse for COVID-19 spread [18] than in larger communities with less overlap

between residents such as cities. Note that a related study [9] predicted that 100% of the cam-

pus population would become infected about halfway into a semester with no intervention.

More discussion of sensitivity to this choice and difficulties concerning R0 is in Section 4.

1.2 Findings

We use the scenario in the Base Assumption as a control against which we measure the effec-

tiveness of various interventions. Our main findings are given below and discussed further in

Section 3.

Result 1. Comprehensive testing and facemask compliance are the most effective single
interventions.

Weekly COVID-19 screening of 100% of students with a two-day wait for test results brings

total infections from around 1,900 to 400 (see Fig 1A). Alternatively, perfect facemask usage in

public and social settings drops total infections below 300.

Result 2. Building closures may increase total infections.
Closing the gym, library, and dining hall gives extra unstructured time to students. We find

that if students are strict about passing that extra time alone, total infections decrease. How-

ever, if students spend half of that time socializing, we see a dramatic spike; nearly every agent

in our model becomes infected (see Fig 2).

Result 3. Shortening time to receive test results reduces total infections.
We consider a campus at 75% density with 50% of students screened weekly for COVID-19

in addition to walk-in testing. No other interventions occur. We then vary the latency period

to receive test results from four days down to one. Our model with a four-day latency period

results in on average 394 total infections, compared to 259 with a one-day period (see Fig 1B).

PLOS ONE COVID-19 spread in small colleges

PLOS ONE | https://doi.org/10.1371/journal.pone.0255654 August 18, 2021 2 / 24

https://doi.org/10.1371/journal.pone.0255654


Result 4. Strong, unified administrative policy and student adherence result in the best
outcomes.

A novel part of our intervention design is that we separate student behavior from adminis-

trative policy. Specifically, students control facemask usage in social settings, compliance with

screening tests, and time spent socializing. Administrators control the number of screening

tests, testing latency, building closures, and the number of students allowed back to campus.

We consider student adherence and administrative policy at low, medium, and high intensi-

ties. A high-intensity administrative policy by itself keeps total infections below 10 with

medium levels of student adherence. However, with less intense policy, we find that student

adherence plays a crucial role. For example, total infections drop from 269 to 41 as student

adherence increases with the low-intensity policy in effect. It is also worth noting that, under a

high-intensity administrative policy, there is less variability as a result of student behavior. See

Fig 3.

1.3 Key takeaways

We outline some possible takeaways for administrators and students.

Administrators. Our results suggest that strong administrative policy is needed, particu-

larly regarding testing. Concerned administrators (and students) should check Table 5 to see

which intensity their reopening plan most aligns with. We emphasize that the low-intensity

policy in our model tests 25% of the student body weekly (Result 4). Without testing at or

above this level, our results suggest that it will be hard to control COVID-19 spread. Test

latency appears to make a difference as well; we advise that lowering the time to return results

Fig 1. (A) The base model with single interventions applied. Note that the reduction in infections from “fewer students” is smaller

than it appears since there are 50% fewer people on campus in that intervention. (B) The impact of testing latency on a campus with

25% fewer students and testing and quarantine in effect.

https://doi.org/10.1371/journal.pone.0255654.g001
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be a priority (Result 3). Lastly, we demonstrate that building closures do not necessarily reduce

total infections (Result 2). Since social distancing can be more easily controlled in campus

buildings, administrators may consider keeping buildings open. At the very least, students dis-

placed by building closures should be encouraged to spend more time in isolation.

Students. A serious and disciplined approach is needed from students (and administra-

tors) to keep infections down (Result 4). We recommend that students wear facemasks in pri-

vate settings, such as socializing, large gatherings, and common space in dorms (Result 1). In

light of the increased unstructured time resulting from building closures, it is especially impor-

tant to spend more time alone rather than socializing (Result 2). Given the impact of testing,

students should cooperate fully with any required screening testing (Result 1).

Fig 2. Total infections by room type in the base model and with the gym, library, and dining hall closed. In an “austere closure”,

students spend any extra free time alone. In a “social closure”, students spend half of their free time socializing.

https://doi.org/10.1371/journal.pone.0255654.g002
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1.4 Related work

We know of five projects that specifically addressed COVID-19 spread on a college campus.

Gressman and Peck [9] used the University of Pennsylvania as a template to simulate different

intervention strategies in an urban university with 22,500 students. This complemented recent

work of Weeden and Cornwell [8] that studied how the degree of separation between students

at Cornell University changes when some courses are switched to a remote or hybrid format.

Around the same time [9] was released, Frazier et al. posted a preprint and, later, an addendum

[7] that modeled how testing and quarantine could mitigate the spread of COVID-19 through

Cornell’s campus. Recently, Paltiel, Zheng, and Walensky studied the effectiveness of testing in

a college with 5,000 students [10]. Durrett et. al developed a mathematical model that rigor-

ously demonstrated the benefits of limiting double occupancy dorms and of capping course

enrollments [11].

To briefly summarize [8], showed that a typical student directly interacts with about 4% of

the 22, 000 other students from common courses. However, the reach of a student jumps to

87% when considering two degrees of separation, and to 98% with three degrees. The authors

further observed that removing large classes with an enrollment over 100 fails to disconnect

the network and such interventions only increase the average graph distance between stu-

dents by about 0.50. For this reason, Weeden and Cornwell recommended taking further

action than simply eliminating large courses. The authors also considered liberal arts colleges

by restricting to the 4, 500 or so students in Cornell’s College of Arts and Sciences. They

observed that students in a liberal arts college are connected via short path lengths, but also

through multiple paths. They inferred that this makes ripe social conditions for disease

spread.

