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SUMMARY

The catalytic union of amides, sulfonamides, anilines, imines or N-heterocycles with a broad 

spectrum of electronically and sterically diverse alkyl bromides has been achieved via a 

visible light-induced metallaphotoredox platform. The use of a halogen abstraction–radical 

capture (HARC) mechanism allows for room temperature coupling of C(sp3)-bromides using 

simple Cu(II) salts, effectively bypassing the prohibitively high barriers typically associated 

with thermally-induced SN2 or SN1 N-alkylation. This regio- and chemoselective protocol 

is compatible with >10 classes of medicinally-relevant N-nucleophiles, including established 

pharmaceutical agents, in addition to structurally diverse primary, secondary and tertiary alkyl 

bromides. Furthermore, the capacity of HARC methodologies to engage conventionally inert 

coupling partners is highlighted via the union of N-nucleophiles with cyclopropyl bromides 

and unactivated alkyl chlorides, substrates that are incompatible with nucleophilic substitution 

pathways. Preliminary mechanistic experiments validate the dual catalytic, open-shell nature 

of this platform, which enables reactivity previously unattainable in traditional halide-based N­

alkylation systems.
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eTOC Blurb

Traditional substitution reactions between nitrogen nucleophiles and alkyl halides feature well­

established, substrate-dependent limitations and competing reaction pathways under thermally­

induced conditions. Herein, we report that a metallaphotoredox approach, utilizing a halogen 

abstraction-radical capture (HARC) mechanism, provides a valuable alternative to conventional 

N-alkylation. This visible light-induced, copper-catalyzed protocol is successful for coupling >10 

classes of N-nucleophiles with diverse primary, secondary or tertiary alkyl bromides. Moreover, 

this open-shell platform alleviates outstanding N-alkylation challenges regarding regioselectivity, 

direct cyclopropylation and secondary alkyl chloride functionalization.

Keywords

photoredox; copper catalysis; N-alkylation; halogen abstraction; cyclopropylation; organochloride 
activation

INTRODUCTION

The societal need to discover and produce pharmaceuticals, agrochemicals and functional 

materials has long established a demand for new C–N bond-forming reactions that 

are successful across diverse combinations of complex substrates.1–3 Indeed, over the 

last two decades, palladium-, nickel- and copper-catalyzed protocols such as Buchwald­

Hartwig,4,5 Ullmann-Goldberg6 and Chan-Evans-Lam7 C(sp2)–N cross-couplings have 
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emerged as mainstay strategies to generically access versatile N-aryl structural motifs 

(Scheme 1).8,9 In contrast, transition metal-mediated couplings affording C(sp3)–N bonds 

are comparatively underdeveloped as broadly applicable synthetic technologies,10 despite 

growing recognition of the importance of C(sp3)-incorporation when designing new 

drugs and agrochemicals.11–13 Instead, practical approaches to forging C(sp3)–N bonds 

remain generally limited to classical methods, including Mitsunobu substitution,14 Curtius 

rearrangements,15 olefin hydroamination16,17 or reductive amination.18

Among the traditional N-alkylation strategies, direct SN2 or SN1 substitution of alkyl halides 

with N-nucleophiles remains the most adopted technology for generating alkylamine­

bearing biomedical agents19,20 and among the most frequently utilized transformations 

across all chemical industries.21,22 Despite the long-standing popularity of this closed-shell 

N-alkylation pathway, substitution reactions typically face substantial halide-dependent 

activation barriers, which renders numerous substrates (in particular strained or hindered 

halides) inert to functionalization (Scheme 1).21,22 Even for reactive halides, elevated 

barriers for substitution result in high-temperature requirements that impose broad 

limitations, including low selectivity for a single constitutional isomer (or regioisomer), non­

controlled overalkylation events and competing elimination pathways.21,22 While in some 

cases, metal-mediated variants of halide N-alkylation have removed these limitations,23,24 

there remains an outstanding need to identify new, robust mechanisms that allow such 

couplings across an expansive range of complex halide and N-heterocyclic systems while 

employing ambient, low-temperature conditions.

