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Abstract

Background -—Tetralogy of Fallot (TOF), the most common cyanotic heart defect in newborns, 

has evidence of multiple genetic contributing factors. Identifying variants that are clinically 

relevant is essential to understand patient-specific disease susceptibility and outcomes, and could 

contribute to delineating pathomechanisms.

Methods -—Using a clinically-driven strategy, we re-analyzed exome sequencing data from 811 

probands with TOF, to identify rare loss-of-function and other likely pathogenic variants in genes 

associated with congenital heart disease (CHD).

Results -—We confirmed a major contribution of likely pathogenic variants in FLT4 (VEGFR3; 

n=14) and NOTCH1 (n=10), and identified 1–3 variants in each of 21 other genes, including 

ATRX, DLL4, EP300, GATA6, JAG1, NF1, PIK3CA, RAF1, RASA1, SMAD2, and TBX1. 

In addition, multiple loss-of-function variants provided support for three emerging CHD/TOF 

candidate genes: KDR (n=4), IQGAP1 (n=3), and GDF1 (n=8). In total, these variants were 

identified in 63 probands (7.8%). Using the 26 composite genes in a STRING protein interaction 

enrichment analysis revealed a biologically relevant network (p-value 3.3e-16), with VEGFR2 

(KDR) and NOTCH1 representing central nodes. Variants associated with arrhythmias/sudden 

death and/or heart failure indicated factors that could influence long-term outcomes.

Conclusions -—The results are relevant to precision medicine for TOF. They suggest 

considerable clinical yield from genome-wide sequencing, with further evidence for KDR 
(VEGFR2) as a CHD/TOF gene, and for vascular endothelial growth factor (VEGF) and Notch 

signaling as mechanisms in human disease. Harnessing the genetic heterogeneity of single gene 

defects could inform etiopathogenesis and help prioritize novel candidate genes for TOF.
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Introduction

Tetralogy of Fallot (TOF) affects about one in 3000 live births, and is the most common 

cyanotic heart defect in newborns1, 2. Initially described in 1671 by Danish anatomist 

Niels Stensen, the four components (pulmonary outflow tract obstruction, aorta overriding 

both ventricles, ventricular septal defect, and hypertrophy of the right ventricle) represent 

a single developmental anomaly3, 4. Further detailed anatomical documentation by Arthur 

Fallot, Maude Abbott, and others, laid the foundation first for palliative, and later corrective, 

surgical procedures4, 5. Advances in imaging, medical management, and surgeries across the 

lifespan have transformed TOF from a usually fatal pediatric condition to a chronic disease 

that is more prevalent in adults than children, with life expectancy into the seventh decade 

and beyond6–9.

The pursuit of determining the genetic underpinnings and recognizing how these may affect 

late outcomes in TOF, has proceeded in parallel with these clinical advances10–13. This 

research began with the recognition of multi-system syndromes in approximately 20% of 

patients, most commonly caused by 22q11.2 microdeletions, other copy number variants, 

or aneuploidies14, along with some single-gene defects15. Availability of newer genomic 

technologies, particularly genome-wide sequencing, has expanded gene discovery studies. 

The cumulative genetic evidence indicates a pattern of molecular etiology for TOF that is 

characterized by genetic heterogeneity and some distinction from congenital heart disease 

(CHD) as a whole14, 16–21. However, there has been relatively limited consideration of 

the clinical pathogenicity of genetic variants for TOF and translation of findings into the 

clinic22, 23.

Here, we re-analyzed data from the largest genome-wide sequencing dataset for TOF 

available, where an initial study had reported that deleterious variants in NOTCH1 and FLT4 
surpassed statistical thresholds for genome-wide significance20, 24. By design, genome-wide 

variant burden analyses generally include abundant variants of uncertain significance, 

and lack power to detect the rare gene-disease associations which comprise the genetic 

heterogeneity of a disease and form the basis for defining clinically reportable genetic 

variants.