Frazier et al. also studied the Cornell student body, but rather than considering the network

structure, they assumed a perfectly mixed population. They performed an SEIR model primar-

ily taking into account the age of those infected, severity of symptoms, and amount of inter-

vention through testing, quarantine, and contact tracing. They found that such interventions

can suppress, but not completely contain the spread of COVID-19 during a semester. Despite

fairly heavy intervention, asymptomatic spread results in 1,250 infections in their model. A

Fig 3. The total infection counts colored by size for different policy and adherence intensities.

https://doi.org/10.1371/journal.pone.0255654.g003
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surprising conclusion drawn from the project was that reopening in the Fall may be safer than

not reopening. The reason being that many students have commitments and social ties, and

would likely return to live in Ithaca during the Fall semester. No campus engagement would

increase the amount of unregulated off-campus socializing and ultimately lead to more total

cases than in reopening scenarios. theorem 2 demonstrates a similar phenomenon. We further

remark that one shortcoming of the approach from Frazier et al. is that the perfect mixing

assumption smooths over much of the structure inherent to a campus.

Paltiel, Zheng, and Walensky examined the epidemic outcomes and costs with varying test

attributes and epidemic scenarios. They concluded that screening every two days with rapid,

inexpensive tests results in a controlled number of infections with relatively low total cost. The

authors acknowledged the logistical and financial challenges for university administrators

even in the proposed testing scenario. The study did not consider other administrative strate-

gies in combination with testing to restrict the spread of infection.

Gressman and Peck built an agent-based model that incorporated more features of col-

lege life. Roughly speaking, on a given day in the model, an agent has approximately 20 con-

tacts selected at random from different groups. These groups included residential, close

academic, classroom contact, broad social, etc., and contact came with varying likelihoods of

passing an infection. Their results suggested that large scale testing, contact tracing, and

moving large classes online were the most impactful interventions. They further found that

testing specificity is crucial for managing the number of people in quarantine. The authors

observed that their model has limited applicability to small colleges [9, p. 16]. The important

difference, in their view, is that students in a small college have fewer, but closer contacts

compared to those at a large university. However, they pointed out that, without additional

data, the different likelihood of infection may be a “difficult feature to reasonably quantify

or calibrate.”

One way we specifically account for social interactions is the introduction of “social spaces”

into the network. Each student frequents two social spaces at which they contact a subset of

roughly 20 other students. This generates two internally correlated, but externally independent

friend groups. More broadly, we draw inspiration from larger agent-based models in which

agents diffuse through a to-scale environment according to simple routines [19, 20]. We set

the physical network and agent schedules as realistically as possible, then let the academic, resi-

dential, and social interactions tune to these choices. This philosophy distinguishes our

approach from the models for COVID-19 spread in colleges mentioned above.

2 Methods

In this section, we describe the network, agent behavior, and infection dynamics in our base

model for a campus with no interventions in place. We conclude by describing different

interventions.

Buildings are star graphs whose cores represent shared spaces and leaves represent rooms

or sections of the building. Each agent is assigned a fixed schedule that determines their

motion through the network which updates hourly (see Table 1). Infection dynamics follow

an SEIR model (see (1)) where agents transition from the susceptible to the exposed state

with probability proportional to the number of nearby infected agents scaled by the riskiness

and size of the space (see (2)). We set the parameters (see Tables 2–4) to reflect the unique

features of a small college campus—small classes; tightly knit, but diverse social groups; a pri-

mary dining hall, gym, and library—as well as our present understanding of the biology of

COVID-19. We then overlay various interventions on the base model and measure their

effectiveness.
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2.1 Space

Many of our decisions regarding our network draw inspiration from the campuses of Bard

College and Grinnell College which exemplify small, relatively isolated, residential colleges.

The basic building blocks are star graphs representing dorms, academic buildings, dining

halls, gyms, social spaces, offices, and off-campus. The core of each star represents shared

space in the building such as hallways, bathrooms, lobbies, etc. The leaves represent either spe-

cific rooms or sections of the building. See Table 2 for specifics. The core of each star connects

to the transit vertex which represents the connective space between buildings. Note that the

graph diameter is 4. See Fig 4 for a schematic.

Dorms, classrooms, academic buildings. Are either small, medium, or large depending

on the number of single and double rooms (Dorms), the number of seats (Classrooms), or the

number of classroom sizes (Academic Buildings).

Dining hall, gym, library, faculty offices. Are modeled by star graphs with six leaves. The

leaves represent sections of the buildings. Our network has one gym, one library, one dining

hall, and three faculty offices.

Social spaces. Are leaves of a star graph. The spaces represent social gatherings (study ses-

sions, work groups, parties, casual social groups) that occur at various locations on campus.

There are 100 such leaves. The core has no meaning, but is included for the sake of consistency

in the underlying network.

Table 1. Sample schedules for an on-campus student, an off-campus student, and a faculty member. Each row is

the time of day.

On-Campus Off-Campus Faculty

A B W A B A B
8 D D D

9 DH D DH OC OC OC OC

10 C1 DH D C1 L O O

11 C1 S L C1 S O O

12 DH C4 S DH C4 DH O

13 S C4 DH L C4 O DH

14 C2 DH S C2 DH C1 C2

15 C2 G G C2 G C1 C2

16 C3 D L C3 L O O

17 C3 S L C3 S O O

18 DH D D OC OC OC OC

19 L DH DH

20 S D S

21 D D S

22 D D D

Key

D Dorm

DH Dining Hall

Ci ith class

S Social Space

L Library

G Gym

OC Off Campus

O Office

https://doi.org/10.1371/journal.pone.0255654.t001
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Transit space. Is a single vertex that represents the paths, halls, and rooms that connect

the other spaces.