Within the select C(sp3)–N cross-coupling methods already disclosed, copper catalysis 

has increasingly been featured as a key component for enhancing efficiency and scope, 

exploiting the well-precedented capacity for high-valent Cu(III) states to induce carbon–

heteroatom bond formation via reductive elimination.25,26 Buchwald, Hartwig, König, 

Watson and others have elegantly engaged several abundant alkyl feedstocks in such 

protocols, including olefins,27,28 boronic acids and esters,29–32 hydrocarbons (activated 

in situ via hydrogen atom transfer)33,34 and carboxylic acids (typically deployed as 

redox-active electrophiles).35–38 However, platforms for copper-catalyzed N-alkylation 

using alkyl halides, which are readily available and prototypical SN2 electrophiles, are 

currently restricted by limited mechanistic approaches and reduced generality in substrate 

scope. Within this area, the groups of Fu and Peters have made notable advances 

by designing several distinct organohalide-based N-alkylation platforms, primarily using 

transiently-generated Cu(I)-amido intermediates for aliphatic radical generation via single­

electron transfer (SET).39–43 In these systems, successful activation of both coupling 

partners by a single (often photoactive) copper complex has frequently enabled N­

alkylation using readily reducible electrophiles (i.e., iodides and α-halocarbonyls), with 

additional examples demonstrated using aliphatic bromides in tandem with amide- or indole­

derived nucleophiles.39–43 Ultimately, these reports from Fu and Peters have conclusively 

established that merging open-shell and copper-mediated activation modes can indeed 

facilitate catalytic C(sp3)–N bond formation.44

Over the past decade, metallaphotoredox catalysis has emerged as a powerful platform to 

employ open-shell intermediates in concert with transition metal-catalyzed cross-coupling 
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under mild conditions.45,46 This approach has recently been combined with copper 

catalysis,47 in particular for forging traditionally elusive C–CF3
48–52 and C–N35–37 bonds. 

In the context of organohalide functionalization, such strategies have most notably enabled 

Ullmann-Goldberg couplings of diverse (hetero)aryl bromides at room temperature using 

a previously unreported mechanistic approach.53 This transformation utilizes photoredox­

generated silyl radicals, which rapidly convert aryl bromides to radical intermediates via 

halogen atom transfer, to facilitate ambient or low-temperature coupling by replacing 

sluggish Cu(I) oxidative addition with a kinetically facile halogen abstraction-radical capture 

(HARC) sequence.54–56 Based on this new mechanism for C–N coupling, we hypothesized 

that an underexplored alkyl-HARC regime could generically provide aliphatic radicals 

from the corresponding bromides, ultimately enabling low-barrier N-alkylation via well­

established copper-catalyzed C(sp3)–N bond formation (Scheme 1). Specifically, using 

these previously unexplored principles for N-alkylation, we anticipated that independent 

steps for halide activation (by photoredox-mediated halogen abstraction) and nucleophile 

activation (by copper ligation) would confer widespread structural and electronic generality 

with respect to each coupling partner, thereby addressing key limitations in halide-based 

catalytic C(sp3)–N coupling. Herein, we report the successful design and execution of this 

dual copper/photoredox N-alkylation platform, which demonstrates reactivity and selectivity 

surpassing that of traditional substitution due to synergistic copper and silyl radical-based 

activation modes.

RESULTS AND DISCUSSION

HARC N-alkylation of 3-chloroindazole using alkyl bromides

Our initial studies began by investigating the alkylation of a medicinally-relevant 

1H-indazole model N-nucleophile with bromocyclohexane (Figure 1). Gratifyingly, 

following optimization efforts (see Figures S1–S21), 93% yield of product 1 was 

obtained after 4 hours of blue light irradiation (450 nm) using Ir(III) photocatalyst 

Ir[dF(CF3)ppy]2[4,4′-d(CF3)bpy]PF6 ([Ir-1]), commercial copper precatalyst Cu(TMHD)2, 

tris(trimethylsilyl)silanol (supersilanol) as a silyl radical precursor and acetonitrile as solvent 

