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Abstract

Schizophrenia is a complex brain disorder with genetic and environmental factors contributing 

to its etiology. Complement C4 genes are schizophrenia susceptibility loci and are activated 

in response to infections and gut microbiome imbalances. We hypothesize that C4 genetic 

susceptibility predisposes individuals to neuropathological effects from pathogen exposures or 

a microbiome in dysbiosis. In 214 individuals with schizophrenia and 123 non-psychiatric 

controls, we examined C4 gene copy number and haplotype groups for associations with 

schizophrenia and microbial plasma biomarkers. C4A copy number and haplotypes containing 

HERV-K insertions (C4A-long; C4AL-C4AL) conferred elevated odds ratios for schizophrenia 

diagnoses (OR 1.58–2.56, p<0.0001), while C4B-short (C4BS) haplogroups conferred decreased 

odds (OR 0.43, p<0.0001). Haplogroup-microbe combinations showed extensive associations 

with schizophrenia including C4AL with Candida albicans IgG (OR 2.16, p<0.0005), C4AL­

C4BL with cytomegalovirus (CMV) IgG (OR 1.79, p<0.008), C4BS with lipopolysaccharide­

binding protein (LBP) (OR 1.18, p<0.0001), and C4AL-C4AL with Toxoplasma gondii IgG 

(OR=17.67, p<0.0001). In controls, only one haplogroup-microbe combination was significant: 

C4BS with CMV IgG (OR 0.52, p<0.02). In schizophrenia only, LBP and CMV IgG levels were 

inversely correlated with C4A and C4S copy numbers, respectively (R2=0.13–0.16, p<0.0001). 

C4 haplogroups were associated with altered scores of cognitive functioning in both cases and 

controls and with psychiatric symptom scores in schizophrenia. Our findings link complement 

C4 genes with a susceptibility to infections and a dysbiotic microbiome in schizophrenia. These 

Correspondence: Emily G. Severance, Stanley Division of Developmental Neurovirology, Department of Pediatrics, 600 N. Wolfe 
Street, Blalock 1105, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A. 21287, tel: 410-614-3918, fax: 
410-955-3723, eseverance@jhmi.edu.
Author Contributions
EGS conceived the idea for the paper and performed the data analyses. FL, AL and SY performed experiments and collected the data. 
EGS, FD and RHY wrote the paper.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of interest
Dr. Yolken is a member of the Stanley Medical Research Institute Board of Directors and Scientific Advisory Board. The terms of this 
arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies. None of the other 
authors report any potential conflicts of interest.

HHS Public Access
Author manuscript
Schizophr Res. Author manuscript; available in PMC 2022 August 01.

Published in final edited form as:
Schizophr Res. 2021 August ; 234: 87–93. doi:10.1016/j.schres.2021.02.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results support immune system mechanisms by which gene-environmental interactions may be 

operative in schizophrenia.
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1. Introduction

Schizophrenia is a complex brain disorder with compelling evidence pointing to immune 

system dysfunctions as a place where genetic and environmental factors might converge and 

become neuropathological. Genetic studies show consistent associations of schizophrenia 

with polymorphisms in 6p21–6p22, a chromosomal region that contains the major 

histocompatibility complex (MHC) and that encodes hundreds of proteins integral to the 

immune system (Harrison, 2015). Environmental factors that interact with the immune 

system at elevated rates in schizophrenia include those involving specific pathogens such 

as bacteria, viruses, and parasites, as well as increased risks conferred by the infectious 

disease process (Benros et al., 2011; Kirch, 1993; Kohler et al., 2017; Miller et al., 2013; 

Severance and Yolken, 2020a; Torrey et al., 2012; Torrey and Peterson, 1976; Yolken and 

Torrey, 2008). In recent years, microbial associations with schizophrenia have taken a new 

direction, as research across many medical fields including psychiatry focuses on the gut 

microbiome as a potential source of novel disease mechanisms and treatments.

