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In 2019, approximately 38 million people were infected with HIV worldwide [1]. Although 

there is still no cure that successfully eradicates the disease, combination antiretroviral 

therapy (cART) has improved to a point where undetectable viral loads have become 

achievable and HIV carriers often live almost normal lives with very substantially increased 

average life expectancies compared to historical data [2,3]. While the disease in many cases 

becomes chronic, the specifics of its progression in an individual may diverge dramatically 

from the average and thus manifest differently in each affected person. This variability is of 

concern, causing one to wonder whether an average treatment regimen is optimal for a given 

individual.

If the viral infection were untreatable, or if there were just one treatment, addressing this 

concern would be moot. However, the options within cART have dramatically changed the 

landscape of treating HIV/AIDS [4,5]. More than two dozen antiretroviral drugs have been 

approved by the FDA and are in current use [6]. They fall into several classes that interfere 

with different aspects of virus replication or through different mechanisms [4,7]: (1) specific 

CD4-directed post-attachment inhibitors bind to chemokines coreceptors, thereby preventing 

HIV from attaching to and entering host cells; (2) chemokine receptor antagonists (CRAs) 

selectively block interactions between the human CCR5 receptor and the HIV-1 gp120 

protein which, in turn, prevents HIV entry into cells; (3) fusion inhibitors (FIs) disrupt 

HIV binding and, ultimately, fusion with host cells; (4) the transcription of viral RNA into 

double-stranded DNA can be prevented with nucleoside or nucleotide reverse transcriptase 

inhibitors (NRTIs); (5) targeting the same process, the activity of the key enzyme HIV-1 

reverse transcriptase may be reduced or blocked with non-nucleotide reverse transcriptase 

inhibitors (NNRTIs); (6) integrase inhibitors (IIs) hinder the transport and attachment of 

pro-viral DNA to host-cell chromosomes; (7) HIV replication and the formation of mature, 

infectious viral particles can be prevented with protease inhibitors (PIs); (8) pharmacokinetic 

enhancers do not directly interfere with viral replication but rather boost the concentration of 

antiretrovirals in the blood to make them more effective. Numerous variations of cART have 

been approved. The initial therapy usually starts with a combination of three antiretrovirals, 

including two NRTIs plus an NNRTI, or two NRTIs plus a protease inhibitor. The use 

of four antiretrovirals was shown not to improve outcomes over a combination of three 

compounds [8].

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Correspondence should be addressed to Eberhard O. Voit; eberhard.voit@bme.gatech.edu. 

HHS Public Access
Author manuscript
J AIDS HIV Treat. Author manuscript; available in PMC 2021 August 18.

Published in final edited form as:
J AIDS HIV Treat. 2021 ; 3(2): 37–41. doi:10.33696/AIDS.3.020.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One challenge for any therapy, including cART, is HIV latency, a phenomenon where the 

virus persists mostly in resting memory CD4+ T cells, as well as possibly in other cell types 

at different locations within the body, and can re-emerge when treatment is discontinued 

[9]. While these latency mechanisms are not fully understood, it appears that the viral 

integration site and pro-viral orientation, as well as genomic architecture and stochastic gene 

expression, are contributing factors [10]. One treatment strategy has been the reactivation 

and then depletion (“shock and kill”) of virus in the latent reservoirs [11], while another 

approach has been an attempt to manipulate the signaling pathways that are essential for the 

establishment of latency [12]. However, a complete eradication has so far not been achieved 

on a regular basis [9,12] and cART is to be continued throughout a carrier’s life.

The variations in cART regimens, made possible by the different approved antiretroviral 

drugs, theoretically provide very many alternative therapeutic options, especially if different 

dosing regimens are feasible. This variability suggests that one might envision customization 

of treatment to specific individuals or groups of individuals [13]. While the combinatorial 

choices among many alternatives are certainly very welcome, the question arises how 

one might achieve the best match between an individual and an optimal, custom-tailored 

treatment regimen, which includes occasional changes in drug combinations that might 

become necessary due to the development of drug resistance or side effects that are difficult 

to tolerate. In fact, it is expected that not all combination therapies are similarly efficacious 

for all patients, may cause severe side effects, or even fail. Designing optimally effective, 

individualized treatment regimens with the best morbidity profiles for each patient will be 

challenging with experimental and clinical approaches, but appears to be well-suited for 

exploration within the emerging field of personalized medicine.

The emerging concept of personalized medicine and its counterpart of predictive health 

proposes a widening of the scope of potential treatments with the goal of allowing more 

flexible matching of an individual’s case with a specific treatment and dosing regimen 

[14,15]. This possible expansion in scope is not without risks, as substantive deviations 

from a standard treatment may be deleterious and possibly life-threatening. Moreover, non­

standard approaches of care may not be reimbursed by insurance providers and could expose 

the physician to litigation.