(entry 1). Several elements proved critical for optimal reactivity, including a vent needle 

for air incorporation, the Integrated Photoreactor (IPR) as a standardized device for reaction 

vial irradiation,57 LiOt-Bu as base and water as an additive.58–60 Anhydrous systems were 

consistently detrimental (entry 2), even under conditions closely mimicking the previously 

reported HARC-Ullmann-Goldberg reaction (i.e. 1,1,3,3-tetramethylguanidine as base, entry 

3).53 Control reactions verified the importance of oxygen for catalytic turnover (entry 

4), in addition to the superior performance of high-intensity IPR setups, as weaker blue 

light sources (i.e., Kessil lamps) were generally inadequate for robust product formation 

(entry 5). As expected, base, photocatalyst, copper and supersilanol were all required for 

substantial reactivity (entries 6–9), consistent with the desired HARC mechanism that 

should require both photocatalytic halogen atom abstraction and copper-mediated bond 

formation to achieve coupling (see Supplemental Information and Figures S26–S27 for 

additional control experiments and perturbation studies, which confirm the robustness of the 

optimized conditions).
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With optimized conditions in hand, we next sought to examine the scope of bromides 

amenable to coupling (Figure 2). Strained cyclic bromides, which are often sluggish SN1 

or SN2 partners,21,22 were effective substrates, delivering N-cyclobutyl and N-azetidinyl 

products in high yield (2 and 3, 87% and 90% yield, respectively). Larger cyclic bromides 

containing pyrrolidine (4, 55% yield), tetrahydropyran (5, 71% yield) or cycloheptane (6, 

60% yield) cores could also be successfully functionalized. Acyclic bromides were also 

readily implemented in this protocol (7–9, 54–75% yield), demonstrating complementarity 

to SN2 methods via reactivity with neopentyl substrates.21,22 For more complex secondary 

cases, spirocyclic and bridged bicyclic frameworks (10–12, 47–92% yield), an adamantyl 

system (13, 54% yield), a biologically-relevant sterol scaffold (14, 56% yield) and a 

substrate bearing heterocyclic functionality (15, 87% yield) were all broadly competent for 

alkyl-HARC coupling.

To further illustrate the generality of this platform, we also evaluated a series of tertiary 

bromide electrophiles, which are typically challenging substrates in both metal-free and 

transition metal-catalyzed N-alkylations.21–24 Although supersilanol was insufficient for 

accomplishing these couplings, we were delighted to find that the recently disclosed 

aminosilane (TMS)3SiNHAd, which furnishes a more nucleophilic silyl radical with 

greater kinetic capacity for halogen atom abstraction,61 was competent for accessing such 

tertiary N-alkyl products. Numerous scaffolds reacted efficiently under these conditions, 

including derivatives of adamantane (16 and 17, 63% and 62% yield, respectively), 

bicyclo[2.2.2]octane (18 and 19, 57% and 51% yield, respectively), bicyclo[1.1.1]pentane 

(20, 64% yield) and cubane (21, 51% yield).62 Evidently, this method can be readily 

applied to the formation of rigid bioisosteric alkyamines, structures of high value for 

medicinal chemistry programs which currently suffer from limited (or non-existent) 

synthetic approaches via modular cross-coupling techniques.63

Evaluation of N-nucleophile and pharmaceutical agent scope

We then turned our attention to the scope of N-nucleophiles suitable for this transformation 

(Figure 3). Using a strained model halide substrate, a variety of indazoles (22–24, 66–86% 

yield) and pyrazoles (25–27, 57–90% yield) were alkylated in high efficiency. Consistent 

with previous copper metallaphotoredox studies,35 this method delivers all products as 

single regioisomers, an elusive selectivity trend for traditional nucleophilic substitution 

approaches.21,22,64,65 For heterocycles featuring one reactive site, azaindoles (28–30, 54–

85% yield), indoles (31–33, 65–68% yield), pyrrole (34, 64% yield) and carbazoles (35 
and 36, 58% and 75% yield, respectively) were readily functionalized, as were benzamide 