Residing in the MHC genomic region is complement C4, a gene that has long shown 

genetic and other biological associations with schizophrenia (Laskaris et al., 2019; Mayilyan 

et al., 2008b; Mondelli et al., 2020; Pouget, 2018; Prasad et al., 2018; Rey et al., 2020; 

Rudduck et al., 1985; Sekar et al., 2016; Woo et al., 2019). Complement C4 is an intriguing 

susceptibility gene candidate in schizophrenia because of its putative functional role in 

central nervous system synaptic pruning (Johnson and Stevens, 2018; Presumey et al., 2017; 

Sellgren et al., 2019). Prefrontal cortical and hippocampal dendritic spine deficiencies in 

schizophrenia may be a result of abnormally active synaptic pruning during adolescence 

(Bennett et al., 2013; Clarke et al., 2018). A C4 gene variant that is overexpressed or 

underexpressed during this sensitive time period would support a dysregulated pruning 

model mechanism for schizophrenia. Sekar et al (2016) demonstrated that increasing C4A 

copy number was associated with increased C4A expression in post-mortem brains of 

individuals with schizophrenia compared to controls. In that study, C4 protein localized to 

neuronal synapses, processes and cell bodies (Sekar et al., 2016).

Technological advances in basic research and bioinformatic methods have made accessible 

the many encoded microbial genes and inferred metabolic pathways of the gut microbiome 

and as such represent unique opportunities to discover novel disease mechanisms and 

treatments in fields not traditionally considered to have an infectious basis. In psychiatry, 

for example, there are accumulating reports of alterations in diversities and abundances of 

presumably commensal gut microbial taxa which distinguish the schizophrenia microbiome 

from that of controls (Castro-Nallar et al., 2015; Dickerson et al., 2017; Li et al., 2020; 
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Nguyen et al., 2019; Shen et al., 2018; Xu et al., 2019; Yolken et al., 2015; Zheng et 

al., 2019). These findings have contributed a resurgence of interest in understanding the 

role of the gut brain-axis in psychiatric disorders and overall idea that properly functioning 

peripheral systems have important ramifications for brain health. Experiments in germ-free 

mice continue to shed light on the neurobiological mechanisms by which gut microbes enter 

the brain and control behaviors (Collins et al., 2012; Diaz Heijtz et al., 2011; Erny et al., 

2015; Foster and McVey Neufeld, 2013; Hsiao et al., 2013; Luczynski et al., 2016; Sampson 

and Mazmanian, 2015; Stilling et al., 2014). As relevant for studies of gene-environmental 

interactions involving the immune system, the gut microbiome is also critical for immune 

system development and maturation (Chistiakov et al., 2014; Dinan and Cryan, 2015; 

Sandhya et al., 2016; Severance et al., 2018; Wekerle, 2017).

Evaluating C4 genotypes and functional changes in the microbiome have previously 

been experimentally cumbersome to manage. Complement C4A and C4B are extensively 

polymorphic loci with significant variation in copy number and structure, making it difficult 

to accurately genotype individuals. C4A and C4B genes are paralogous and each can contain 

a human endogenous retroviral sequence (HERV-K) that confers a long (L) or short (S) 

form of the gene (Figure 1). C4A and C4B can also vary in the number of copies with 

a typical diploid genome containing two to eight copies. The availability of algorithms to 

impute C4 genotypes from GWAS data has accelerated the progress of C4 gene analyses 

in schizophrenia (Sekar et al., 2016). Dysfunction in the microbiome can be assessed by 

direct nucleic acid sequencing of bacterial taxa in relevant mucosal biospecimens, or via 

indirect measures of host physiological changes that occur during gut dysbioses. For the 

latter, plasma biomarkers of gastrointestinal inflammation and microbial translocation are 

considered valuable surrogate measures of an unhealthy gut microbiome (Severance and 

Yolken, 2020b). Markers that specifically target the bacterial endotoxin, lipopolysaccharide 

(LPS), are important validators that systemic inflammation has a microbial source such as a 

disturbed microbiome. In this paper, we test the hypothesis that complement C4 associations 

with microbes contribute to gene-environmental interactions in schizophrenia by examining 

C4A and C4B gene associations with plasma biomarkers of pathogen exposures and 

a dysregulated gut microbiome. Plasma biomarkers examined here included C-Reactive 

Protein (CRP), LPS-binding Protein (LBP), soluble CD14 (sCD14), Candida albicans IgG, 

Saccharomyces cerevisiae IgG, Cytomegalovirus IgG, and Toxoplasma gondii IgG.