The objective of our study was to improve understanding of precisely such variants, 

i.e., those that are of greatest relevance to clinical practice for patients with TOF. We 

re-analyzed and re-annotated the raw sequence data files, and used American College of 

Medical Genetics (ACMG) interpretation guidelines25 to adjudicate variants in genes that 

were considered relevant for the congenital cardiac phenotype. This re-analysis identified 

63 (7.8%) of 811 pediatric TOF probands to have pathogenic/likely pathogenic variants 

in known CHD genes (n = 49), or loss-of-function variants in emerging CHD/TOF 

candidate genes (n = 15; Figure 1). As expected given the difference in approach and 

methodology, few of these variants and genes were reported in the previous study20. The 

implicated genes encode proteins that functionally interact, indicating that the heterogeneous 

genetic architecture could inform mechanisms. Other pathogenic/likely pathogenic variants 

identified add to potential genetic implications for cardiovascular outcomes of TOF.
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Methods

Exome sequencing raw data (bam files) have been accessed through the European Genome­

phenome Archive (EGA; https://www.ebi.ac.uk/ega), and can be made available to qualified 

researchers through accession number EGAS00001003302. As described here20, ethical 

approval had been obtained from the local institutional review boards at each participating 

centre prior to blood or saliva sample collection, and informed consent had been obtained 

from all subjects or their parents/legal guardians. The downloaded dataset was analyzed 

at The Centre for Applied Genomics (TCAG, The Hospital for Sick Children, Toronto, 

Canada) under a research protocol of the Hospital for Sick Children (REB# 0019980189). 

Full methods and quality metrics (Supplemental Table I) are available as supplemental data.

Results

Re-analyzing the exome sequencing data from 811 probands with TOF, we identified 

48 probands with at least one pathogenic/likely pathogenic variant in a CHD-associated 

gene (48/811; 5.9%). Five CHD-associated genes had multiple pathogenic/likely pathogenic 

variants25 (Figure 1). These included 14 likely pathogenic loss-of-function variants in FLT4 
(all loss-of-function), and 10 in NOTCH1 (6 loss-of-function, 4 missense) (Supplemental 

Table II). The prevalence for variants in these two genes was collectively 24/811 (3.0%). 

We also identified three likely pathogenic variants in JAG1 (OMIM-P 187500, 118450), 

and two each in TBX1 (OMIM-P 187500) and GATA6 (OMIM-P 187500, 600001) 

(Supplemental Table II). Consistent with the genetic heterogeneity of TOF, we identified 

16 other individuals to have one pathogenic/likely pathogenic variant (11 loss-of-function, 

5 missense) in 16 CHD genes: ARHGAP31, ATRX, CACNA1C, CHD7, CSNK2A1, 

DLL4, EP300, GATAD2B, KAT6A, LZTR1, NF1, NODAL, PIK3CA, RAF1, RASA1, 

and SMAD2, and one individual with loss-of-function variants in two genes, ASXL1 and 

PSMD12 (Supplemental Table II).

In a further 16 individuals in this TOF cohort, we identified loss-of-function variants in three 

emerging CHD candidate genes (KDR, IQGAP1, and GDF1), i.e., genes with substantial 

research evidence but as yet insufficient to clinically deem variants “likely pathogenic” 

(Figure 1, Supplemental Table III). For KDR (encoding VEGFR2), four individuals with 

TOF had high-confidence loss-of-function variants in KDR, compared with none in 6,201 

controls from the 1000 genomes and MSSNG projects (Fisher’s exact test (FET): p = 

1.8E-4), and compared with 9 in 76,156 controls from gnomAD (Chi-squared test with 

Yates’ correction (X2) = 83.46; p < 1E-5; observed/expected loss-of-function constraint 

score (o/e LOF) = 0.15). The significant findings in this large TOF cohort add to results 

of several recent studies, reporting rare loss-of-function variants in KDR in independent 

cohorts with TOF or other conotruncal defects18, 21, 26, which collectively provide evidence 

for KDR as a TOF/CHD gene (Figure 2).