Thus, before systemic deviations from standard treatment procedures are to be considered 

for a specific individual, one must ask why this individual could or should possibly respond 

better to a customized treatment than to the standard of care. Many answers could be 

given. An important but implicit reason is associated with the fact that drug treatments are 

based on population averages. These averages derive at first from animal studies, where 

sufficiently large samples of mice, rats, or other mammals were exposed to the drug in order 

to study likely side effects, and where additional samples were later used to assess efficacy 

against the disease. The same scenario is repeated, mutatis mutandis, in clinical trials. The 

conceptual rationale for this procedure is absolutely valid, namely, to evaluate whether a 

treatment can alleviate disease in the study population without causing harm or undue side 

effects. The potential opportunity to improve on the outcome of this traditional technique 

comes from the possibility that a given individual may have a genetic and physiological 

Kumbale and Voit Page 2

J AIDS HIV Treat. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



make-up that could benefit from a drug or high dosing regimen while being resistant or 

tolerant to severe side effects.

In our recent article [16], Dynamical Systems Approaches to Personalized Medicine, 

we discuss the emerging role of computational systems biology for the implementation 

and practical use of personalized medicine. We motivate our analysis with a beautiful 

illustration, namely a study on acute lymphoblastic leukemia (ALL) in children, for which 

chemotherapy can have a long-term disease-free survival rate of about 90%. At issue are 

the remaining 10% of children, many of whom in the past had severe if not fatal side 

effects from this very treatment [17]. Instead of abandoning the obvious potential of the 

specific chemotherapy, clinicians and physician-scientists designed a transcriptomic study 

on leukemia cells from cohorts of pre-treatment patients, which revealed between 20 

and 45 differentially expressed genes that were associated with single-drug resistance or 

cross-resistance [18]. By testing children with respect to these prognostic transcriptomic 

signatures, it became possible to differentiate responders from non-responders to the 

treatment with high reliability [19]. Several other examples of risk stratification have been 

published that were based on specific molecular aspects of a targeted cohort (see, e.g., [17]).

While it is quite evident and unsurprising that personalized medicine has high potential, 

the question arises of what it will take to make this emerging approach reality. The 

answer consists of two complementary components. The first is the availability of sufficient 

personalized information, while the second is a set of robust methods for analysis, 

interpretation, and prediction.

Databases of personalized information require collecting large amounts of pertinent data 

from individuals through imaging, -omics profiling, and the measurement of physiological 

or molecular biomarkers that could be generic or disease-specific, possibly in combination 

with one of the many new health monitoring devices that have become available in recent 

times [20–22].

While of undisputed importance, this collection of data is a necessary but insufficient 

prerequisite. In fact, it does not even always suffice to compare an individual’s 

“molecular profile” with that of the general population, because many differences may be 

physiologically neutral, at least with respect to the disease at hand. Instead, the next critical 

step beyond simple comparisons may proceed into two directions.

First, once all feasible molecular information of an individual is collected, computational 

methods of statistical machine learning and artificial intelligence may be able to extract 

patterns from the data that are associated with the disease [23]. This approach is very 

powerful if an entire cohort of individuals is tested, some of whom are healthy and some 

diseased. Specifically coded and trained computer algorithms then are often capable of 

detecting complex patterns among the data that extract distinguishing markers of disease.

Second, if a comprehensive computational model of the disease exists, the molecular 

profile of the individual can be represented within this model structure [20,22,24]. This 

computational approach proceeds as follows: The disease model is composed of a system 

of equations; usually, these are differential equations [25,26]. These equations always 

Kumbale and Voit Page 3

J AIDS HIV Treat. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contain a typically large set of numerical parameters that determine critical features of the 

phenomenon, such as the half-life of CD4 cells, the speed at which the disease progresses, 

or the rate at which the immune system reduces the viral load. Initially, these parameters 

are determined from averages obtained from clinical or epidemiological measurements 

and animal experiments [27]. The personal embedding is accomplished when as many of 

these “average” model parameters are replaced with parameter values corresponding to 

personalized measurements taken from the individual in question. The result is a disease 

model adjusted to the specific molecular properties of a single individual [16,24]. It is 

obviously not possible to measure every single parameter in the same individual, and values 

of parameters that cannot be acquired through measurements are—by necessity—retained 

as the population averages previously obtained; the number of these parameters should 

gradually be decreased. This method to personalized medicine is illustrated in Figure 1. 

Once a disease model has been calibrated with an individual’s parameter values, it is 

comparatively easy to simulate health and disease, explore treatment options, and forecast 

future health trajectories.

This model-based approach, utilizing personalized data and their computational analysis 

within something like an ex vivo context, actually offers more than personalized health 

predictions, namely the ability to understand why a disease may manifest differently among 

individuals and why certain drugs used to treat the disease may not be similarly effective in 

all patients.