Off campus. Is a single vertex that represents all space off campus.

2.2 Agent behavior

In this section, we describe the types of agents, the way they are assigned schedules, and how

they move through the network.

Table 2. At the top, counts for the number of single and double dorm rooms, the number of seats in classrooms. In the middle, the number of classrooms in each type

of building. On the bottom, the number of each type of building.

Single Double Smls Mds Lrgs Seats Capacity

Small Dorm 5 5 15

Medium Dorm 15 15 45

Large Dorm 25 25 75

Small Clsrm 10 15

Medium Clsrm 15 20

Large Clsrm 20 30

Small Acad 3 0 0 30 45

Medium Acad 2 3 0 65 90

Large Acad 5 3 3 155 225

Dorm Bldgs 25 10 10 1575

STEM Bldgs 2 2 3 655 945

Humanities Bldgs 1 2 1 315 450

Arts Bldgs 2 1 1 280 405

https://doi.org/10.1371/journal.pone.0255654.t002

Table 3. The core and leaf capacity and risk multiplier for different buildings. The quantity x is the number of peo-

ple assigned to that space.

Space Core Leaf

Cv rv Cv rv
Transit Space 100n 1

Dining Hall 650 1 100 2

Faculty Dining Leaf 20 2

Library 10 � 300 1 50 2

Gym 10 � 60 3 10 3

STEM Office 10 � 6 � 50 1 50 2

Hum/Art Office 10 � 6 � 25 1 20 2

Social Space 10 3

Large Gatherings 40dx/40e 3

Small Acad 10 � 45 1

Medium Acad 10 � 90 1

Large Acad 10 � 225 1

Small Clsrm 15 2

Medium Clsrm 20 2

Large Clsrm 30 2

Single Dorm 1 3

Double Dorm 2 3

Small Dorm 10 � 15 2 x 3

Medium Dorm 10 � 45 2 x 3

Large Dorm 10 � 75 2 x 3

https://doi.org/10.1371/journal.pone.0255654.t003
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Agent types. There are n = 2, 380 total agents in the model; with nc = 1, 500 on-campus

students, no = 500 off-campus students, and nf = 380 faculties. Agents are assigned a subtype

that designates their division among STEM, Humanities, and Arts. We write ni
�

with i = 1, 2, 3

and � 2 {c, o, f} to denote the counts of STEM (i = 1), Humanities (i = 2), and Arts (i = 3)

agents. We assume that STEM students are 50% of the student body, Humanities students are

25%, and Art students are 25%. Note that the division designations are interchangeable so

these proportions represent whatever specialty a small college may have.

Agent schedules. Days are classified as either A, B, W, or S. A and B days are distinguished

by alternating class schedules. W days represent weekends (Friday and Saturday) on which no

instruction occurs and students socialize. To introduce some space into schedules, we include

Sundays (S) on which students either stay in their dorms or off-campus all day. A day is

Table 4. Parameters.

Parameter Value Description Ref

Base Model

ðnc; n1
c ; n2

c ; n3
c Þ (1500; 750, 375, 375) on-campus student counts by division [27]

ðno; n1
o; n

2
o; n

3
oÞ (500; 250, 125, 125) off-campus student counts by division [27]

ðnf ; n1
f ; n

2
f ; n

3
f Þ (380; 190, 95, 95) faculty counts by division [27, 28]

(g, s, ℓ) (0.15, 0.15, 0.15) gym, social, and library probabilities [29, 30]

o 0.125/(no + nf) off-campus infection probability

TE 2 days in the exposed state [31]

a 0.15 probability of remaining asymptomatic [32]

e 0.50 probability of Ia! Ie [33]

TIa 10 days in Ia if asymptomatic

T�Ia 2 days in Ia if symptomatic [34]

TIe 10 days in Ie if never bid-ridden [15]

T�Ie 5 days in Ie if bed-ridden [15]

TIm 10 days in Im [35]

p 1.25 tuning parameter

FP 0.001 false positive rate [9]

FN 0.03 false negative rate [9]

Interventions

f 0, 0.50, 1 facemask compliance

m 0.50 facemask reduced infectiousness [21–26]

m0 0.75 facemask protection from infection [21–26]

P 0.20, 0.50, 1 weekly percentage of students screened

L 1, 2, 3, 4 latency period to receive results

c 0.80, 0.90, 1 asymptomatic screening compliance

qe 0.95 probability of symptomatic walk-in test

qm 0.70 probability of mild walk-in test

FP 0.001 false positive rate [9]

FN 0.03 false negative rate [9]

B L, G, DH, O, LG building closures [36]

h 0.50, 0.75, 1 prob. of dorm/off-campus from bldg. closure

D 0, 650, 1300 dedensification amount [37]

s 0, 0.25, 0.75 reduction in socializing

i 5, 7, 10 initial infected cases with dedensification

https://doi.org/10.1371/journal.pone.0255654.t004
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divided into 14 one-hour increments spanning from 8:00—22:00 (the time N:00 will be abbre-

viated by N). Classes take place in two-hour increments starting at 10, 12, 14, and 16.