N-acyl partners bearing either electron-rich or electron-deficient arene frameworks (37–39, 

49–78% yield). Furthermore, sulfonamide (40, 74% yield), carbamate (41, 71% yield), 

aniline (42, 58% yield), oxindole (43, 91% yield) and dihydroquinolone nucleophiles (44, 

56% yield) were also successfully coupled. Remarkably, exquisite chemoselectivity was 

observed for bromide abstraction in all cases, leaving aryl or alkyl chloride functionality 

intact and available for subsequent synthetic manipulation. Notably, benzophenone imine 

(45, 82% yield) could also be utilized for accessing derivatives of primary amines, 

motifs typically inaccessible via substitution due to predominant overalkylation when using 

nucleophiles (such as ammonia) containing several labile N–H bonds21,22,24 In total, 13 
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diverse nucleophile classes were amenable to coupling, demonstrating the generality of 

alkyl-HARC mechanisms with independent silyl radical and copper-based activation steps 

(for additional examples and current limitations, see Figure S30).66

To survey the utility of this method in drug discovery settings, we also employed this 

alkyl-HARC protocol to functionalize various commercial N-nucleophilic pharmaceutical 

agents (Figure 4). Celebrex (46, 87%), Navoban (47, 52% yield), Skelaxin (48, 87% yield) 

and Dogmatil (49, 73% yield) were all expediently converted to complex N-alkyl analogs 

using various bromide coupling partners, with basic and oxidation-prone67 tertiary amines 

notably tolerated in several cases.68 Given the prevalence of heterocyclic N-nucleophiles in 

drug candidates, this platform should provide medicinal chemists facile access to diverse 

pharmaceutical analogs via modular, late-stage N-alkylation.

Extension of HARC methodology to cyclopropyl and chloride electrophiles

Exploiting this complementary N-alkylation protocol, we further sought to couple halides 

broadly considered inert within SN1 or SN2 substitution platforms, initially targeting 

the generation of heterocyclic cyclopropylamine derivatives. These motifs, although 

pharmaceutically valuable,69 are challenging to reliably access late-stage due to the 

generally inert nature of cyclopropane electrophiles to nucleophilic displacement,35,70–74 

instead necessitating the use of preformed organometallic derivatives.75–79 Gratifyingly, 

alkyl-HARC cyclopropylation employing commercial and bench-stable bromocyclopropane 

was indeed achievable for various N-nucleophiles with good to excellent efficiency (50–

59, 48–85% yield, Figure 5). Moreover, this approach was applicable to more complex 

structures, providing Skelaxin (60, 84% yield) and Celebrex (61, 51% yield) analogs in 

expedient fashion. This accomplishment highlights the unique capabilities of HARC-based 

N-alkylations, permitting single-step syntheses of elusive drug-like cyclopropylamines.

Additionally, we anticipated that (TMS)3SiNHAd, originally designed by our laboratory 

for organochloride abstraction,61 could activate typically unreactive non-primary alkyl 

chlorides towards HARC N-alkylation (Figure 6). We were pleased to find that, under 

modified conditions, conversion of secondary alkyl chlorides to the corresponding radicals 

using (TMS)3SiNHAd provided facile N-alkylation reactivity (62 and 1, 52% and 50% 

yield, respectively). The significance of this discovery was further verified via rapid 

generation of trans-amino alcohol 63 (40% yield) for which the necessary bromohydrin 

partner is unavailable in gram-scale quantities from chemical vendors, thus demonstrating 

single-step entry into chemical space unattainable from commercially-available bromides 

(for control reactions verifying the mechanism that enables formation of 63, see Figure 

S28). The chlorocyclohexanol stereoisomeric mixture employed ultimately furnished 63 
in a diastereoconvergent fashion, a notable consequence of exploiting copper-mediated 

bond formation as an elementary step to facilitate N-alkylation. We expect this new 

metallaphotoredox N-alkylation strategy to enable a variety of previously unachievable 

chloride substitution reactions, and further expansion of this variant of the copper-HARC 

protocol is currently underway.
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Mechanistic proposal and comparisons to traditional substitution methods

