
Direct Photon-by-Photon Analysis of Time-Resolved Pulsed 
Excitation Data using Bayesian Nonparametrics

Meysam Tavakoli1, Sina Jazani2, Ioannis Sgouralis2, Wooseok Heo3, Kunihiko Ishii3,4, Tahei 
Tahara3,4, Steve Pressé2,5,6,*

1Department of Physics, Indiana University-Purdue University, Indianapolis, IN 46202, USA

2Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 
85287, USA

3Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

4Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 
Hirosawa, Wako, Saitama 351-0198, Japan

5School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA

6Lead Contact

SUMMARY

Lifetimes of chemical species are typically estimated by either fitting time-correlated single­

photon counting (TCSPC) histograms or phasor analysis from time-resolved photon arrivals. 

While both methods yield lifetimes in a computationally efficient manner, their performance 

is limited by choices made on the number of distinct chemical species contributing photons. 

However, the number of species is encoded in the photon arrival times collected for each 

illuminated spot and need not be set by hand a priori. Here, we propose a direct photon-by-photon 

analysis of data drawn from pulsed excitation experiments to infer, simultaneously and self­

consistently, the number of species and their associated lifetimes from a few thousand photons. We 

do so by leveraging new mathematical tools within the Bayesian nonparametric. We benchmark 

our method for both simulated and experimental data for 1–4 species.
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Here, Tavakoli et al. propose the direct photon-by-photon analysis of data drawn from pulsed 

excitation experiments to infer, simultaneously and self-consistently, the number of species and 

their associated lifetimes from as little as a few thousand photons. This is achieved by leveraging 

new mathematical tools within the Bayesian nonparametric (BNP) paradigm.

INTRODUCTION

Fluorescence microscopy provides a means to selectively monitor the dynamics and 

chemical properties of fluorophores or labeled molecules.1–13 In this study, our focus 

is on methods that use pulsed illumination14–18 or illumination modulated at a fixed 

frequency18–23 at 1 spot. Photon arrival times assessed in these methods encode critical 

information on the excited state lifetime or the number of different chemical species 

contained in the sample under imaging. This is the basis of lifetime imaging,13,24–27 which 

has been used to reveal information on local pH,28,29 oxygenation,28 and other cellular 

metabolic traits23,30 reporting back on the breadth of cellular microenvironments.

Maximum likelihood or traditional (parametric) Bayesian methods31–35 are common starting 

points in the analysis of photon arrivals or photon arrival histograms derived from pulsed 

illumination (i.e., time-correlated single-photon counting [TCSPC] data).2,36–38

In pulsed illumination,39,40 photon arrival times are analyzed41–44 under the assumption of 

a known number of molecular species with unknown lifetimes to be determined31–35,45–50 

This approach is best illustrated in discussing photon arrival histograms, which are typically 

fitted using multi-exponentials49,51 to identify the lifetime of each species. That is, lifetimes, 

τm, and the weights of the mth lifetime component, am, are modeled and determined using 

multi-exponential decay fits of the form
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I(t) = ∑
m = 1

M
amexp − t

τm
(Equation 1)

where I(t) is the intensity of photons arriving at time t.

In Equation 1, the number of exponential components, M, must be specified before the 

data can be used to find τ1, …, τM and a1, …, aM. Typically, M is specified according 

to some goodness-of-fit metric that safeguards against overfitting,33 as we discuss in 

the Supplemental Experimental Procedures. Within a maximum likelihood or parametric 

Bayesian paradigm, too large an M must be penalized according to post hoc criteria.52–55 

Other methods for deducing M rely on pole decompositions56 or Laplace-Padé expansions57 

requiring exceedingly large datasets.

Another general method of analysis of lifetime data relies on phasors.58–62 Phasor analysis 

is appropriate for data from samples illuminated by light whose intensity is modulated at 

a fixed frequency.21,58,63–65 In this case, the intensity of the light emitted by the sample is 

also modulated and phase shifted.18,59 In particular, for a modulation frequency of ω, the 

measurements may be used to obtain the phase shift φ and the intensity modulation ratio 

m (see Figure S10). The phase shift and intensity modulation ratio, in turn, determine 2 

coordinates (G,S) in a “phasor plot”

G(ω) = mcosϕ and S(ω) = msinϕ . (Equation 2)

Lifetime values of the photon-emitting fluorophores can then be deduced from the points on 

the phasor plot.60–62

Phasor analysis is especially intuitive as it allows us to immediately deduce whether more 

than one lifetime component is present.66,67 In particular, mono-exponential lifetimes fall 

somewhere on the semicircle of radius 1/2 beginning at coordinate (1,0) and moving 

counterclockwise to (0,0) (see Figure 1). Deviations thereof imply a mixture of lifetimes. 

(Full details are provided in the Supplemental Experimental Procedures.) A variant of 

phasor analysis also holds for pulsed excitation.60,68,69 The advantages and drawbacks of 

phasor analysis are similar to those of the direct analysis of photon arrivals or histograms 

of photon arrivals from TCSPC data in that the number of species must be known in 

advance. What is more, the retrieval of lifetime information from phasor analysis requires 

independent knowledge of not only the number of species but, often, also the lifetimes of 

all but one unknown species whose lifetime is to be determined from a mixture of chemical 

species27,60,70,71 (see Figure 1).