We write each seat in a class on a given day and time as a 4-tuple (d, t, r, c) where d 2 {A,

B}, t 2 {10, 12, 14, 16}, r is a classroom, and c is a chair in r (so 1� c� the enrollment capacity

of room r). Let C be the set of all distinct seats (d, t, r, c). Let C1 denote the set of all tuples

whose building is designated a STEM building, and similarly for C2 and C3 for Humanities and

Arts, respectively. Let C ¼ C1 [ C2 [ C3. To randomly assign classes, students with subtype i,
one after the other, sample two elements uniformly at random from Ci and then two elements

uniformly at random from C without replacement. If two selections conflict in time, class-

rooms are resampled until there are no conflicts.

Once an agent obtains a class schedule, the remaining time slots are filled in according to

the following rules. For each building in the schedule that is not a dorm or academic building,

the agent is assigned to a uniformly sampled leaf, which they exclusively visit. The one excep-

tion concerns social spaces. For these, students are assigned a leaf for class days, and a leaf for

the weekend. Since there are 100 social space leaves, on average 20 students are assigned to

each leaf. Being assigned to two leaves makes it so agents interact with two social groups that

are correlated within, but uncorrelated to other groups.

For on-campus students, each day begins and ends in their assigned dorm room at 8 and 22.

Up to two students may be assigned to a given dorm room, which corresponds to having a

roommate. Each day type has one visit to the dining hall in the time slots 8–11, 12–15, 17–20.

The afternoon slot 12–15 is skipped if the student has classes during that time. Lastly, each day

type has a gym visit with probability g. The remaining slots are assigned to uniformly sampled

social spaces with probability s, a library leaf with probability ℓ, or the agent’s assigned dorm

room with probability 1 − s − ℓ.
For off-campus students, A and B days begin and end at the Off Campus vertex at times 8, 9

and 18–22. On W and S days the student remains at the Off Campus vertex all day. On A and

Fig 4. Schematic of the network.

https://doi.org/10.1371/journal.pone.0255654.g004

PLOS ONE COVID-19 spread in small colleges

PLOS ONE | https://doi.org/10.1371/journal.pone.0255654 August 18, 2021 10 / 24

https://doi.org/10.1371/journal.pone.0255654.g004
https://doi.org/10.1371/journal.pone.0255654


B days, an off-campus student has one visit to the dining hall in the time slots 12–15, if the

class schedule allows it. Each day type contains a gym visit with probability g at a randomly

chosen available time slot. The remaining slots are spent in a social space with probability s, at

the library with probability ℓ, and otherwise off-campus.

For faculty, A and B days begin and end with the agent at the Off Campus vertex at times 8,

9 and 18–22. On W and S days the faculty remains at the Off Campus vertex all day. If possible,

the agent goes to the faculty leaf of the dining hall at a uniformly chosen time from 11–13. The

remaining slots are spent in the appropriate Division Office vertex.

Agent paths. Once an agent is assigned a schedule it remains to define the path the agent

follows to move between each location. Suppose an agent is moving from a leaf of the core ver-

tex v to a leaf of the core vertex u. They do so by moving to v, to the transit vertex, to u, and

then to the target leaf of u. We assume that transit occurs at the end of the hour and interacts

with any other agents that move through the spaces u, the transit vertex, and v at the end of the

same hour.

2.3 Infection spread

Agent states. Agents are in states S, E, Ia, Im, Ie and R corresponding to Susceptible,

Exposed, Infected Asymptomatic, Infected Mildly Symptomatic, Infected Extremely Symp-

tomatic, and Recovered. Agents transition through the states in the following manner:

S E Ia

(1¡a)e

a

Im Ie R

ð1Þ

We let Iav ðd; tÞ denote the number of agents in state Ia at site v at time (d, t) and similarly for

the other states. Describing how and when agents transition from state S to state E is the sub-

ject of the next section. The other transitions are simple to describe:

• Agents stay in state E for TE = 2 days. After which, they transition to state Ia.

• Each agent in state Ia transitions to state R after TIa ¼ 10 days (from the day of infection)

with probability a. Otherwise, after T�Ia ¼ 2 days the agent transitions to state Ie with proba-

bility e and to state Im with probability 1 − (a + e).

• Each agent in state Ie transitions to state R after TIe ¼ 10 days. However, after T�Ie ¼ 5 days

the agent spends the subsequent time in their dorm room. This represents a student becom-

ing “bed-ridden,” i.e., too sick to leave their room.

• Agents in state Im transition to state R after TIm ¼ 10 days.

The base probability of infection. The vertex v at time (d, t) has infection probability

pvðd; tÞ ¼ rv
Ievðd; tÞ þ Imv ðd; tÞ þ 0:5Iav ðd; tÞ

Cv
p: ð2Þ

The parameter Cv is the capacity of v and rv 2 {0, 1, 2, 3} is the risk multiplier for infection

spread in that space. Each of the St(v) susceptible agents at v at time t independently enters

state E with the probability at (2). Note that we set the infectiousness of an agent in state Ia to

half that of an agent in the other infected states [21]. The constant p is the tuning parameter
that allows us to control global infectiousness.
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The risk and capacity parameters. The parameter rv is chosen based on time spent, the

proximity of agents in the space, and the typical amount of respiration—i.e. time spent talking

aloud or exercising—in a given space. For example, rv is higher in the gym compared to the

library. We set Cv equal to ten times the core capacity for buildings with known capacities in

advance (dorms and instructional buildings). The factor of ten is to dilute the number of peo-

ple in the core at a given time (otherwise all of the agents would simultaneously be in that loca-

tion). Ten is chosen since a passing time between classes is about that duration in minutes.

The capacities for the dining hall, library, gym, and social spaces are set empirically to match

the typical occupancy of the building. See Table 3 for all of the Cv and rv values.