Following our studies on the applicability of this HARC N-alkylation to various synthetic 

contexts, we also sought to investigate the mechanism of coupling. In particular, we set out 

to verify that the achievements of this platform, with respect to the breadth of scope, are in 

fact complimentary to those possible within established substitution conditions, and that the 

HARC design principle is utilized to accomplish these advances. We started by identifying 

products 1, 18 and 50 as representative examples for comparing our metallaphotoredox 

method against prototypical substitution approaches. Previous reports indicate that these 

adducts are formed in trace or modest yield (with moderate N1-regioselectivity) under 

traditional substitution conditions when using 3-chloroindazole and the corresponding 

bromide electrophiles (Figure 7),35 presumably due to prohibitively high kinetic barriers 

for halide displacement which cannot be overcome using thermal activation. Consequently, 

efficient and regioselective generation of 1, 18 and 50 under HARC N-alkylation conditions 

(57–93% yield, see Figures 1, 2, 5 and 7) signifies that this new platform will indeed enable 

reactivity not attainable from standard two-electron processes, implying that alternative 

reaction pathways must be operative. Furthermore, when subjecting 3-chloroindazole and 

bromocyclohexane to the optimized HARC-coupling conditions using only ambient light 

as a photon source, product 1 was not detected (Figure 7), eliminating the possibility of 

background non-photonic substitution pathways (these trends were consistent across all 13 

classes of nucleophiles subjected to coupling, see Figure S29). Collectively, these results 

indicate both that unique mechanisms beyond those of traditional nucleophilic substitution 

are responsible for the robust performance observed in HARC N-alkylation reactions, and 

that such N-alkyl products are otherwise inaccessible when using conditions designed to best 

facilitate classical SN2 or SN1 processes.

To validate the hypothesized open-shell nature of this transformation, we further subjected 

3-chloroindazole to coupling conditions designed to indicate the presence of radical 

intermediates. When using (bromomethyl)cyclopropane as the halide coupling partner, 

no direct coupling was observed, with N-homoallyl indazole 64 instead generated as 

the primary product in 33% yield (Figure 7). Given the rapid rate for unimolecular 

ring-opening of the cyclopropylmethyl radical (k = 7.8 × 107 s−1 at 20 °C)80 to 

generate homoallylic isomers, this outcome is consistent with the intermediacy of alkyl 

radicals (presumably generated via halogen atom transfer, as supersilanol is required 

for detectable product formation, see Figure 1) in the HARC N-alkylation protocol. 

However, to further distinguish between the possibilities of radical ring-opening and 

copper-mediated β-carbon elimination (which would not necessarily proceed via open-shell 

intermediates),81 TEMPO-trapping studies were also conducted. When adding the persistent 

radical 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to the standard bromocyclohexane 

coupling reaction, product 1 was not detected, and the major species observed from 

bromocyclohexane conversion was TEMPO-trapped adduct 65 (Figure 7). Given that adduct 

65 is well-established to be forged via radical-radical coupling of TEMPO with the 

transient cyclohexyl radical,82 these results, in tandem with ring-opening studies and control 

experiments (Figures 1, 7 and S22–S25), denote the anticipated open-shell pathways needed 

to enable HARC-type coupling.
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Based on the above findings and preceding literature regarding the behavior of copper 

complexes in systems containing open-shell intermediates, a plausible mechanism and 

summary of optimal conditions for copper-HARC N-alkylation is detailed in Scheme 2. 