2. Material and methods

2.1 Study population

A total of 337 individuals were recruited from Sheppard Pratt located in Baltimore, 

MD, U.S.A.: 123 were control individuals with no history of psychiatric disorder; 214 

individuals were diagnosed with schizophrenia. Diagnoses were made in accordance with 

DSM-IV-TR (APA, 2000) and have been previously described (Dickerson et al., 2015; 

Dickerson et al., 2013). For the schizophrenia group, individuals received a DSM-IV-TR 

diagnosis of schizophrenia, schizophreniform disorder, or schizoaffective disorder and were 

between the ages of 18 and 65. Individuals without a history of psychiatric disorder were 

interviewed to rule out current or past psychiatric disorders with the Structured Clinical 
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Interview for DSM-IV Axis I Disorders Non-Patient Edition (First, 1998). Controls were 

between the ages of 20 and 60, inclusive. Exclusion criteria for both groups included: 

mental retardation; clinically significant medical disorder that would affect cognitive 

performance; any history of intravenous substance abuse or a primary diagnosis of 

substance abuse or substance dependence. For controls, any active substance misuse was 

considered an exclusion criterion. Cognitive function was evaluated with the Repeatable 

Battery for the Assessment of Neuropsychological Status (RBANS) Form A (Randolph, 

1998) and psychiatric symptoms rated according to the Positive and Negative Syndrome 

Scale (PANSS) (Kay et al., 1987). Mean total RBANS scores ± standard deviation (SD) 

were 85.10+11.71 for controls and 64.30±11.64 for schizophrenia. In individuals with 

schizophrenia, mean total PANSS scores ± SD were 77.74±13.82; mean PANSS positive 

symptom scores were 19.70±5.56; and mean PANSS negative symptom scores were 

21.07±4.57. Basic demographic and other data (age, sex, race, body mass index (BMI)) 

for this study population are shown in Table 1. Age, sex, race and BMI were significantly 

different between diagnostic groups.

These studies were approved by the Institutional Review Boards (IRB) of Sheppard Pratt 

and the Johns Hopkins Medical Institution following established guidelines. All participants 

provided written informed consent after study procedures were explained. This research 

was performed in accordance with The Code of Ethics of the World Medical Association 

(Declaration of Helsinki) for experiments involving humans.

2.2 Laboratory tests

Blood was drawn at the time of interview using Becton-Dickinson’s Cell Preparation Tubes 

containing sodium citrate. Plasma was separated and stored at −80°C. Peripheral blood 

mononuclear cells (PBMCs) were isolated and stored at −80oC. DNA was extracted from 

PBMCs using Qiagen’s DNAeasy kit and stored at −80oC.

2.3 Biomarkers of pathogen exposures and gut dysbioses

The following biomarkers were measured in plasma using commercially-available enzyme­

linked immunosorbent assays (ELISAs): CRP, LBP, sCD14, Candida albicans IgG, 

Saccharomyces cerevisiae IgG, Cytomegalovirus IgG, and Toxoplasma gondii IgG. Methods 

and analyses reporting psychiatric case and control levels of these biomarkers were 

previously described (Dickerson et al., 2007a; Dickerson et al., 2007b; Leweke et al., 2004; 

Severance et al., 2012; Severance et al., 2016a; Severance et al., 2013).