While both approaches we have just described, direct photon analysis and phasors, yield 

lifetimes in a computationally efficient manner, their greatest limitation is the requirement 

that the number of species, M, be pre-specified as it otherwise cannot be learned 

independently, although, in principle, it is encoded in the data. However, learning the 

number of species is critical as it may be unknown before collecting the data for a number 

of reasons.68,72–74 At higher computational costs, we could learn not only the number 

of species but also full joint distributions over the possible number of species and their 
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associated lifetimes, which are encoded in the photon arrivals. In other words, we could 

determine the relative probability over having 3 versus 4 species, say, not just the most 

probable number of species. Ideally, to allow for higher flexibility in the experimental 

setting, we need to achieve this with the same or fewer photon arrivals than is required 

in direct photon and phasor analysis to reveal the lifetimes alone. To do so, we need 

to relinquish the traditional (parametric) Bayesian paradigm that assumes a fixed model 

structure (i.e., a fixed number of species).

We have previously exploited the Bayesian nonparametric (BNP) paradigm75–78 to analyze 

single-photon arrival time traces to learn diffusion coefficients from the minimal photon 

numbers drawn from single-spot confocal experiments.10,79 Traditionally, such photon 

arrivals were analyzed using tools from fluorescence correlation spectroscopy (FCS) in 

which very long traces were collected and auto-correlated in time. Just as with the 

problem at hand, the direct photon-by-photon analysis demanded a different approach, as 

the stochastic number of molecules contributing photons was unknown and an estimate of 

that number deeply affected our diffusion coefficient estimate. It is for this reason that we 

invoked the nonparametric paradigm there. In particular, the BNP paradigm is also preferred 

here on this basis: assuming an incorrect number of species, when these and their associated 

lifetimes are assumed unknown, leads to incorrect lifetime estimates for each species (see 

Figure 2). This further begs the question as to whether fits of the data with different, 

incorrect models can be compared in the first place.

Here, we propose a method that exploits BNPs80 to learn species and their associated 

lifetimes with as few photons as possible using pulsed illumination from a single illuminated 

spot. As with any inverse method, in BNPs we start from the data—namely the time lag 

between the peak of the pulse and the detection time of the photon, called “microtime,” 

discussed in more detail later in the article. To be precise, each species is defined as 

contributing photons sometime after pulsing dictated by an exponential distribution with a 

decay constant (lifetime) unique to that species. Just as we treat model parameters as random 

variables in the parametric Bayesian paradigm, within the BNP paradigm, we treat models 

themselves as the random variables and try to learn full posterior distributions over the 

number of species.

The advantages of using BNPs are 4-fold: (1) we can learn full posterior distributions over 

species present in the measurements, which is especially relevant for datasets with limited 

photons as the number of species becomes highly uncertain; (2) by resolving lifetimes and 

species from the raw photon arrivals directly in contrast to processed data that necessarily 

contains less information, we can minimize photodamage; (3) as a corollary to the previous 

point, we can monitor processes out of equilibrium in which only few photons are available 

before chemical conversion into another species; and (4) given long traces, we can exploit 

the additional data, if need be, to discriminate between species with small differences in 

lifetimes.
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RESULTS

Aims of the Study

Our goal is to characterize quantities that describe molecular chemistry at the data­

acquisition timescales of TCSPC, with a focus on obtaining lifetime estimates and the 

number of chemical species. To estimate lifetimes, we also estimate intermediate quantities, 

such as the fraction of different species contributing photons, as detailed in the Mathematical 

Formulation section.

Within the BNP approach,81–83 our estimates take the form of posterior probability 

distributions over unknown quantities. These distributions combine parameter values, 

probabilistic relations among different parameters, and the associated uncertainties. To 

quantify this uncertainty, we calculate a posterior variance and use this variance to construct 

error bars (i.e., credible intervals). As follows from Bayesian logic, the sharper the posterior, 

the more conclusive (and certain) the estimate.79,81,84

Method Validation using Synthetic Data

To demonstrate the robustness of our method, we generate synthetic traces for immobilized 

molecules with (1) variable dataset sizes (Figure S1) involving multiple species (Figure 3); 

(2) a variable fraction of molecules contributing photons from different species (Figure 4); 

and (3) a variable difference of lifetimes for mixtures of lifetimes (Figure 5). All of the 

parameters not explicitly varied are held constant across all of the figures. The parameters 

not varied are held fixed at the following baseline values: lifetime between 1 and 10 ns, 

which is the typical lifetime range of a fluorophore18,85; 2 species, which is most frequent in 

related studies18,19,23; and fraction of molecules contributing photons from different species 

set at 50%:50%.

Also, as seen in the Supplemental Experimental Procedures, we worked with cases involving 

3 and 4 different species (as opposed to just 1 or even 2 species), as this scenario presents 

the greatest analysis challenge because very few photons, and thus little information, are 

gathered on each species. In a similar spirit, we also defaulted to short traces that highlight 

the value of analyzing data in its rawest form. As the mathematics remain unaffected 

and this scenario reflects the reality of many experiments, we show in the Supplemental 

Experimental Procedures and Figures S2 and S3 the results for freely diffusive molecules.