Initial photoexcitation of Ir(III) photocatalyst [Ir-1] with blue light from IPR irradiation 

and subsequent intersystem crossing would generate the long-lived triplet excited state II 
(lifetime τ = 280 ns), a potent single-electron oxidant (E1/2

red[*IrIII/IrII] = +1.65 V vs. SCE 

in MeCN).83 Consistent with previous aerobic photocatalytic transformations featuring silyl 

radical activation of halides,53 ensuing SET between complex II and a silyl radical precursor 

such as supersilanol (IV; Epa [IV/IV+•] = +1.54 V vs. SCE in MeCN)48 would afford 

reduced Ir(II) photocatalyst III and, upon deprotonation and radical Brook rearrangement, 

silicon-centered radical V. This nucleophilic silyl radical can perform facile halogen 

atom abstraction, converting alkyl bromide VI to aliphatic radical intermediate VII.84 

Concurrently, reduced Ir(II) complex III (E1/2
red[IrIII/IrII] = −0.79 V vs. SCE in MeCN)83 

can be re-oxidized by molecular oxygen to regenerate ground-state Ir(III) photocatalyst 

[Ir-1]. Independently, Cu(I) catalyst VIII, N-nucleophile IX and base would combine 

to produce anionic Cu(I)-amido complex X, eventually affording neutral Cu(II)-amido 

intermediate XI following SET with oxygen. Such copper complexes are well-documented 

to furnish C(sp3)–N bonds upon encountering alkyl radicals,33–36,44 presumably beginning 

with capture of radical VII (predicted to proceed at near-diffusion rates)85–87 to afford 

HARC-generated Cu(III)-alkyl complex XII. Subsequent reductive elimination from XII 
would deliver N-alkyl product XIII while regenerating Cu(I) catalyst VIII, ultimately 

closing both catalytic cycles.88–92 Unique to this platform is the decoupled nature of halide 

activation (by photocatalytic halogen atom transfer) and nucleophile activation (by copper 

catalysis). This design principle is evidently responsible for conferring generality (with 

respect to scope) across both coupling partners, and for offering reactivity and selectivity 

surpassing that of previously reported halide-based N-alkylation systems.

Conclusion

In summary, an underexplored halogen abstraction-radical capture (HARC) strategy has 

been applied to the copper metallaphotoredox alkylation of N-nucleophiles using alkyl 

halides as convenient electrophilic partners. This coupling method requires no substrate 

preactivation, operates under mild aerobic conditions, and provides reactivity with a 

broad range of alkyl bromides and N-heterocycles, including those typically recalcitrant 

within thermally-induced SN1 or SN2 settings. The demonstrated late-stage utility of this 

method, as well as the compatibility of substrates traditionally inert to substitution (such 

as bromocyclopropane and various alkyl chlorides), makes this technology particularly 

promising for exploring diverse sp3-rich chemical space in medicinal chemistry settings. We 

anticipate that HARC coupling mechanisms, including those demonstrated for N-alkylation, 

will continue to be developed and deployed for complex molecule synthesis, ideally 

providing synthetic chemists access to elusive alkylamines (or other motifs) that cannot 

be generated through conventional approaches.

Dow et al. Page 8

Chem. Author manuscript; available in PMC 2022 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EXPERIMENTAL PROCEDURES

General procedure for HARC N-alkylation of indazoles and pyrazoles

To an oven-dried 40 mL vial equipped with a Teflon stir bar was added indazole or 

pyrazole nucleophile (0.25 mmol, 1.0 equiv.), Ir[dF(CF3)ppy]2[4,4′-d(CF3)bpy]PF6 ([Ir-1], 
2.3 mg, 2.0 μmol, 0.008 equiv.), bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II) 

(Cu(TMHD)2, 22–32 mg, 0.05–0.075 mmol, 0.2–0.3 equiv.), LiOt-Bu (60 mg, 0.75 mmol, 

3.0 equiv.), MeCN (2.5 mL, 0.1 M) and water (45 μL, 2.5 mmol, 10 equiv.). The resulting 

solution was stirred for 1–2 minutes under air to ensure complete ligation of the nucleophile 

to the copper precatalyst. Following this complexation period, alkyl halide (0.625 mmol, 2.5 

equiv.) and (TMS)3SiOH (165 mg, 0.625 mmol, 2.5 equiv.) were added to the mixture, after 

which the vial was capped and an 18G vent needle was inserted through the Teflon-lined 

septum. The reaction mixture was subsequently stirred under air within the Integrated 