2.4 Data analyses

Complement C4A, C4B, C4S and C4L haplotypes and copy numbers were imputed from 

GWAS SNPs data using previously described methods (Sekar et al 2016; https://github.com/

freeseek/imputec4). T-tests were used to detect bivariate associations between continuous 

variables. Chi-square analyses were used to detect bivariate associations between categorical 

variables. Multiple linear regression models were used to examine correlations among 

continuous variables. Multivariate logistic regression models were used to assign odds 

ratios for copy numbers and haplotype group associations with diagnoses, plasma biomarker 

levels, RBANS scores, and PANSS scores. We focused on the most common haplogroups 
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found in our population and as characterized by Sekar et al (2016). Haplogroup associations 

in multivariate models were further analyzed in relation to homozygous and heterozygous 

status compared to individuals in whom the haplogroup was absent. Multivariate regressions 

included the covariates: age, gender, race, BMI; an assay plate covariate was included with 

the ELISA data analyses to correct for plate-to-plate variation. These regression models 

applied robust standard error corrections to accommodate multiple samples per individual. 

We did not formally account for multiple comparisons in order to prevent the possibility that 

a too stringent threshold would lead to type B errors. Therefore, a p-value of less than 0.05 

was considered significant. However, it is of note that for most of the analyses, our p-value 

fell well below 0.01.

3. Results

We found that the haplogroup containing two copies of C4A-long (C4AL-C4AL) was 

associated with an elevated odds of schizophrenia compared to controls (Table 2; OR=2.56, 

95th%CI 1.05–6.27, p<0.0001). The haplogroup containing one copy of C4B-short (C4BS) 

was associated with a significantly decreased odds of a schizophrenia diagnosis (OR=0.43, 

95th%CI 0.20–0.94, p<0.0001). None of the other haplogroups shown in Table 2 were 

associated with a significantly altered odds for schizophrenia. In comparisons of mean C4 

copy number differences between cases and controls, we found significantly greater copy 

numbers of C4A in schizophrenia and greater numbers of C4B in controls (controls vs 

schizophrenia, mean levels ± standard error: C4A 1.94±0.04 vs 2.08±0.04, t=−2.53, p<0.01; 

C4B 1.91±0.03 vs 1.76±0.03, t=3.19, p<0.002). In multivariate logistic models, C4A copy 

numbers conferred increased odds of a schizophrenia diagnosis compared to controls 

(Table 2; OR=1.58, 95%CI 1.00–2.53, p<0.0001). There were no detectable differences 

in mean number of copies for C4B, C4S or C4L between diagnostic groups. C4A copy 

numbers were significantly inversely correlated with C4B copy numbers in controls and 

schizophrenia (controls: R2=0.16, coefficient=−0.44, 95th% CI=−0.62−−0.27, p<0.0001; 

schizophrenia: R2=0.46, coefficient=−0.85, 95th% CI=−0.97−−0.73, p<0.0001). Similarly, 

C4S copy numbers were significantly inversely correlated with C4L copy numbers in 

controls and schizophrenia (controls: R2=0.69, coefficient=−0.78, 95th% CI=−0.87−−0.69, 

p<0.0001; schizophrenia: R2=0.77, coefficient=−0.73, 95th% CI=−0.79−−0.67, p<0.0001).

Plasma biomarkers of pathogen exposure and gut dysbiosis were extensively associated 

with C4 haplogroups in schizophrenia but minimally in controls. In multiple linear 

regression models, cytomegalovirus IgG was inversely correlated with C4S copy numbers 

in schizophrenia but not controls (R2=0.16, regression coefficient=−0.30, 95th%CI=−0.56− 

−0.05, p<0.0001). Also, only in schizophrenia, LBP was inversely correlated with C4A 

copy numbers (R2=0.13, regression coefficient=−2.41, 95th%CI=−4.03− −0.79, p<0.0001). 

As shown in Table 3, C. albicans IgG, cytomegalovirus IgG, LBP and T. gondii IgG all 

showed significantly elevated odds ratios for associations with specific C4 haplogroups 

and significantly reduced odds ratios for other C4 haplogroups in schizophrenia. These 

associations varied according to homozygous and heterozygous states. For haplogroup­

biomarker combinations associated with significantly elevated odds ratios, we further 

depicted these relationships for exploratory purposes by charting several representative 

biomarker levels according to homozygous and heterozygous status of the haplogroup, as 
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shown in Figure 2. In controls, only one haplogroup-microbe combination was significant: 

C4BS with CMV IgG (OR 0.52, 95th%CI=0.29–0.95,−p<0.02). Overall, no significant 

associations with C4 were observed for S. cerevisiae IgG, CRP or sCD14.