Number of Photons

We benchmark the robustness of our approach with respect to the length of the trace (i.e., 

the total number of photon arrivals) at a fixed number of species, lifetime, and molecule 

photon emission rate. For instance, to obtain an estimate of the lifetime within 10% of the 

correct result in the 1-species case, our method requires only ≈ 100 photons (emitted from 

the species of interest). In the case of 2 species, our proposed BNP approach requires only 

≈ 3,000 photons (see Figures 3 and S1). To determine how many photons were required by 

our method, we chose the mean value of the lifetime posterior and measured the percentage 

difference of this mean to the ground truth known for these synthetic traces.
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In general, the numbers of photons demanded by our method are minimal, although the 

absolute number depends on a broad range of experimental parameter settings. This is the 

reason why, throughout this work, we explore different settings—holding all other settings 

fixed—in subsequent subsections and the Supplemental Experimental Procedures.

Another important concept, illustrated in Figures 3 and S1, that will keep reappearing in 

subsequent sections is the concept of a photon as a unit of information. The more photons 

we have, the sharper our lifetime estimates. This is true, as we see in these figures, for 

increasing the trace length. Similarly, as we see in subsequent subsections, we also collect 

more photons as we increase the contribution of labeled molecules (and thus the number of 

molecules contributing photons to the trace).

Mixtures of Different Species Contributing Photons

To test the robustness of our method when different species contribute an uneven number of 

photons, we simulated data with 70% of the population in species 1 and 30% in species 2 

(Figure 4A). We also considered fractions of contributing molecules from different species 

of 50%:50% (Figure 4B), and 30%:70% (Figure 4C). For all of the cases, the lifetimes 

were fixed at 1 and 10 ns for ≈ 3,000 photon arrivals. Figure 4 summarizes our results 

and suggests that posteriors over lifetimes are broader—and thus the accuracy with which 

we can pinpoint the lifetimes drops—when the contribution of labeled molecules is lower. 

Intuitively, we expect this result, as fewer species within the confocal volume provide 

fewer photons, and each photon carries with it information that helps refine our estimated 

lifetimes. For more results, see the Supplemental Experimental Procedures and Figure S7.

Lifetime Resolution

We repeat the simulations with 2 species, and ask how many photons are required to resolve 

similar lifetimes. Here, we present the dependency of the time resolution to the number 

of collected photons in Figure 5. As expected, the number of photons required to resolve 

increasingly similar lifetimes grows as the ratio of lifetimes approaches unity. However, this 

also suggests that if we were to resolve species of similar lifetimes, we could use the amount 

of data typically used in TCSPC or phasor analysis to resolve these, while TCSPC or phasor 

analysis would still require an additional order of magnitude more data. As we noted earlier, 

both TCSPS and phasor analysis must impose by hand the number of species, while, in our 

method, the number of species are learned. Moreover, if we know the number of species, we 

require even fewer photons than we mentioned earlier.

Estimation of Physical Parameters from Experimental Data

To evaluate our approach on real data, we used experimental data collected under a broad 

range of conditions. We used measurements from different fluorophores, namely Cy3, TMR, 

Rhodamine-B (Rhod-B), and Rhod-6G. The lifetimes for these dyes are first benchmarked 

by fitting TCSPC photon arrival histograms from entire traces and compared them with 

published values.86–89

Figures 6, 7, and 8 were collected using the Rhod-B and Rhod-6G dyes, and these results 

were used to benchmark the robustness of our method on individual species and mixtures of 
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species with a variable fraction of chemical species contributing photons. In Figure S8, we 

show more experimental results for cases involving >2 species.

In Figure 6, we verified our method on Rhod-6G with respect to the total number of photon 

arrivals. The first important conclusion is that we need ≈ 100 photons to obtain an estimate 

of the lifetime within 10% of the correct result (as obtained from our benchmark). For ≥2 

species, the situation for phasor analysis, TCSPC photon arrival histogram fitting, or direct 

analysis of photon arrivals using parametric Bayesian methods or maximum likelihood 

grows more challenging. The number of species cannot be independently determined, and 

assuming an incorrect number of species leads to incorrect lifetime estimates (see Figure 

1 for phasors and Figure 2). Moreover, for all of the cases, we could reliably determine 

the ground truth (dashed red lines in Figure 2) from the TCSPC photon arrival histogram 

fitting when using the whole trace with all of the photons available. To be clear, we learn the 

number of species directly using BNPs and do not assume a number ahead of time.

Again, the absolute number of photons demanded by our method depends on a broad range 

of experimental parameter settings. This is the reason why we explore different settings—

holding all other settings fixed—just as we did with synthetic data in subsequent subsections 

and the Supplemental Experimental Procedures.

Benchmarking on Experimental Data using a Different Number of Photons for Mixtures of 
Rhod-B and Rhod-6G

Similar to the synthetic data analysis appearing in Figure 3, we benchmarked the robustness 

of our approach with respect to the length of the trace (i.e., the total number of photon 

arrivals), given fixed lifetimes and fraction of chemical species contributing equal numbers 

of photons (50%:50%). The important message here is that, for the values of parameters 

selected, we need ≈ 100 photons for single species (Figure 6) and ≈ 3,000 photons for 

double species (Figures 7 and 8). For instance, to obtain an estimate of the lifetime to within 

10% of the correct result for the case of 2 species, our method requires ≈ 3,000 photons.