It is clear that we are far from perfect personal molecular testing and simulation-based, 

individualized predictions, but various scientific communities have taken the first critical 

steps in this direction. The amounts of data achievable in a standard molecular biology lab 

have grown exponentially both in quantity and also in quality, and data on single individuals 

or even single cells are becoming more commonplace. At the same time, computer scientists 

have multiplied computational power and made this power available to non-experts, while 

researchers in biomathematics and the nascent field of computational systems biology 

have made great strides toward constructing “average” models of healthy and diseased 

subsystems of the human body.

A few examples in the context of HIV/AIDS offer a portrayal of the nascent state of the 

art. A review by Prague et al. [28] highlights the importance of mechanistic models toward 

achieving more personalized HIV therapeutics. The authors specifically discuss how models 

consisting of ordinary differential equations have already been used to optimize therapeutics 

for HIV-infected individuals. As an illustration, they refer to a pioneering modeling 

approach proposed by Wei et al. [29], who computationally assessed the fundamental 

phenomenon of HIV rapidly mutating, which in turn constitutes the rationale for combining 

antiretroviral drugs with different mechanisms of action.

Prague and colleagues [28] do not hide the major obstacle inherent in the use of these 

dynamical models, namely, the difficulty of estimating model parameters [30]. While 

parameter optimization is a true challenge, trends throughout the past few decades leave 

little doubt that this bottleneck will gradually become less of an issue. At the same time, 

the rewards of the modeling approach will be plentiful, because it will eventually become a 
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routine analysis to test new drugs or drug combinations not only on averaged mathematical 

models for populations but also on personalized models of individuals. Once we approach 

this point, these models will become invaluable tools for testing a wide spectrum of 

hypotheses into varying biomarkers and biological mechanisms and for allowing objective 

comparisons of therapeutic regimens of personalized HIV treatment.

Of course, HIV/AIDS is a complex disease. Lengauer et al. [31] singled out the phenomenon 

of evolving drug resistance. Drug cocktails in cART are designed to prevent (or at least 

slow down) drug resistance, but once a cocktail fails, predicting a new, efficacious drug 

combination is difficult to determine because many different drugs are available for HIV, 

and an appropriate dose must be specified for each component of the new cocktail. Clearly, 

a reliable, personalized computational HIV simulator would be a welcome addition to the 

physician’s treatment repertoire.

Mu et al. [3] discuss different strategies for improving personalized medicine in the context 

of HIV. They note, in particular, that therapeutic drug monitoring (TDM) is currently not 

part of standard care, but should be considered especially for patients at elevated risk who, 

for instance, are pregnant, do not respond to therapy, or suffer from suspected drug-drug 

or drug-food interactions. At present, insufficient cost-effectiveness is the main reason not 

to use TDM as a part of routine therapy, but Mu et al. argue convincingly that TDM 

has been effectively utilized retrospectively to determine why certain individuals had not 

experienced an expected therapeutic response. Thus, instead of a retrospective application, 

they propose TDM could enable the possibility of prospectively “just-in-time” determining 

which patients would benefit from a certain treatment. The authors support this assertion 

with an example where individuals, who had been administered the drug combination of 

lopinavir with ritonavir, were found to be significantly less likely to experience treatment 

failure if they had certain MDR1 polymorphisms [32]. Thus, prospective testing of these 

polymorphisms might be able to suggest with some reliability which patients would benefit 

from the combination of lopinavir and ritonavir.

These studies support the prospect that HIV infections are a fertile ground for exploring 

personalized treatments. Much still needs to be done toward a general strategy that can 

reliably predict which combination therapy would be best suited for a given individual. The 

challenge now is developing a deeper understanding of the exact mechanism with which 

HIV eventually outfoxes the human immune system and how we might help the body 

control the virus’ antigenic variation.

Given the complexity of the host-virus system, it appears that forays into personalized HIV 

treatments might greatly benefit from computational support. Mathematical models are in 

principle able to integrate hundreds of processes in a functional and meaningful manner, and 

their main limitation is more and more the availability of crisp, quantitative data. Once a 

personalized HIV model is established for an individual, it will become possible to make 

short-term predictions and correct the model based on comparisons with actual observations 

after a short period of time, if not even instantaneously in an online manner. Models of this 

type are already being used for glucose imbalances caused by diabetes, and given time, they 

might assist individuals with HIV on a daily basis [33].
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Figure 1: 
Personalized health and disease modeling uses a model structure that was designed based 

on general knowledge of a disease, combined with parameter values that come either from 

clinical trials and animal experiments and ultimately yield an average model, or from 

individuals, in which case the combined result is a set of personalized models, one for each 

individual. The individual model responses may be very similar or can be quite different. 

Adapted from Davis et al. [16].
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