In analyses of cognitive functioning, decreased RBANS scores were significantly associated 

with schizophrenia in individuals who were homozygous for the haplogroups C4AL and 

C4BS compared to individuals with schizophrenia who did not have these haplogroups 

(Table 4; C4AL: OR 0.68, 95th%CI 0.55–0.83, p<0.0001; C4BS: OR 0.82, 95th%CI 0.76–

0.90, p<0.0001. Controls who were homozygous for the haplogroup C4AL-C4BS showed 

decreased RBANS scores compared to those who did not have this haplotype (OR 0.94, 

95th%CI 0.89–1.00, p<0.03). Control individuals who were homozygous for the haplotype 

C4AL-C4BL showed elevated scores on RBANS compared to those who did not have this 

haplotype (OR 1.07, 95th%CI 1.00–1.14, p<0.02).

In multivariate models, homozygosity of the C4BS haplogroup and heterozygosity of the 

C4AL-AL haplogroup were associated with less severe positive symptoms (C4BS: OR 

0.54, 95th%CI 0.33–0.88, p<0.0001; C4AL-AL: OR 0.92, 95th%CI 0.85–1.00, p<0.0001). 

Homozygotes and heterozygotes of the C4AL haplogroup showed increased severity of 

negative psychiatric symptoms compared to those who did not have this haplogroup 

(Heterozygotes: OR 1.24, 95th%CI 1.09–1.40, p<0.0001; Homozygote: OR 8.62, 95th%CI 

1.48–50.33 p<0.0001).

4. Discussion

Complement C4 is an interesting susceptibility gene candidate for studies of gene­

environmental interactions in schizophrenia because of its multifactorial neurobiological 

ties to the immune system. Not only is it located in the MHC, an immune gene region 

long associated with schizophrenia, but it is activated following environmental immune 

challenges such as infections that are known risk factors for schizophrenia. It also likely has 

a functional role in central nervous system synaptic pruning, a neurobiological mechanism 

relevant to schizophrenia (Nimgaonkar et al., 2017; Presumey et al., 2017; Sekar et al., 

2016; Stevens et al., 2007). Here we demonstrated that in people with schizophrenia, 

complement C4A and C4B polymorphisms conferred a diversity of phenotypes related to 

microbial environmental variables such as pathogen exposures and gut dysbioses. These 

findings are especially relevant as examples of how gene and environmental variables may 

be interactive in schizophrenia via the immune system. We also observed that C4A and C4B 

copy numbers were inversely correlated with each other, likely reflecting the nonrandom 

linkage of C4A and C4B loci. Our study further detected significant associations of C4A and 

C4B haplotypes not only with a diagnosis of schizophrenia and environmental factors, but 

with psychiatric symptoms and cognitive functioning. These phenotypes in schizophrenia 

appeared most extreme when haplogroups were in the homozygous state.

Pathogen exposures have been studied as risk factors for the development of schizophrenia 

for a long time (Severance and Yolken, 2020a). More recently, interest in the microbiome 

and gut-brain axis has expanded the scope of the focus on infectious agents to the trillions 

of commensal microbes that inhabit the gastrointestinal tract and other mucosal surfaces. 
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Alterations in the microbiome have been associated with gut dysbiosis, a condition that is 

increased in individuals with schizophrenia and other serious psychiatric disorders. This gut 

dysbiosis generally reflects an inflammatory state in the GI tract which leads to microbial 

translocation and a toxic cycle of systemic inflammation and leaky endothelial barriers at the 

blood-gut and blood-brain barriers (Dickerson et al., 2017; Severance et al., 2012; Severance 

et al., 2014; Severance et al., 2015; Severance et al., 2016c). Exposures to pathogens and 

a gut in dysbiosis represent immune-related environmental variables that are potentially 

impacted by a dysregulated complement system. In our study, only one of the measured 

biomarkers was associated with C4 haplogroups in controls, whereas in schizophrenia, there 

were widespread associations of these environmental immune factors with C4 haplogroups. 