Benchmarking on Experimental Data using Different Fractions of Rhod-B and Rhod-6G

We start by evaluating our method on mixtures of Rhod-B and Rhod-6G, but present in 

different amounts. Similar to Figure 4 for the analysis of 2 species from synthetic data, we 

show estimates of the lifetimes for 2 species, Rhod-B and Rhod-6G, present at a 70%:30% 

fraction (Figure 8A), at a 50%:50% fraction (Figure 8B), and at a 30%:70% fraction (Figure 

8C). Figure 8 (and Figure S9) summarize our results and suggest that posteriors over 

lifetimes are broader—and thus the accuracy with which we can pinpoint the lifetimes 

drops—when the contribution from the dye concentration for that species is lower. To obtain 

an estimate of the lifetime to within 10% of the correct result, our method requires ≈
3,000 photons directly emitted from the dye; for visualization purposes, the corresponding 

phasor plot is provided in Figure 8. In the Supplemental Experimental Procedures, we show 

additional results for the case of 3 and 4 species, which are additionally challenging for 

existing methods with different fractions of chemical species contributing photons.
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DISCUSSION

Across all spectroscopic and imaging applications, the photon is the basic unit of 

information.79,90 Decoding information directly from single-photon arrivals, with as few 

photons as possible without binning or correlating or other pre-processing of the data, is 

the main focus of our data-centric analysis strategy. However, decoding information directly 

from single-photon arrivals presents fundamental model selection problems.

For example, in the case of FCS, if we are to learn diffusion coefficients directly from 

limited photon arrivals, we must know how to write down a likelihood; put differently, we 

must know the number of molecules contributing photons that, in turn, dictate the form for 

the likelihood.79 As we do not know how many molecules we have and what the appropriate 

likelihood should be, we have a model selection problem. Similarly, for lifetime imaging, if 

we are to learn the lifetime of the chemical species contributing photons, then we must also 

know the number of species to write down a conventional likelihood.

Traditional Bayesian methods do not have a direct solution to the model selection 

problem,80,82 as they also require us to be able to write down a likelihood. That is, 

they consider a fixed model (and a fixed likelihood) and treat the model’s parameters 

as random variables of the posterior distribution. By contrast, BNPs, which are a direct 

logical extension of parametric Bayesian methods, treat models alongside their parameters 

as random variables.75,83,91–96

This ability to treat models themselves as random variables is the key technical innovation 

that prompted the development of BNPs in the first place. BNPs make it possible to avoid 

the computationally infeasible task of enumerating and then comparing all of the models 

for any associated parameter values to all other competing models and their associated 

parameter values.

The BNP approach to tackling lifetime image analysis that we propose here cannot replace 

phasor analysis20,23,60,62,64,69,97 or TCSPC photon arrival analysis under an assumed 

number of species2,14,29,38,40,98 for simple 1-component systems on account of their 

computational efficiency. However, at an acceptable computational cost, BNP approaches 

provide a powerful alternative. They give us the ability to determine the number of species 

(and probabilities over them if the data are uncertain due to their sparsity or otherwise); 

use much less data to obtain lifetime estimates (and thus reduce phototoxic damage to 

a light-sensitive sample); use longer photon arrival time traces, if available, to tease out 

small differences in lifetimes between species, as BNP-based methods are more data 

efficient; probe processes resolved on faster timescales (again, as we require minimal 

photon numbers); and exploit all of the information encoded in the photon arrivals (and 

thus not require separate control experiments, as often needed in phasor approaches, for the 

measurement of the lifetime of one species to determine the lifetime of a second species 

when a mixture of 2 species, for example, is present).

As for the computational cost, obtaining lifetimes (to within 10% of the ground truth 

lifetime for 1 species for the parameters we used in Figures S1 and S6 requiring ≈ 100 

photons) takes 5 min on a typical scientific desktop as of the publication date of this 
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article (based on a system with 6G RAM, Core (TM) i7–2.67 GHz CPU). For a 2-species 

mixture, Figures 3 and 7, under the same parameters and requiring 3,000 photons, it was 

a modest increase to 15 min. The point here is that the analysis of single or multispecies 

data can be performed with an average desktop computer, and it does not necessarily require 

high-performance computing facilities.

The real strength of BNP becomes clear when we reach 2, 3, 4, or possibly even more 

species. Beyond being able to work with low photon counts, another key advantage of our 

method is its flexibility. The ability to use BNP and treat models as random variables in 

lifetime imaging is the real point here, and, as such, our framework can be adapted to treat a 

range of experimental setups.