For another vascular endothelial growth factor (VEGF) related gene, IQGAP1, with previous 

reports of loss-of-function variants in independent cohorts of TOF and other CHD18, 27, 28, 

we identified three individuals with loss-of-function variants. This was significantly enriched 

compared to 1000 genomes control data (3/811 vs. 1/2,504; FET: p = 4.8E-2), and to 
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gnomAD (23/76,156; X2 = 18.29; p < 1E-5; o/e LOF = 0.19), but not when compared to 

control (parental) data from an autism cohort (3/811 vs. 5/3,697; FET: p = 1.6E-1). For 

GDF1, the pathogenicity of biallelic (homozygous or compound heterozygous) variants is 

well established [OMIM-P 208530]21, and heterozygous variants have also been suggested 

as risk factors for CHD29 [OMIM-P 613854]. In the current exome data, the prevalence 

of GDF1 heterozygous loss-of-function variants is likely to be underestimated due to 

insufficient coverage of this locus. Nonetheless, we identified 8 individuals to have such 

a variant, including an identical, heterozygous GDF1 stopgain variant p.Cys227* in 7 of the 

706 unrelated probands having samples with adequate read depths (≥10x). In comparison, 

the carrier frequency of this variant was 6 of 3,697 European controls from MSSNG (FET: 

p = 1.9E-3) and 64 of 33,079 controls from gnomAD (X2 = 17.36; p < 1E-5), indicating 

significant enrichment of heterozygous loss-of-function variants in GDF1 in the TOF cohort 

studied.

Taken together, we identified 63 probands (7.8%) with n = 49 pathogenic/likely pathogenic 

variants in 23 known CHD genes (Supplemental Table II) or n = 15 loss-of-function variants 

in 3 emerging CHD/TOF candidate genes (Supplemental Table III) in these TOF exome 

data. We note that the majority of these variants (40/64, 62.5%) and genes (23/26, 88.5%) 

were not previously reported for this cohort20 (Supplemental Tables II, III).

We next considered the 23 established TOF genes and 3 candidate genes with significant 

findings as a group, in an in silico functional interaction analysis. This showed evidence 

for a highly interactive network of the encoded proteins (STRING interaction enrichment p 
value = 3.3E-16). VEGFR2 (KDR) and NOTCH1 were central nodes within this network 

map, each connecting directly with 11 other proteins. In all, 23 of the 26 genes (88.5%) 

form an interactive network, related to VEGFR2 (KDR) or NOTCH1 by ≤2 edges (Figure 

3). Pathogenic/likely pathogenic loss-of-function variants from an independent cohort 

of 424 children with TOF21 supported, and slightly extended, this network, identifying 

NOTCH2 as an additional protein with multiple (five) interactions (Supplemental Table 

IV, Supplemental Figure I). All of the composite genes are expressed in human hearts 

(https://www.proteinatlas.org/), but at varying levels (Figure 3, Supplemental Figure I). A 

pathway enrichment map for the respective proteins is provided as supplemental material 

(Supplemental Figure II, Supplemental Table V).

Notably, we additionally identified rare nonsynonymous or predicted splice-altering variants 

of uncertain significance, according to ACMG interpretation guidelines25. This re-analysis 

classified the majority of NOTCH1 rare nonsynonymous missense and in-frame variants that 

were previously reported for this sample20 as were variants of uncertain significance (n = 21; 

Supplemental Table VI). Three of these variants – p.(Glu1294Lys), p.(Gly200Arg)30, and 

p.(Pro143Leu) – were identified in probands with other likely pathogenic variants: NOTCH1 
p.(Gln1733*), NF1 c.5206-1G>C, and EP300 p.(Phe1595Val), respectively (Supplemental 

Table VI). There were other CHD-relevant genes or candidate genes with variants of 

uncertain significance, including loss-of-function variants in CHD4, ECE1, SMAD6, 

ZFPM1, PRKD1 and VEGFA (Supplemental Table VI). In some cases, clinical data or 

knowledge about the parental genotypes, which were inaccessible for this study, could have 

informed more accurate variant classifications.
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We also report pathogenic/likely pathogenic variants for childhood-onset disorders, but with 

less established evidence at this time for clinical relevance to TOF/CHD (Supplemental 

Table VII). These include loss-of-function variants in POLR1A (2x), TCF12 (2x), APC, and 

GLI2 (Supplemental Table VII).