For example, case-control differences in peripheral biomarkers in conjunction with C4 

haplotypes were detected for IgG class antibodies to C. albicans, cytomegalovirus, and T. 
gondii.

The IgG-based markers can be generally categorized as biomarkers of exposure to 

pathogens; however, there are additional implications of these markers for GI-specific 

pathologies. C. albicans IgG, for example, has been shown in our previous studies to be 

associated with GI conditions in schizophrenia (Severance et al., 2016a; Severance et al., 

2017; Severance et al., 2015; Severance et al., 2016b; Severance et al., 2016c). CMV is 

a virus that can infect the GI tract and has been implicated as a source of inflammation 

in inflammatory bowel diseases such as ulcerative colitis (Jentzer et al., 2020; Sager 

et al., 2015). Furthermore, studies of animal models implicate T. gondii in gut-related 

inflammation and dysbiosis, as this parasite primarily infects its host by the GI tract 

(Severance et al., 2016a; Severance et al., 2016b; Severance et al., 2016c). Here, the C4AL­

AL haplogroup showed the strongest association with a schizophrenia diagnosis and with T. 
gondii IgG antibodies. T. gondii is historically one of the best-replicated pathogens that is 

associated with an increased risk of schizophrenia (Torrey et al., 2012; Yolken et al., 2009). 

The non-IgG based measure, LBP, on the other hand, specifically reflects the response to 

microbial translocation and the circulation of bacterial LPS, as would be apparent if a gut 

microbiome were in dysbiosis (Severance et al., 2013). In individuals with schizophrenia but 

not controls, LBP was inversely correlated with C4A copy numbers, a finding of interest 

since C4A copy numbers showed the strongest association with a schizophrenia diagnosis. 

While these markers are useful surrogate indices of microbial exposures, it will be important 

to compare marker patterns with direct measures of the microbiome in future studies.

Most of the common C4 haplogroups studied were associated with altered severity of 

psychiatric symptoms and measures of cognitive functioning, especially C4 haplogroups 

in a homozygous state. For example, the C4BS haplogroup was associated with decreased 

severity of positive psychiatric symptoms (OR 0.54, p<0.0001) and the C4AL haplogroup 

was associated with increased severity of negative psychiatric symptoms (OR 8.62, 

p<0.0001). C4 haplogroups were associated with scores of cognitive functioning in people 

with schizophrenia and in controls suggesting an interaction between C4 and cognition 

irrespective of its association with schizophrenia. Interestingly, in controls the C4AL-BS 

haplogroup was associated with worse performance on the RBANS while C4AL-BL 

conferred a beneficial effect (i.e high scores). The effects of C4 variants on cognition in 

schizophrenia and controls have previously been examined in various forms. For example, 

Severance et al. Page 7

Schizophr Res. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C4A RNA expression predicted from C4A structural variation was associated with poorer 

memory recall in individuals with schizophrenia compared to healthy controls. Healthy 

controls with higher predicted C4A expression, however, had reduced cortical activity 

during a visual processing task (Donohoe et al., 2018). Likewise, a strong association of 

complement pathway genes on cognitive function was observed independently of C4A 

structural variation and independently of an association with schizophrenia (Holland et al., 

2019).