In particular, our framework can straightforwardly be adapted to treat any instrumental 

response function (IRF) by modifying Equation 4, as appropriate, and any background 

photon arrival statistics or detector dark counts by modifying Equation 5 especially as 

relevant to in vivo imaging. In Figure S4, we tested the robustness of our method by 

varying the number of background photons in our dataset. More significant extensions of 

our work, albeit generalizations that would leverage the framework at hand, would be to 

consider lifetime changes, due to chemical modifications of our species, over the timescale 

of data acquisition, as may be expected in complex in vivo environments.99,100 Another 

is to extend our work to analyze fluorescence lifetimes over multiple spatial locations, the 

purview of fluorescence lifetime imaging (FLIM) analysis.72,101–104 Finally, we could also 

generalize our proposed method to accommodate non-exponential lifetime decays if such 

decay probabilities are warranted by the data by modifying Equation 5.

These and further generalizations that can be implemented within a BNP framework 

highlight the flexibility afforded by BNPs and the nature of what can be teased out 

from challenging datasets. BNPs themselves suggest productive paths forward to tentatively 

formulate inverse strategies for challenging datasets not otherwise amenable to traditional, 

parametric Bayesian analysis.105

EXPERIMENTAL PROCEDURES

Materials Availability

Lead Contact—The Lead Contact is Steve Pressé (spresse@asu.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—All code is available on the Lead Contact’s website 

(https://cbp.asu.edu/content/steve-presse-lab) and upon request (Massachusetts Institute of 

Technology [MIT] license). Data can be made available upon request by contacting the Lead 

Contact.

Mathematical Formulation

Here, we describe the mathematical formulation of our analysis method of time-resolved 

pulsed excitation single-photon arrival data. For clarity, we focus on measurements obtained 
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on a fluorescence setup that use a train of identical excitation pulses. Following each pulse, 

≥1 molecules located near the illuminated region may be excited from their ground state. As 

the excited molecules decay back to their ground state, they may emit photons and we record 

the detection time. Below, we describe how we analyze such recorded times.

We start from single-photon detection times, which consist of the raw output in a time­

resolved pulsed excitation single-photon arrival experiment. Similarly, these are measured 

based on the time difference between excitation pulses, which are time stamped, and the 

detection time of the first photon arriving after each pulse.18,39,106 Precisely, our raw input 

is Δt = (Δt1, Δt2, …, Δtk), where Δtk is the time interval between the preceding pulse’s time 

and the photon detection time of the kth detection. In the literature, each Δtk is often called 

microtime. As some pulses may not lead to a photon detection, in general the microtimes in 

Δt are fewer than the total number of pulses applied during an experiment.

Model Description

We assume that, once excited, each molecule remains excited for a time period that is 

considerably lower (typically a few nanoseconds) as compared to the time between 2 

successive pulses (typically >4 times of the longest decay time in the sample18). This 

condition allows us to consider that any photon that is detected stems from an excitation 

caused by the very previous pulse and not from earlier pulses. Also, as excitation pulses 

in time-resolved pulsed excitation single-photon arrival experiments are weak,38,98 and 

typically 1 in ≈ 100 pulses results in a photon detection,18 we ignore, to a very good 

approximation, multiple photon arrivals. As the number of detected photons coming from 

the background is considerably lower than the number of detected photons coming from the 

excited molecules, typically 1 to ≈ 1,000, we also ignore background photons. However, 

background photons can be dealt with straightforwardly by modifying Equation 7 to 

incorporate the effect of background in the model.

To analyze the recordings in Δt, we assume that the sample contains in total M different 

molecular species that are characterized by different lifetimes τ1, …, τM. Since molecules of 

each species may be excited by the pulses with different probabilities (because of different 

fraction of molecules contributing photons from different species), we consider a probability 

vector π = π1, …, πM  that gathers the probabilities of each species, giving rise to a photon 

detection. Allowing sk to be a tag attaining integer values 1, …, M, that indicates which 

species triggered the kth detection, we may write

sk ∣ π ∼ Categorical 1:M(π) . (Equation 3)

The above equation reads as follows: “the tag sk given π is a random variable sampled from 

a categorical distribution.” The categorical distribution is the generalization of the Bernoulli 

distribution, which allows for >2 outcomes.107–109 With this convention, the lifetime of the 

molecule triggering the kth detection is τsk. Of course, the number of molecular species M 
and the precise values of the lifetimes τ1, …, τM are unknown, and our main task is to 

estimate them using the recordings in Δt.

Tavakoli et al. Page 10

Cell Rep Phys Sci. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For clarity, we denote with tpul,k the application time of the pulse that triggers the kth 

photon detection. More precisely, tpul,k is the time of the pulse’s peak. Because, in general, 

pulses last for some non-zero duration, and thus they may excite the molecules at slightly 

different times, we denote with text,k the absorption time of the molecule triggering the kth 

detection. Furthermore, we denote with tems,k the emission time of the photon triggering the 

kth detection. Finally, due to the measuring electronics, the detection time, which we denote 

with tdet,k, may be different from tems,k; see Figure 9 for more details.

With this convention, our measured output consists of the time lags Δtk = tdet,k — tpul,k. 