Photoreactor (450 nm irradiation) for 4 hours. After 4 hours, the reaction mixture was 

diluted with EtOAc (5 mL), followed by the addition of KF on alumina (40 wt. % 

from Sigma-Aldrich, 1.0 g) and tetrabutylammonium bromide (500 mg) to the vial. This 

suspension was stirred under air for 2–24 hours, then filtered into a separatory funnel, using 

an additional 25 mL EtOAc wash to ensure complete transfer from the vial. The organic 

layer was subsequently washed with saturated Na2CO3 (10 mL), water (10 mL) and brine 

(10 mL), and the collected aqueous layer was extracted with EtOAc (10 mL). The combined 

organics were dried over MgSO4 and concentrated in vacuo to obtain the crude product. This 

residue was then purified by silica gel chromatography to afford the desired N-alkylated 

product.

General procedure for HARC N-alkylation of other N-nucleophiles

To an oven-dried 40 mL vial equipped with a Teflon stir bar was added N-nucleophile (0.25 

mmol, 1.0 equiv.), Ir[dF(CF3)ppy]2[4,4′-d(CF3)bpy]PF6 ([Ir-1], 2.3 mg, 2.0 μmol, 0.008 

equiv.), MeCN (2.5 mL, 0.1 M) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN, 31 μL, 0.25 

mmol, 1.0 equiv.) The resulting homogeneous solution was stirred for 5 minutes, after which 

LiOt-Bu (60 mg, 0.75 mmol, 3.0 equiv.) and water (45 μL, 2.5 mmol, 10 equiv.) were added 

to the vial. This suspension was then sonicated under air for 1 minute until the mixture 

became homogeneous. Cu(TMHD)2 (22–32 mg, 0.05–0.075 mmol, 0.2–0.3 equiv.) was then 

added to the vial, and the solution was stirred for 1–2 minutes under air to ensure complete 

ligation of the nucleophile to the copper precatalyst. Following this complexation period, 

alkyl halide (0.625 mmol, 2.5 equiv.) and (TMS)3SiOH (165 mg, 0.625 mmol, 2.5 equiv.) 

were added to the mixture, after which the vial was capped and an 18G vent needle was 

inserted through the Teflon-lined septum. The reaction mixture was subsequently stirred 

under air within the Integrated Photoreactor (450 nm irradiation) for 4 hours. After 4 hours, 

the reaction mixture was diluted with EtOAc (5 mL), followed by the addition of KF on 

alumina (40 wt. %, 1.0 g) and tetrabutylammonium bromide (500 mg) to the vial. This 

suspension was stirred under air for 2–24 hours, then filtered into a separatory funnel, using 

an additional 25 mL EtOAc wash to ensure complete transfer from the vial. The organic 

layer was subsequently washed with saturated Na2CO3 (10 mL), water (10 mL) and brine 

(10 mL), and the collected aqueous layer was extracted with EtOAc (10 mL). The combined 

organics were dried over MgSO4 and concentrated in vacuo to obtain the crude product. This 
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residue was then purified by silica gel chromatography to afford the desired N-alkylated 

product.

Other experimental details and examples (Figures S1–S31), as well as characterization data 

(Figures S32–S184), can be found in the Supplemental Information.

Resource availability

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, David W. C. MacMillan (dmacmill@princeton.edu).

Materials availability—This study did not involve the design of unique reagents or 

catalysts for chemical synthesis.

Data and code availability—There is no dataset or code associated with this publication. 
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The bigger picture

Alkylamines, and their N-heterocyclic derivatives, are key structural features in 

molecules central to the medical, agroscience and materials science industries. Although 

N-alkylation using nitrogen nucleophiles and halides has historically been accomplished 

via nucleophilic substitution, this process is frequently inefficient and poorly selective 

under thermal activation. We report a kinetically facile, room temperature N-alkylation 

achieved via underexplored halogen abstraction-radical capture pathways mediated 

by independent photoredox and copper catalytic cycles. With broad scope and late­

stage applicability, even for traditionally inert cyclopropane and chloride electrophiles, 

this protocol offers new and efficient strategies for modern amine synthesis. These 

developments can ideally provide medicinal chemists with single-step access to valuable 

sp3-rich chemical diversity in drug discovery, including alkylamine motifs unattainable 

via conventional N-alkylation methods.
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Highlights