The association between C4A and an increased risk of schizophrenia has been previously 

demonstrated in several studies. However, the driving force behind the inverse relationship 

between C4B and schizophrenia risk may be more tenuous (Mayilyan et al., 2008a; Rudduck 

et al., 1985; Sekar et al., 2016; Woo et al., 2019). It is not clear if the decreased C4B 

copy number confers a protection against risk for the disorder or if the decrease reflects an 

associated pathological protein deficit. The finding of an inverse correlation between C4A 

and C4B and between C4L and C4S copy numbers more likely reflects that these loci may 

be in linkage disequilibrium with risk (C4A and C4L) vs protection (C4B and C4S) at either 

end of the spectrum. Based on studies of chemical-binding preferences, C4A has an affinity 

for amino groups and C4B for hydroxyl groups, suggesting that C4A may function more 

to bind immune complexes and antigenic proteins and C4B in binding to antigens with 

carbohydrate-rich domains such as microbes (Presumey et al., 2017). Because a multitude of 

studies demonstrate exposure to pathogens as a risk factor for schizophrenia (Severance and 

Yolken, 2020a), a deficiency of C4B protein in schizophrenia may reflect compromised 

microbe-binding ability. Conversely, it is also conceivable that low C4B copy number 

confers a degree of protection with respect to preserving the body’s microbiome from 

C4B-mediated over-harvesting of beneficial microbes. In a study of pediatric inflammatory 

bowel disease, a low C4B copy number was associated with less inflammation and greater 

diversity of gut microbes than individuals with higher C4B gene copy numbers (Nissila 

et al., 2017). As reports of the gut microbiome in schizophrenia begin to populate the 

literature, it will be important to examine C4 genotypes in conjunction with microbiome 

profiling. It will also be necessary to further interrogate these haplotype associations to rule 

out that variation in nearby HLA genes which segregate with specific C4 alleles via linkage 

disequilibrium are not driving the observed immune traits (Kamitaki et al., 2020).

The understanding of complement C4 genotypes and C4A/C4B dynamics is just beginning 

to be elucidated as improved genomic techniques illuminate previously inaccessible regions 

of the genome in larger and more diverse study populations. Our finding of several 

deleterious haplotype combinations and associations with pathogens, inflammatory gut 

processes, psychiatric symptom severity and cognitive functioning suggests that C4 gene 

screening might aid the identification of subsets of individuals with a potentially more 

severe disease course. Complement-based therapies with the aim of decreasing C4A activity 

and/or increasing C4B activity in different genetic backgrounds will require examination in 

a research setting.
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Figure 1. Structural complexity of the complement C4 gene
Panel A: C4 genes exist in four forms (1) C4A gene short (C4AS - no HERV insertion); (2) 

C4A gene long (C4AL – contains HERV insertion); (3) C4B gene short (C4BS no HERV 

insertion); (4) C4B gene long (C4BL – contains HERV insertion). Panel B: Five common C4 

haplogroups that reflect copy number variation and presence/absence of the HERV insertion. 

This diagram is based on material from Sekar et al (2016)(Sekar et al., 2016).
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Figure 2. C4 haplogroup associations with microbial biomarkers in schizophrenia
NEG refers to individuals not having the listed haplogroup; HTZ refers to heterozygous 

for the listed haplogroup; HMZ refers to homozygous. Plotted are mean levels of plasma 

biomarkers. Error bars indicate standard error of the mean. Asterisk designates significance 

at p<0.05 of multivariate models that included age, race, sex, BMI and assay plate as 

covariates.
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Table 1.

Demographics and other variables of the study populations.

Population n
Individuals

Age
Mean

years+SD
1

Sex
n (% Female)

Race
n (% Caucasian)

BMI
Mean

score+SD

Controls 123 32.34+11.20
2

79 (64.22)
3

80 (65.04)
4

26.76+6.33
5

Schizophrenia 214 37.40+12.43 73 (34.11) 105 (49.06) 30.67+8.07

1
SD refers to standard deviation;

2
T =−4.66, two-tailed p<0.001;

3
Chi-square = 28.61, p<0.001;

4
Chi-square = 8.05, p<0.005;

5
T =−4.65, two-tailed p<0.0001
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Table 2.

C4 haplogroup & copy number odds ratios for a schizophrenia diagnosis as compared to controls

OR 95th%CI p-value

Haplogroup

 AL-BS 1.07 0.76–1.51 NS

 AL-BL 0.94 0.66–1.34 NS

 BS 0.43 0.20–0.94 0.0001

 AL 0.73 0.28–1.90 NS

 AL-AL 2.56 1.05–6.27 0.0001

Copy Number

 C4A 1.58 1.00–2.53 0.0001

 C4B 0.55 0.29–1.06 NS

 C4S 0.85 0.61–1.18 NS

 C4L 1.20 0.89–1.60 NS

Controls n=123, Schizophrenia n=214.