These time lags include (1) the time until absorption occurs, text,k — tpul,k; (2) the time 

until fluorescence emission occurs, tems,k — text,k; and (3) delays and errors introduced by 

the measuring electronic devices, tdet,k — tems,k. Below, we denote the middle period with 

Δtext,k = tems,k — text,k, while we denote with Δterr,k = (text,k — tpul,k) + (tdet,k — tems,k) the 

sum of the others. From these 2, Δtext,k is the time the molecule spends in the excited state, 

while Δterr,k gathers any artifacts caused by our setup either in the excitation or the detection 

pathway. The advantages of considering these 2 periods separately, as we explain below, is 

that (1) these represent independent physical processes and (2) each one is theoretically and 

experimentally characterized well.18

In particular, Δterr,k is characterized by the IRF that, in each setup, is readily obtained with 

calibration measurements.18 In this study, we approximate the IRF as a Gaussian (Figure 

S11)

Δterr , k ∼ Normal τIRF , σIRF
2 . (Equation 4)

In this approximation, τIRF is the IRF’s peak time and σIRF = FWHM/2.355, where FWHM 

is the IRF’s full width at half-maximum. In the Supplemental Experimental Procedures, we 

explain the IRF’s calibration in detail.

Upon excitation, the time the molecule remains excited, Δtext,k, is memoryless,18 and so 

follows the exponential distribution. Therefore,

Δtext , k ∣ λsk ∼ Exponential λsk (Equation 5)

where λsk is the inverse lifetime of the molecule triggering the detection of Δtext, k . Of 

course, the inverse lifetime depends upon the lifetime by λsk = 1/τsk.

Because Δtext,k and Δterr,k are independent variables, the statistics of our measurements, 

which are given by Δtk = Δtext, k + Δterr, k, follow

Δtk ∣ λsk ∼ Normal τIRF, σIRF
2 ∗ Exponential λsk (Equation 6)

where * denotes a convolution110 and specifically has the probability density
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p Δtk ∣ λsk =
λsk
2 exp

λsk
2 2 τIRF − Δtk + λskσIRF

2 erfc

τIRF − Δtk + λskσIRF
2

σIRF 2

(Equation 7)

where erfc(•) denotes the complementary error function. In the Supplemental Experimental 

Procedures, we show analytically how Equation 7 arises from Equations 4 and 5.

In the next section, we describe how Equations 3 and 7 can be used in conjunction with BNP 

to obtain the estimates we are after.

Model Inference

All of the quantities that we wish to infer, for example, the species inverse lifetimes λ1, …, 

λM and excitation probabilities in π, are represented by model variables in the preceding 

formulation. We infer values for these variables within the Bayesian paradigm.80,82,84 

Accordingly, on the inverse lifetimes we place independent priors

λm ∼ Gamma αλ, βλ , m = 1, …, M (Equation 8)

that ensure strictly positive values. Here, for convenience only, we consider priors on inverse 

lifetimes where τm = 1/λm  is the molecular lifetime and λm is the inverse lifetime of 

species m. As the total number of species contributing photon detections in an experiment 

is unknown, we consider a symmetric Dirichlet prior80,83 (which is conjugate to the 

Categorical) on π of the form

π ∼ DirichletM
α

M , …, α
M (Equation 9)

where α is a positive scalar hyper-parameter. A graphical summary of the whole formulation 

is shown in Figure 10.

The distribution in Equation 9 ensures that π are valid probability vectors. Furthermore, 

Equation 9 is specifically chosen to allow for a large, M ∞, number of species. This 

is particularly important because the total number of molecular species contributing to the 

detections in TCSPC or FLIM experiments are typically unknown, and thus choosing a 

finite M may lead to underfitting. Specifically, at the limiting case M ∞, the prior on 

Equation 9, combined with Equation 3, results in a Dirichlet process.75,83,111,112 In other 

words, provided that M is sufficiently large, the estimates obtained through our model are 

independent of the particular value chosen (i.e., overfitting cannot occur).

With the nonparametric model just presented, although the total number of model molecular 

species is infinite, the actual number of molecular species contributing photons to the 

measurements is finite. Specifically, the number of contributing species coincides with the 

number of different tags sk associated with Δt. In other words, instead of asking how 

many species contribute to the measurements, with our model, we ask how many of the 
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represented species actually contribute at least one photon. Furthermore, instead of asking 

what the lifetimes are of these species, we ask what the lifetimes are of the species 

contributing at least one photon. Of course, as we estimate inverse lifetimes instead of 

lifetimes, we obtain the latter by τm = 1/λm.

With these priors, we form p π, s1, …, sK, λ1, λ2, … ∣ Δt , which is the joint posterior 

probability distribution that includes all unknown variables. To compute this posterior, 

we develop a Markov chain Monte Carlo (MCMC) scheme84,113 that generates pseudo­

random samples with the appropriate statistics. The scheme is described in the Supplemental 

Experimental Procedures and a working implementation is also provided.

Acquisition of Synthetic Data

The synthetic data presented in this study are obtained by standard pseudo-random computer 

simulations114–118 that simulate a common fluorescence lifetime imaging modality with 

a conventional single-spot confocal setup. Furthermore, in the simulations, we consider 

confocal regions created with pulsed excitation. To generate data mimicking as closely 

as possible the measurements obtained in real experiments, we simulate freely diffusing 

molecules of different species characterized by different diffusion coefficients and lifetimes. 

Details and parameter choices are provided in Tables S1, S2, and S3.

Acquisition of Experiment Data

The synthetic data presented in this study are obtained as described below.