Exceptions. Two exceptional spaces, where the infection dynamics are not exclusively

governed by (2), are off-campus and large gatherings. Upon leaving the off-campus vertex at

t = 8, each agent in state S transitions to state E with probability o. For agents returning from
off-campus, we choose o = .125/(no + nf) so that, on average, one off campus agent becomes

infected every 8 class days (two weeks). For large gatherings, half of the student agents (both

on- and off-campus) are denoted as “social.” We simulate large informal gatherings (e.g., par-

ties or organized social events) by drawing three random subsets G1, G2, G3 of agents desig-

nated as social at the end of each week. Each Gi has size uniformly and independently sampled

from [20, 60]. The Gi are sampled independently and are not necessarily disjoint. Each suscep-

tible agent at a large gathering becomes infected according to (2) with rv = 3 and Cv = 40d|Gi|/

40e, i.e., Cv = 40 if |Gi|� 40, and Cv = 80 if |Gi|> 40.

2.4 Contact structure

Section 2.1 describes the campus network. Agents move through this network by following

hourly schedules generated according to the specification in Section 2.2. We then overlay

COVID-19 spread according to the rules in Section 2.3. The likelihood of infection spread is

given at (2), and ultimately governed by the risk factor and capacity of each site in the network.

We measure the aggregate exposure between agents by summing the risk scaled by the capacity

over all of an agents interactions during a simulated week in the model.

More precisely, given an agent i, we generate a vector~ei ¼ ðei;1; . . . ; ei;NÞ where

ei;j ¼
X

ðd;t;vÞ2Si

1fagent j also at v on day d at time tg
rv
Cv

with Si the set of vertices that i visits over the course of one week. So we sum the risk factor

scaled by the capacity of all of the vertices that i interacts with j at. We call the vector~ei the

exposure profile of agent i with the individual entries ei,j the exposure level of agent i to agent j.
Note that ei,j = ej,i be symmetry of the model.

To generate Fig 5 we sampled the exposure profiles of 100 on-campus, 100 off-campus, and

100 faculty agents. The exposure levels were then arranged in decreasing order. For on-campus

students with a roommate we throw out the first entry since it is on a different order than the

others. This represents the feature of our model that roommates are most likely to infect one

another. We then plotted a curve representing a 95% confidence interval around the mean

level of each entry for each agent type. We observe that agents have high exposure levels with

ten or so other agents and the exposure level drops roughly linearly until about 50 to 75 agents.

Subsequently, the exposure level is low with the remaining 2300 agents.

This data suggests that the contact structure of our network is such that each individual has

ten or so close contact with whom they are likely to spread infection. These high exposure lev-

els are coming from socializing and faculty interactions in their departmental buildings.

Agents with medium exposure levels (in the interval [25, 75]) come from classroom contact
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and exposure in dorm common spaces. The rest of the campus population has small exposure

levels. This heterogeneity of exposure profiles suggests that our model is more nuanced than

commonly used homogeneously mixing SEIR models in which all exposure levels would be

equal.

2.5 Types of intervention

We consider a variety of interventions that broadly include: facemasks, testing/quarantine,

building closures, less socializing, and dedensification, which we describe in more detail

below.

Facemasks. We assume that agents never wear facemasks at dorm and dining hall leaves.

There is partial compliance at dorm cores, social space leaves, and large gatherings. All other

vertices have perfect compliance. Let f 2 f0:50; 1g be the proportion of compliant agents. We

implement this intervention by randomly selecting the corresponding percentage of agents

who always wear a facemask at partial compliance vertices. We assume that wearing a mask

reduces an agent’s infectiviousness by a factor ofm ¼ 0:5 (which is the conservative estimate

from [21] and in line with other estimates from [22–26]). So, an infected agent wearing a mask

is a factor ofm less infectious, and a susceptible agent wearing a mask is a factor ofm0 ¼ 0:75

less likely to become infected at each time location. That facemasks protect the wearer

(although to a lesser extent than the reduction in infectiousness from an infected agent wear-

ing a mask) from inhaling the virus is supported by evidence from [22, 26]. For example, a sus-

ceptible person wearing a mask in room v at time (d, t) will become infected with probability

p0vðd; tÞ ¼ m
0
mMvðd; tÞ þ Ivðt; dÞ

Cv
p ð3Þ

rather than (2), where Mvðd; tÞ ¼ Me
vðd; tÞ þMm

v ðd; tÞ þ 0:50Ma
vðd; tÞ are the number of

agents in the infected state wearing a mask at v at time (d, t) and Ivðd; tÞ ¼ IevðtÞ þ Imv ðd; tÞ þ
0:50Iav ðd; tÞ are (weighted by infectiousness) number of infected agents in the infected state

not wearing a mask at v at time (d, t).
Testing and quarantine. In line with [9], we assume a false positive rate of FP = 0.001 for

agents tested while in the susceptible or exposed state, and a false negative rate of FN = 0.03 for

agents tested while in an infected state.

Screening. We assume that P 2 f0:25; 0:50; 1g of the student body is screened per week.