OR – odds ratio; CI – confidence interval; NS - not statistically significant at p<0.05.
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Table 3.

Odds ratios for C4 haplogroup associations with biomarkers of pathogen exposures and gut dysbioses

C. albicans IgG CMVIgG LBP T. gondii IgG

OR (95th%CI) p OR (95th%CI) p OR (95th%CI) p OR (95th%CI) p

HTZ HMZ HTZ HMZ HTZ HMZ HTZ HMZ

Control

 AL-BS NS NS NS NS NS NS NS NS

 AL-BL NS NS NS NS NS NS NS NS

 BS NS NA
0.52

(0.29–0.95)
0.02

NA NS NA NS NA

 AL NS NA NS NA NS NA NS NA

 AL-AL NS NA NS NA NS NA NS NA

Schizophrenia

 AL-BS NS NS
0.62

(0.44–0.87)
0.001

0.62
(0.43–0.90)

0.001
NS NS NS NS

 AL-BL NS NS NS
1.79

(1.21–2.64)
0.008

0.97
(0.94–1.00)

0.002
NS NS NS

 BS
0.20

(0.05–0.82)
0.0001

NS
1.55

(1.01–2.38)
0.0001

0.0003
(1E-6–0.10)

0.0001
NS

1.18
(1.05–1.33)

0.0001
NS

0.43
(0.26–0.70)

0.001

 AL
2.16

(1.22–3.83)
0.0005

NS
1.56

(1.09–2.24)
0.0001

0.20
(0.06–0.62)

0.0001
NS

1.09
(1.02–1.16)

0.0001
NS

0.33
(0.18–0.60)

0.0001

 AL-AL NS NS NS NS
0.96

(0.92–0.99)
0.0001

NS NS
17.67

(0.98–319.19)
0.0001

OR – odds ratio; CI – confidence interval; p – p-value; HTZ – heterozygote; HMZ – homozygote; NS - not statistically significant at p<0.05; NA - 
not applicable (due to absence of homozygotes in the control group); CMV - cytomegalovirus

Comparison is HTZ and HMZ relative to absence of haplotype.
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Table 4.

Odds ratios for C4 haplogroup associations with PANSS and RBANS scores

PANSS positive PANSS negative RBANS

OR (95th%CI) p OR (95th%CI) p OR (95th%CI) p

HTZ HMZ HTZ HMZ HTZ HMZ

Control

 AL-BS NA NA NA NA NS
0.94

(0.89–1.00)
0.03

 AL-BL NA NA NA NA NS
1.07

(1.00–1.14)
0.02

 BS NA NA NA NA NS NA

 AL NA NA NA NA NS NA

 AL-AL NA NA NA NA NS NA

Schizophrenia

 AL-BS NS NS NS NS NS NS

 AL-BL NS NS NS NS NS NS

 BS NS
0.54

(0.33–0.88)
0.0001

NS NS NS
0.82

0.76–0.90
0.0001

 AL NS NS
1.24

(1.09–1.40)
0.0001

8.62
(1.48–50.34)

0.0001
NS

0.68
(0.55–0.83)

0.0001

 AL-AL
0.92

(0.85–1.00)
0.0001

NS NS NS NS NS

OR – odds ratio; CI – confidence interval; p – p-value; HTZ – heterozygote; HMZ – homozygote; NS - not statistically significant at p<0.05; NA 
- not applicable (due to absence of homozygotes in the control group); PANSS positive refers to positive psychiatric symptoms; PANSS negative 
refers to negative psychiatric symptoms.

Comparison is HTZ and HMZ relative to absence of haplotype.
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