Sample Preparation

Sample solutions of Rhodamine B (Rhod-B, Wako Pure Chemical Industries), Rhodamine 

6G (Rhod-6G, Sigma-Aldrich), tetramethylrhodamine-5-maleimide (TMR, Invitrogen), and 

Cy3 monofunctional NHS-ester (Cy3, GE Healthcare) were prepared with Milli-Q water 

at a 1-μM concentration. Nonionic surfactant (0.01% Triton X-100) and 2 mM Trolox 

were added to prevent the adsorption of dye molecules to the glass surface and reduce 

photophysical artifacts, respectively.

Experiments

Fluorescence lifetime measurements were carried out using a confocal fluorescence 

microscope with a super continuum laser (Fianium SC-400–4, frequency of 40 MHz). The 

output of the laser was filtered by a bandpass filter (Chroma Technology D525/30 m) and 

focused onto the sample solution using a 60 × objective lens (Nikon Plan Apo IR) with a 

numerical aperture (NA) of 1.27. The excitation power was set at 0.3 μW at the entrance 

port of the microscope. Fluorescence photons were collected by the same objective lens 

and guided through a confocal pinhole as well as a bandpass filter (Chroma Technology 

D585/40 m), and then detected by a hybrid detector (Becker & Hickl HPM-100–40-C). For 

each photon signal detected, the routing information was appended by a router (Becker & 

Hickl HRT-82). The arrival time of the photon was measured by a TCSPC module (Becker 

& Hickl SPC-140) with the time-tagging mode.37 The time resolution was evaluated by 
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detecting the scattering of the incident laser light at a cover glass, and it was typically 180 ps 

at FWHM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

Bayesian nonparametrics approach proposed for estimation of the lifetime

Using this approach, the number of fluorescence species is also learned

Use of direct photon-by-photon analysis of data drawn from pulsed excitation 

experiments

Method benchmarked on simulated and experimental data for up to 4 species
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Figure 1. Phasor Analysis Provides the Lifetimes of Chemical Species but Not an Independent 
Measure of the Number of Chemical Species
(A) is a typical phasor plot, as expected with a 4-component mixture. The red asterisk 

(Rhod-6G, TMR, RhodB, and Cy3) is subject to pulsed illumination. From this figure, it is 

not possible to discern the number of chemical species contributing to the phasor plot. What 

is more, as we can see in (B), if we assume 2 species, many choices of lifetimes could be 

warranted by the data as evidenced by the placement of the dashed diagonal lines. The point 

of intersection of these diagonal lines with the phasor plot’s hemisphere would be needed 

to deduce the lifetimes of a 2-component mixture if we had hypothesized this mixture to be 

composed of 2 species (as opposed to the correct number, 4). (B) superposes the phasor plots 

for each species measured independently. Their mixture is what yields the subfigure on the 

left, whose identity as a 4-component mixture is not apparent.
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Figure 2. The Number of Species Assumed in the Analysis Directly Affects the Lifetimes 
Ascribed to Those Species, so an Independent Method Is Required to Estimate Species Numbers
(A–F) We generate synthetic traces with 3 species with a total of 2 × 104 photon arrivals 

and lifetimes, τ, of 0.5, 2, and 10 ns. To estimate the τ within the normal (i.e., parametric) 

Bayesian paradigm, we start by assuming the following number of species, N= 1 (A), N= 2 

(B), N= 3 (C), N= 4 (D), … , N= 10 (E), … , and N= 20 (F). The good fit provided by N 
> 2 and the mismatch in the peak of the posterior distribution over the lifetime and correct 

value of the lifetime (red dotted line) in all others underscores why it will become critical 

for us, or any method analyzing single photon data in the context of confocal microscope 
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experiments, to correctly estimate the number of species contributing to the trace to deduce 

chemical parameters such as lifetime.
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Figure 3. Effect of the Number of Detected Photons on 2 Simultaneous Molecular Lifetime 
Estimates Showing That the More Photons Collected, the Sharper the Lifetime Estimate for the 
Case of 2 Species
(A) Here, we use mixtures of 2 species with different lifetimes, while all molecules are 

immobilized. The synthetic data are generated using τ = 1 ns for the first species and τ = 10 

ns for the second with an equal ratio of molecules of each species (50%:50%). The blue dots 

represent single-photon arrival times detected after each excitation pulse.

(B) In the analysis to determine both lifetimes, we start with just 1,500 photons (first dashed 

line in A) (B1) and gradually increase the number of photons to 2,000 (B2), 5,000 (B3), 

and 10,000 (B4) photons. Here, all of the other features such as the frequency of acquisition 
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and width of pulse are the same as in Figure S1. Also, we follow the same dashed red line 

convention as in Figure S1.