Only students are screened, and the screening is applied throughout the entire student body

Fig 5. Exposure profiles for 100 agents are arranged in decreasing order then averaged. A 95% confidence interval

is included around the curve. Panel A shows the exposure profile for off-campus students. The larger panel of Panel B

shows the exposure profile for on-campus students with the maximum entry (corresponding to a dorm roommate)

removed. The smaller subpanel in Panel B shows the exposure profile when the roommate is included. Panel C shows

the ordered average exposure profile for 100 faculty.

https://doi.org/10.1371/journal.pone.0255654.g005
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on a repeating cycle. The latency period L 2 f1; 2; 3; 4g is the number of days to receive

results. After the latency period, the infected agents from the batch who test positive are placed

in the quarantine state for 14 days, after which they transition to the recovered or susceptible

state depending on whether or not the test was correct. We consider c 2 f0:80; 0:90; 1g the

level of compliance for agents in state Ia to get screened. This means that each time an agent in

the S, E, or Ia state is selected for screening, the agent skips taking the test with probability

1 � c.

Walk-ins. For each day following the first that an agent enters state Ie or Im, that agent opts

to be tested with probabilities qe = 0.95 and qm = 0.70. After this, the agent enters the quaran-

tine state with probability 1 − FN depending on if they are in state Im, Ie, or Ia. For example,

the probability an agent in state Ie enters the quarantined state k days after entering state Ie is

(1 − FN)(1 − qe)k−1 qe. The probability q� represents an agent ignoring symptoms on a given

day and waiting to take the test. We assume that walk-ins immediately begin quarantine, but

re-enter the campus if they receive a false negative result.

Closures. We assume that buildings in B � fL;G;DH;O; LGg are closed. If the library

(L), gym (G), or dining hall (DH) are closed, time spent at the space is replaced in a student’s

schedule with time in the student’s dorm room or off-campus, depending on the type of stu-

dent, with probability h 2 f0:50; 0:75; 1g. Otherwise, the agent goes to the social space. When

facing a building closure, faculties spend that time in their office instead. When faculty offices

(O) are closed, no infection occurs there, and we assume faculty only spend time in the classes

they teach. When large gatherings (LG) are removed, we turn off the large gathering

component.

Dedensification. For medium dedensification we remove D ¼ 650 agents: 250 on-cam-

pus, and 250 off-campus students, as well as 150 faculty at random. For high dedensification we

remove 1300 agents: 500 on-campus students, 500 off-campus students, and 300 faculty from

the campus. The first students to be removed are those in double rooms.

A few technicalities emerge with dedensification in effect. Courses in either degree of

dedensification are assumed to be hybrid. All classes continue to meet, but the removed

students attend class remotely. We assume that large gatherings do not occur whenever

dedensification is in place. Lastly, a dedensified campus will naturally have fewer initially

infected agents. We account for this by starting with i 2 f5; 7; 10g on-campus students

infected, with i chosen to be approximately 0.05% of the students and faculty still utilizing

the campus. When D ¼ 650, we assume that i ¼ 7, and when D ¼ 1300 we assume that

i ¼ 5.

Less socializing. We replace time in social spaces with time spent at the student’s dorm

room or the off-campus vertex depending on the type of student. This replacement is done to

each occurrence of social space in an agent’s schedule with probability s 2 f0; 0:25; 0:75g.

At this point we have defined all of the parameters in our model. Table 4 summarizes these

choices.

3 Results

There are over a hundred thousand distinct combinations of the five single interventions from

Section 2.5. Therefore, some care is required to decide what combinations provide useful

insights. To this end, we reduce down to 20 strategies and focus on total infections. This is the

total number of agents ever in the exposed state after running the model for 100 days with i

on-campus students initially in the exposed state. The value of i 2 f5; 7; 10g depends on the

amount of dedensification and is not counted towards total infections. We perform 40 inde-

pendent simulation trials for each model (with new schedules in each trial). Each trial takes a
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little over a minute to simulate on a home computer. It takes about a day on a single machine

to run all of the interventions described below.

Marginals

We apply single interventions at high-intensity to the base model. Specifically, we consider: no

intervention, facemasks with f ¼ 1, high dedensification with D ¼ 1300, less socializing with

s ¼ 0:75, and testing with P ¼ 1. The results are shown in Figs 1, 2 and 6.

Building closures

We close the gym, libarary, and dining hall with h ¼ 0:50 and h ¼ 1. No other interventions

are applied. See Fig 2.

Test latency

We fix the base model with medium dedensification (D ¼ 650) and testing with P ¼ 0:50.

This means that there are about 25% fewer students on campus, of whom 50% are screened

weekly. We then consider latency L 2 f1; 2; 3; 4g. The results are shown in Fig 1.

Policy and adherence

To address the problem of choosing which interventions to run among the many we could

apply, we classify the single interventions as either an administrative policy, or a student adher-

ence behavior. We group interventions by type and set each to one of three different intensity

levels. This gives nine combined strategies, which we hope offer a practical perspective for stu-

dents and administrators attempting to manage the risk of COVID-19 spread. The specific

parameters used for low, medium, and high-intensity policy/adherence are given in Table 5.

Administrators control the amount of testing P, test latency L, the amount of dedensification

D, and building closures B. Students control facemask adherence f, testing compliance c, how

they spend time that would normally be spent in a closed building h, and how much they

reduce socializing s. The results are shown in Figs 3 and 7.

Fig 6. Agent states over 100 days in the base model. Panel A shows a 95% confidence around the mean behavior from 40 trials.

Panel B shows the number of active infections over time for each trial.

https://doi.org/10.1371/journal.pone.0255654.g006
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Recall, that our primary findings are:

1. Comprehensive testing and facemask compliance are the most effective single

interventions.

2. Building closures may increase total infections.

3. Shortening time to receive test results reduces total infections.

4. Strong, unified administrative policy and student adherence result in the best outcomes.

We now explain how these experiments support these results.