To further investigate the potential clinical utility of exome sequencing, we also interrogated 

the dataset for rare variants with potential clinical implications for cardiovascular 

management and outcome. In 16 (2.0%) of the 811 probands, we identified pathogenic/

likely pathogenic variants meeting these criteria. There were 11 variants associated with 

cardiac hypertrophy, arrhythmia and sudden cardiac death: hypertrophic cardiomyopathy 

(MYBPC3 (3x), MYH7, MYL2, TNNI3), arrhythmogenic right ventricular dysplasia 

(DSP (2x), DSC2), Brugada syndrome (SCN5A), and dilated cardiomyopathy (DMD) 

(Supplemental Table VIII). There were also five variants in genes (LZTR1, RAF1, 

CACNA1C, NF1, RASA1) implicated in other conditions, including e.g., Noonan and 

Timothy syndromes31, 32, that in addition have been reported to be associated with CHD, 

thus were also considered in the above etiologic variant analysis (Supplemental Tables II, 

VIII).

Discussion

Precision medicine is an emerging concept that involves health management 

based on individual characteristics, including genetic disease susceptibilities and 

pharmacogenomics33, 34. Delineation of disease-causing variants and genes and their 

functional networks will advance both precision health initiatives and our understanding 

of the relevant molecular mechanisms. The rationale for re-analyzing the exome sequencing 

data from these 811 individuals with TOF was to identify sequence variants with sufficient 

evidence for pathogenicity according to consensus clinical guidelines25, that could thereby 

inform disease etiologies of TOF, and to detect rare and emerging gene-disease associations, 

unlikely to be identified in the previous study of these data20. We identified 49 pathogenic/

likely pathogenic variants for TOF, plus 15 loss-of-function variants in emerging CHD/TOF 

candidate genes. The majority of variants (40/64, 62.5%) and genes (23/26, 88.5%) were 

not previously reported for this cohort20 (Supplemental Tables II, III). This demonstrates 

the novelty of our findings using a stringent clinical approach to variant assessment, and 

the benefits of re-analysis. Collectively, the results document both genetic and allelic 

heterogeneity in the pathogenesis of TOF across this large cohort. The findings may also 

help to define minimal clinical gene panels for TOF.

Novel results from this study also provide further evidence that haploinsufficiency of 

KDR (VEGFR2) contributes to risk for TOF. Rare KDR loss-of-function variants were 

previously reported in several cohorts with TOF and other conotruncal defects18, 21, 26 

(Figure 2), and our results document highly significant enrichment in TOF compared to 

controls. None of these KDR variants were previously reported for this cohort20. Other 

recent studies report evidence that similar loss-of-function variants in KDR are also risk 

factors for pulmonary arterial hypertension, independent of any heart malformations35, 36. 

As for many CHD genes, this suggests pleiotropy for KDR requiring further study. There 
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may also be clinical implications with respect to pulmonary hypertension in individuals with 

KDR-related TOF37.

For IQGAP1, loss-of-function variants were identified in this and in other CHD 

cohorts18, 27, 28 (including several de novo variants). However, we found a similar 

prevalence of variants in parents of probands with autism, used here as a control sample. 

Besides its essential role in VEGF receptor signaling, IQGAP1 regulates and integrates 

other cellular processes, including neuronal functions38. We consider IQGAP1 a promising 

candidate gene for CHD, but further statistical support and phenotypic characterization will 

be needed.