To see the results for more than two species see the Supplemental Experimental Procedures 

and Figures S5 and S6.
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Figure 4. Effect of the Relative Fraction of Contributing Molecules from Different Species on 
Molecular Lifetime Estimates Showing That Higher Molecular Contributions Provide More 
Photons per Unit Time and Thus Sharper Lifetimes Estimates
(A–C) The posterior probability distributions of traces with lifetimes of 1 and 10 ns, with 

3,000 total photons and fraction of contributing molecules from different species of 70%–

30%, 50%–50%, and 30%–70%, respectively. Here, all other features such as the frequency 

of acquisition and width of pulse are the same as in Figure S1. Also, we follow the 

same dashed red line convention as in Figure S1. For more details see the Supplemental 

Experimental Procedures and Figure S7.
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Figure 5. Lifetime Resolution for Double Species Lifetimes
Posterior probability distributions over estimated lifetimes have been shown. The synthetic 

traces acquired contain 3,000–20,000 photon arrivals and start in (A) with well-separated 

lifetimes of 1 and 10 ns (≈ 3,000 photons) before gradually considering less-well-separated 

lifetimes such as in (B), where the lifetimes are 1 and 5 ns (≈ 3,000 photons), in (C), where 

the lifetimes are 1 and 2 ns (≈ 10,000 photons), and in (D), where the lifetimes are 1 ns 

and at last 1.5 ns (≈ 20,000 photons). The fraction of molecules contributing photons from 

different species is evenly split (50%−50%). Here, all of the other features, such as the 
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frequency of acquisition and width of pulse, are the same as in Figure S1. Also, we follow 

the same dashed red line convention as in Figure S1.
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Figure 6. Comparison of the Number of Photons Needed to Assess the Lifetimes of Rhod-6G
In (A1), we used 20 photons from experimental time trace Rhod-6G. For visualization 

purposes only, we show the corresponding phasor plots in (A2). In (B1) and (B2) and (C1) 

and (C2,) we repeated the analysis for 100 and then 1,000 photons. Using our method 

relying on BNPs, the estimated lifetimes are (A1) τ = 3.10 ns, (B1) τ = 3.95 ns, and (C1) τ 
= 3.91 ns. The excitation pulses occur at a frequency of 40 MHz and we assume a Gaussian 

shape with a standard deviation of 0.1 ns. The ground truth (dashed red lines) is obtained 

using TCSPC photon arrival histogram fitting when analyzing the whole time trace. In our 
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BNP analysis, we do not pre-specify the number of species; we learn them alongside the 

associated lifetimes.
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Figure 7. Comparison of the Number of Photons Needed to Assess the Lifetimes of Mixtures of 
Rhod-B and Rhod-6G
In (A1) we used 2,000 photons. For visualization purposes only, we show the corresponding 

phasor plots in (B1). In (B1) and (B2) and (C1) and (C2,) we repeated the analysis for 

4,000 and then 104 photons. Using BNPs, the estimated lifetimes are (A1) τ = 1.44–3.39 

ns, (B1) τ = 1.42–3.96 ns, and (C1) τ = 1.41–3.90 ns. Here, all of the other features such 

as the ground truth (dashed red lines), frequency of acquisition, and so forth are the same 

as in Figure 6. The green star in (A2)–(C2) is the location of mixture of 2 species when we 

use whole trace, and the red asterisks show the location of the single species lifetime, for 
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visualization purposes only, whose lifetimes we independently know from experiments on 

individual species.
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Figure 8. Effect of the Fraction of Molecules Contributing Photons from Different Species on 
Molecular Lifetime Estimates Showing That Higher Molecular Contributions Provide More 
Photons per Unit Time and Thus Sharper Lifetime Estimates
Higher molecular contributions provide more photons per unit time and thus sharper lifetime 

estimates. The experimental trace is selected using 2 species, Rhod-B and Rhod-6G, with a 

total of ≈ 3,000 photon arrivals, with a different fraction of photons derived from different 

species (70%–30%) (A1), 50%–50% (B1), and 30%–70% (C1). The estimated lifetimes 

using BNPs are (A1) τ = 1.44–3.39 ns, (B1) τ = 1.42–3.96 ns, and (C1) τ = 1.41–3.90 

ns. Here, all of the other features such as the ground truth (dashed red lines), frequency 
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of acquisition, and so forth are the same as in Figure 6. The green and red asterisks on 

subfigures (A2)–(C2) are explained in the Figure 7 caption.
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Figure 9. Factors That Contribute to the Recorded Photon Arrival Times
Here, tpul.k is the time of the pulse’s peak. Since pulses last for some time, they may excite 

the molecules at slightly different times. As such, we denote with text.k the absorption time 

of the molecule triggering the kth detection. Moreover, we denote with tems.k the emission 

time of the photon triggering the kth detection. At last, on account of electronics limitations, 

the detection time, which we denote with tdet.k, may be different from tems.k. Here, the 

artifacts shown in gray originate from 2 sources: the left gray-shaded region is due to the 

width of the pulse, which leads to variation in the time of the molecular excitation, and the 

right gray-shaded region arises from the camera-dependent detection uncertainty. The time 

during which the fluorophore is excited (fluorescence lifetime) is shown in green. For more 

details, see also the Supplemental Experimental Procedures and Figure S12.
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Figure 10. Graphical Representation of the Proposed Model
A simple graphical representation of the model, where Δtk is the microtime k with k = 1, 

…, K. The inverse lifetime of species m is shown by λm, m = 1, …, M. The label sk tells 

us which of the species is contributing the kth photon. In the graphical model, the measured 

data are denoted by gray-shaded circles and the model variables, which require priors, are 

designated by blue circles. Each one of the labels has a prior, which is a Dirichlet probability 

π.
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