General, room temperature N-alkylation via copper metallaphotoredox catalysis

Broad reactivity across diverse alkyl bromides, N-heterocycles and pharmaceuticals

Convenient approach to N-cyclopropylation using easily-handled bromocyclopropane

Readily extended to functionalization of unactivated secondary alkyl chlorides
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Figure 1. Control reactions of optimized HARC N-alkylation conditions
Reactions performed with (TMS)3SiOH (2.5 equiv), LiOt-Bu (3.0 equiv), and H2O (10 

equiv) in MeCN (0.1 M), under IPR irradiation, unless otherwise indicated. aYields 

determined by 1H NMR analysis. See Supplemental Information for specific experimental 

details. TMHD, 2,2,6,6-tetramethyl-3,5-heptanedionate; IPR, Integrated Photoreactor; TMG, 

1,1,3,3-tetramethylguanidine.
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Figure 2. Alkyl bromide scope for copper-HARC N-alkylation
Isolated yields unless otherwise indicated. r.r. >20:1 in all cases. Reactions generally 

performed under air with photocatalyst [Ir-1] (0.8 mol%), Cu(TMHD)2 (20–30 mol%), 

(TMS)3SiOH (2.5 equiv), LiOt-Bu (3.0 equiv), H2O (10 equiv), N-nucleophile (0.25 mmol, 

1.0 equiv) and alkyl bromide (2.5 equiv) in MeCN (0.1 M) under IPR irradiation (450 nm) 

for 4 h. See Supplemental Information for specific experimental details. ad.r. 4:1. b0.05 

mmol scale; toluene/MeCN (7:3, 0.1 M) as solvent; d.r. 1:1; yield determined by 1H NMR 

analysis. c(TMS)3SiNHAd as silyl radical source. d60 mol% Cu(TMHD)2. eIsolated yield 

from five combined 0.05 mmol scale reactions (0.25 mmol total) due to reduced yields 

(>5% loss of yield) on typical 0.25 mmol scale. fIr[dF(CF3)ppy]2(dtbbpy)PF6 [Ir-2] as 

photocatalyst. g3.5 equiv. (TMS)3SiNHAd used. Ad, 1-adamantyl.
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Figure 3. N-nucleophile scope for copper-HARC N-alkylation
Isolated yields unless otherwise indicated. See Figure 2 for general conditions and 

Supplemental Information for specific experimental details. aDBN (1.0 equiv) used as 

additive. b0.5 equiv. LiOt-Bu used. cYield determined by 1H NMR analysis. DBN, 1,5­

diazabicyclo[4.3.0]non-5-ene.
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Figure 4. Late-stage N-alkylation of pharmaceutical agents
All yields are isolated. See Supplemental Information for specific experimental details.
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Figure 5. Direct cyclopropylation of N-nucleophiles using bromocyclopropane
Isolated yields unless otherwise indicated. See Supplemental Information for specific 

experimental details. ar.r. >20:1. bYield determined by 1H NMR analysis.
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Figure 6. Extension of HARC coupling to unactivated alkyl chlorides
All yields are isolated. r.r. >20:1 in all cases. aInitial alkyl chloride d.r. 1:1. See 

Supplemental Information for specific experimental details.
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Figure 7. Comparisons with traditional substitution approaches and preliminary mechanistic 
experiments
All products formed using HARC conditions displayed r.r. >20:1. See reference 35, 

indicated main text Figures, or Figures S22–S25 and S29 for additional experimental details. 

TEMPO, 2,2,6,6-tetramethylpiperidin-1-yl)oxyl.
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Scheme 1. Catalytic N-alkylation via HARC coupling of alkyl bromides
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Scheme 2. Plausible mechanism and summary of conditions for copper-HARC N-alkylation.
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