Taken together, pathogenic/likely pathogenic variants in known CHD genes and variants 

in candidate genes were identified in a total of 26 genes: ARHGAP31, ASXL1, ATRX, 

CACNA1C, CHD7, CSNK2A1, DLL4, EP300, FLT4, GATAD2B, GATA6, GDF1, JAG1, 

IQGAP1, KAT6A, KDR, LZTR1, NF1, NODAL, NOTCH1, PIK3CA, PSMD12, RAF1, 

RASA1, SMAD2, and TBX1. The results further indicated that the encoded proteins form 

highly inter-connected networks of functional interaction. This suggests that the genetic 

heterogeneity identified through human disease studies may help to inform overlapping or 

unifying molecular pathomechanisms for TOF. Notably, VEGFR2 (encoded by KDR) and 

NOTCH1 form central nodes in this interaction network, supporting and extending evidence 

that the developing right outflow tract is vulnerable to VEGF/Notch dysregulation39–42. 

VEGF signaling was recently reported to be the top canonical pathway associated with 

de novo variants in conotruncal defects28, and low VEGF expression was linked to 

TOF risk in a historical family study43. Delineating the relevant protein networks and 

associated pathomechanisms will help to rank novel candidate genes and could inform 

potential therapeutic targets. For example, loss-of-function variants in TCF12 (Supplemental 

Table IV) were recently reported in multiple individuals with unexplained CHD26, and 

the encoded protein functionally interacts with three confirmed TOF-associated proteins 

(NOTCH1, SMAD2, EP300).

Even with overlapping molecular functions, however, the phenotypic spectrum (pleiotropy) 

can vary largely not only from one gene to another, and one variant to another, but for 

individuals with the same variant within and between families. Most of the identified 

pathogenic/likely pathogenic variants were in CHD genes associated with multisystemic 

genetic disorders (Supplemental Table II), as may be expected for confirmed genes in early 

stages of clinical interpretation. Clinical genetic testing results may thus, in certain cases, 

flag the potential for an increased risk for comorbidities including neurodevelopmental 

delays. On the other hand, pathogenic variants historically identified through syndromic 

phenotypes may have cardiac phenotypes without classic extracardiac expression14. For 

most individual genetic predispositions however, the extent of the disease spectrum is 

yet unknown. Delineating genotype-associated clinical traits, and understanding their 

penetrance, will be essential for genetic counselling, familial risk assessments, and 

informing outcome.

Identifying the genetic etiologies of TOF can improve clinical management, by providing 

information on outcomes and risks related to the variant, in addition to those related to the 
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cardiac anatomical severity and other clinical parameters13, 44, 45. After the surgical repair 

of TOF, heart failure and arrhythmias are leading causes of morbidity, impaired quality of 

life, and mortality. Genetic factors that can affect the molecular and structural properties of 

the heart and vasculature may play a role. In this study, 16 (2.0%) of 811 probands were 

identified to have pathogenic/likely pathogenic variants that could affect cardiac surveillance 

and management recommendations (Supplemental Table VIII). Longitudinal clinical data 

will be needed to characterize adverse or favourable outcomes of patient populations that 

include such genetic variant data, in order to identify predictive markers and to inform 

preventive and therapeutic interventions, as part of precision medicine.

Advantages and limitations

We analyzed genetic risk variants in the largest available exome dataset of individuals 

with TOF. We prioritized variants with sufficient evidence for pathogenicity, according 

to consensus clinical guidelines25, in order to increase the “signal-to-noise ratio” in the 

reporting of single gene defects. In contrast to primarily statistical approaches, such as 

that previously applied to this cohort20, this clinical approach enabled us to capitalize on 

the expected genetic and allelic heterogeneity of pathogenic variants in TOF. For example, 