Base model

In our base model, we set the tuning parameter p = 1.25. This consistently leads to a large

infection that reaches on average 1988 agents (see Fig 1). Fig 6 displays the evolution of the

infection over time. The peak typically occurs between 40 and 50 days into the semester. Fig 6

A shows two standard deviations of data. The breakdown of infection counts by building type

are given in Fig 2. Dorms, classrooms, social spaces, and the dining hall make up the majority

of cases. Large gatherings and the gym are next.

Table 5. The intervention parameter choices corresponding to different intensities for administrative policy (left) and student adherence (right). We describe in

words Medium Policy and Medium Student Adherence as an example. Medium Policy screens P ¼ 0:50 of the student population weekly with a 3-day latency L. D ¼
650 students are removed from the population. The gym, library, dining hall, and large gatherings are closed. Medium student adherence has half of students wearing face-

masks while socializing f ¼ 0:50. A c ¼ 0:90 proportion of students comply with screening tests. Students spend free time from building closures in their dorm room with

probability h ¼ 0:75 for each occurrence in their schedule. Additionally, students socialize less by a factor of
R
¼ 0:25.

Policy Adherence

P L D B f c h s

Low 0.25 4 0 {G, L} 0 0.80 0.50 0

Medium 0.50 3 650 {G, L, DH, LG} 0.50 0.90 0.75 0.25

High 0.75 2 1300 {G, L, DH, O, LG} 1 1 1 0.75

https://doi.org/10.1371/journal.pone.0255654.t005

Fig 7. The total number of cases (numeric) and the coefficient of variation (standard deviation/mean; colorbars)

for different policy and adherence intensity levels.

https://doi.org/10.1371/journal.pone.0255654.g007
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Result 1

Fig 1 shows how weekly testing of 100% of students with latency at L ¼ 2, consistently reduces

infections below 400. With facemask usage, total infections stay around 300 (Fig 1). Note that Fig

1 is somewhat misleading in its depiction of the effectiveness of high dedensification (the “fewer

students” box), because there are only half as many agents present during that intervention.

Result 2

Fig 2 shows the vertices where infections occur in the base model alongside the effects of clos-

ing the gym, library, and dining hall. With closures, we consider the settings with h ¼ 1 and

h ¼ 0:50. We call the case h ¼ 1 an “austere closure” since students are electing to pass the

time slots they would have been in a closed building at either their dorm room or off-campus.

With an austere closure, total infections drop from nearly 2000 to around 1700. The total num-

ber of infections in social spaces increases, since these infections would normally occur earlier

in a closed building, but instead occur later in a social space. The case h ¼ 0:50 is a “social clo-

sure” in which students go to social spaces with probability 0.50. The last column of Fig 2

shows a significant increase in infections. A huge increase in social space infections allows the

infection to proliferate. We note that the final counts are unrealistic, since it seems unlikely to

us that a college would remain open after so many students are infected. Nonetheless, the

mixed effect of closing buildings is illustrated by these counts.

Result 3

As L goes from 4 to 1 total infection counts drop from 394 on average to 259. See Fig 1B. One

interesting feature is that the variance increases as L decreases. When L ¼ 4, the standard

deviation in total infections is 60; but when L ¼ 1, the standard deviation is 87. The reason for

the greater volatility is that shorter latency sometimes is very effective and completely controls

the infection, and sometimes the infection spreads more quickly than testing can control,

resulting in many infections (relative to the mean).

Result 4

Fig 3 shows that the average number of total infections drops from 269 to 6 as policy and

adherence are strengthened. The standard deviation drops significantly as well. We see that

total infections are reasonably controlled by high-intensity policy (top row of Fig 3). Fig 7 dis-

plays the coefficient of variation (standard deviation/mean). The figure illustrates how low-

intensity policy coupled with low adherence, even after normalizing for the mean, has the

highest variation. Additionally, Fig 7 shows that high-intensity administrative policy can tem-

per variation stemming from different levels of student adherence.

4 Discussion

4.1 The average reproduction number

The average reproduction number R0 is the mean number of direct infections originating from

a single infected agent in a completely susceptible population. This assumes no preventative

measures are being taken. Compare to Rt which measures the mean number of infections at a

given point in time as interventions occur and immunity develops in the population. The

emerging consensus is that the value of R0 particular to COVID-19 lies in the interval [2, 3]

[17]. However, estimates vary [15, 16], and as put by [38] “estimates of R0 in one population

do not necessarily translate to another.”
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An issue with calculating R0 is that it is not intrinsic to the biology of the infection (incu-

bation period, infectiousness, recovery time, etc.), rather it is a phenomenological output of

the biology of the infection and contact structure of the society [16]. When modeling R0, it is

commonly obtained under the assumption of perfect mixing i.e., a given agent has equal like-

lihood of infecting each of the other agents in the model [39]. When aggregated over large

communities on the scale of cities and states, this is widely held to be a reasonable assump-

tion. However, our model of a small population—which has clustered, highly overlapping

contact structure with sustained regular contact—is quite heterogeneous. These features

allow for more infection spread than in a perfectly mixed network and consequently result in

a larger R0. We note that Gressman and Peck use similar reasoning to justify their elevated

choice of R0 = 3.8 [9]. The contact structure in their university COVID-19 model is also

heterogeneous.

A natural way to estimate R0 is to seed the student population with s on-campus students in

the exposed state. We then run the model and count the resulting number of direct infections

I(s) that arise from these s agents. A sample of R0 from this seed is then computed via

R0ðsÞ ¼
IðsÞ � s

s
: ð4Þ

While R0(1) corresponds to the definition of the average reproduction number (minus the per-

fect mixing assumption), it is desirable to take s larger to smooth out the randomness arising

during the agent’s progression through the infection and from their individual schedule.

Such smoothing reveals a difficulty with measuring R0 in our model. Fig 8 shows significant

variation in the R0 defined in (4). R0(1) ranges from 1 to 23 with mean 7.4. The value of R0(s)
decreases quickly in s; it more than halves to have mean 3.33 at s = 20 and the mean drops

below 2.35 for s� 50. It is not obvious which value of s, if any, gives the “correct” R0. Note that

this effect is a consequence of the contact structure in the model discussed in Section 2.4 and

also the small total population of or model.

The doubling time of the infection is another important statistic that is closely associated

with R0 [39]. This is the average number of days for the number of total infections to double in

an environment with no intervention. It is believed that the doubling time for COVID-19 lies

in between 2 days and 4 days [40, 41]. In Fig 9 we display the average number of days for total

infections to double in our base model. The average number of days to go from 20 infected

agents to more than 40 is 2.5. The doubling time on the next interval [40, 80] is 3.43, [80, 160]

is 4.9, and [160, 320] is 6.7. At this point 320/2380� 13% of the population is infected. Thus,

the depleting population size is slowing infection spread. These doubling times are more com-

patible with an R0 in [2, 3], which is consistent with taking s� 30 in (4).

In closing, the seed size and doubling time data suggests that measuring R0 in our model is

subjective. Measuring intervention effectiveness through total infections against our Base

Assumption is more transparent. Moreover, total infections are likely of greater help to policy

makers since that data is directly available (via testing) rather than the inferred statistic R0.

4.2 Sensitivity to global parameters

In our model, there are two events in which susceptible agents may become infected: (i) inter-

action with an infected agent on campus and (ii) interaction with an infection arising off-cam-

pus. All infections from (i) occur from face-to-face interaction at a site of the network.

Transmission is thus proportional to the risk of transmission at the vertex times the number of

infected agents at vertex v at a particular day and time, scaled via a tuning parameter p (see

(2)). In Fig 10 we vary p in {0.00, 0.25, . . ., 1.5}, given a fixed level of student compliance
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Fig 8. Empirical measurements of R0(s) computed as in (4) with different initial seed sizes s of the on-campus student

population infected. The results from 100 runs are shown for each R0(s).

https://doi.org/10.1371/journal.pone.0255654.g008

Fig 9. The average number of days (y-axis) to go from x/2 to at least x infections. We omit x = 20 since we initially

seed 10 agents in the exposed state and there is latency for infections to begin. We omit x> 320 since for such large x-

value the doubling time slows significantly from a herd-immunity effect.

https://doi.org/10.1371/journal.pone.0255654.g009
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(medium) and varying policy intensity. Under these different scenarios, the relative effective-

ness of the various policies remains roughly proportional.

The second pathway for infection is through exogenous infections arising off-campus. The

base model has on average one new off-campus infection every two weeks. This comes from

each of the n0 + nf agents coming and going from campus probability

o ¼
0:125

ðno þ nf Þ

of becoming infected on a given instruction day. In Fig 11 we test the effect of multiplying o by

a factor in {1, 2, 4, 8} on total infections with medium student adherence and varying policy

intensity. We see that there is not much sensitivity to this choice. Increasing o by a factor of 8

(so there are on average 4 exogenous infections per week) does not significantly change the

total number of new cases.

Lastly, the single most effective intervention is facemask use (see Fig 1). Accordingly, we

explore sensitivity to that feature. Recall that the parametersm andm0 dictate the reductive fac-

tor for the probability of an infected facemask wearer infecting others ðmÞ and a susceptible

wearer becoming infected ðm0Þ. See (3). We call the quantity M ¼ 1 � m �m0 the facemask
effectiveness since it gives the reduction in transmission probability when both parties (infected

and susceptible) are wearing facemasks. Our default choice ism ¼ 0:5 and m0 = 0.75 which

gives M = 0.625. This is consistent with current estimates for facemask effectiveness [21–26].

Nonetheless, in Fig 12 we show the resulting number of total infections when f ¼ 1 and

ðm;m0Þ 2 fð0:5; 0:75Þ � nð0:1; 0:1Þ: n ¼ � 2; � 1; 0; 1; 2g;

Fig 10. A sensitivity analysis of the tuning parameter, p. We fix the student adherence to be medium, and show the total number

of cases for each of the three administrative policies.

https://doi.org/10.1371/journal.pone.0255654.g010
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Fig 11. A sensitivity analysis of the off-campus multiplier. We fix the student adherence to be medium, and show the total

number of cases for each of the three administrative policies.

https://doi.org/10.1371/journal.pone.0255654.g011

Fig 12. A sensitivity analysis of facemask effectiveness. Displayed are total number of infections after a semester with f ¼ 1 (perfect

facemask compliance), but no other intervention.

https://doi.org/10.1371/journal.pone.0255654.g012
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so that M varies through the interval [0.335, 0.835]. What we observe is in line with the sensi-

tivity analysis in Fig 10; facemask effectiveness has significant, yet predictable, impact on the

total number of infections.

4.3 Future directions

A limitation of our model is that the way infections occur makes contact tracing impractical to

implement. Unlike [9], in which contacts are known, we assume perfect mixing on the level of

rooms, so it is not possible to infer who did the infecting. Staff and visitors to campus are

another noteworthy feature that our model is missing. It would add more detail to include

more variety in agent types and behavior and also consider other interventions as well as com-

bined strategies. Introducing a vaccine to the infection dynamics could be useful.
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