18 genes were identified with only one pathogenic/likely pathogenic variant each in this 

cohort. The lack of variant segregation data and the inaccessibility of individual clinical 

information, such as anatomical subtypes, disease progression, associated features, or age 

for this cohort20, however limited the interpretation of the findings. Our analyses were also 

restricted to rare small sequence variants and insertions/deletions in regions targeted by 

exome sequencing, typically involving ~95% of exonic regions. The exome data available 

did not allow us to assess structural aberrations, such as rare copy number variants, despite 

their established contribution to CHD14 (individuals with typical 22q11.2 deletions were 

however excluded20). All variants reported here were identified in the heterozygous state, 

passed internal quality metrics, and were visually validated in the aligned sequencing reads, 

however we could not confirm their accuracy by Sanger sequencing.

Conclusions

We studied the largest published exome sequencing dataset of patients with TOF, 

interpreting variants from the perspective of clinical pathogenicity. The identified genetic 

results add evidence for a major contribution of VEGF/Notch dysregulation, including 

KDR/VEGFR2, and provide novel findings for functionally interacting protein networks 

relevant to the pathomechanism of TOF. We anticipate that clinical genomic sequencing, 

especially where capability of detecting structural variants is included, will become an 

essential component for assessing risks and outcomes in patients with CHD22. Re-analysis 

of existing datasets is warranted, and valuable, especially as our knowledge to identify and 

interpret disease-related variants continuously evolves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Clinically relevant variants associated with congenital heart disease (CHD), identified in 

exome sequencing data of n = 811 probands with tetralogy of Fallot (TOF). Likely 

pathogenic loss-of-function and missense variants meeting ACMG criteria for clinical 

relevance (pathogenic or likely pathogenic, n = 49) in 23 recognized CHD genes were 

identified in 48 probands. Loss-of-function variants (n = 15) in 3 emerging candidate genes 

for CHD/TOF were identified in another 15 probands. Variant and gene details are provided 

in Supplemental Tables II and III, respectively, and Figure 2 provides details of KDR 
variants.

* Note: Comprehensive assessment of gene GDF1 was not possible due to insufficient 

coverage of this locus with the exome sequencing data available.
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Figure 2: 
Variants identified in vascular endothelial growth factor receptor 2 (VEGFR2; KDR: 

NM_002253.2), in patients with TOF or other conotruncal defects. Rare loss-of-function 

variants (n = 12) are shown in black font (above, solid vertical lines). Rare variants 

of uncertain significance (in-frame deletion, missense variants, and stopgain variant in 

penultimate exon) are shown in gray font (below, dashed vertical lines). Variants from 

this study (Supplemental Tables III and VI) are in bold/italics. Variants reported in Jin et 

al.21: p.(Lys529*), c.1646-2A>T. Variants reported in Reuter et al.18, Figure 1: p.(Arg880*), 

p.(Trp1096*), p.(Glu407del), p.(Arg833Trp), p.(Ala1030Thr). Variants reported in Morton 

et al.26 (Note: some probands may overlap those reported by Jin et al.): p.(Gln268*), p.

(Lys529*), c.1646-2A>T, p.(Gln697*), c.3070-2A>G, p.(Lys1110*).
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Figure 3: 
Functionally interacting proteins encoded by confirmed genes (n = 23) and emerging 

candidate genes (n = 3) for CHD/TOF identified in n = 811 individuals with TOF. 

Network analysis was performed using Cytoscape, STRING and the 26 genes identified 

from exome sequencing of this cohort (STRING interaction enrichment p value 3.3E-16; 

see text for details). Node sizes (circles) represent the connectivity (numbers of edges to 

other proteins). Node colors represent the interaction with VEGFR2/KDR (blue), NOTCH1 

(yellow), or both (green). Edge widths represent the confidence (strength of data support for 

functional and physical protein associations, including textmining, experiments, databases, 
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and co-expression). 23 of the 26 genes form an interactive network with VEGFR2 (gene 

KDR) and NOTCH1 as central nodes, each connecting directly with 11 other proteins.
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