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Abstract

Epigenetic clocks are calculated by combining DNA methylation states across select CpG sites 

to estimate biologic age, and have been noted as the most successful markers of biologic aging 

to date. Yet, limited research has considered epigenetic clocks calculated in brain tissue. We used 
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DNA methylation states in dorsolateral prefrontal cortex specimens from 721 older participants of 

the Religious Orders Study and Rush Memory and Aging Project, to calculate DNA methylation 

age using four established epigenetic clocks: Hannum, Horvath, PhenoAge, GrimAge, and a new 

Cortical clock. The four established clocks were trained in blood samples (Hannum, PhenoAge, 

GrimAge) or using 51 human tissue and cell types (Horvath); the recent Cortical clock is the first 

trained in postmortem cortical tissue. Participants were recruited beginning in 1994 (Religious 

Orders Study) and 1997 (Memory and Aging Project), and followed annually with questionnaires 

and clinical evaluations; brain specimens were obtained for 80–90% of participants. Mean age at 

death was 88.0 (SD 6.7) years. We used linear regression, logistic regression, and linear mixed 

models, to examine relations of epigenetic clock ages to neuropathologic and clinical aging 

phenotypes, controlling for chronologic age, sex, education, and depressive symptomatology.

Hannum, Horvath, PhenoAge and Cortical clock ages were related to pathologic diagnosis of 

Alzheimer’s disease (AD), as well as to Aβ load (a hallmark pathology of Alzheimer’s disease). 

However, associations were substantially stronger for the Cortical than other clocks; for example, 

each standard deviation (SD) increase in Hannum, Horvath, and PhenoAge clock age was related 

to approximately 30% greater likelihood of pathologic AD (all p<0.05), while each SD increase 

in Cortical age was related to 90% greater likelihood of pathologic AD (odds ratio=1.91, 95% 

confidence interval 1.38, 2.62). Moreover, Cortical age was significantly related to other AD 

pathology (eg, mean tau tangle density, p=0.003), and to odds of neocortical Lewy body pathology 

(for each SD increase in Cortical age, odds ratio=2.00, 95% confidence 1.27, 3.17), although no 

clocks were related to cerebrovascular neuropathology. Cortical age was the only epigenetic clock 

significantly associated with the clinical phenotypes examined, from dementia to cognitive decline 

(5 specific cognitive systems, and a global cognitive measure averaging 17 tasks) to Parkinsonian 

signs. Overall, our findings provide evidence of the critical necessity for bespoke clocks of brain 

aging for advancing research to understand, and eventually prevent, neurodegenerative diseases of 

aging.
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INTRODUCTION

Epigenetic modifications, such as DNA methylation (DNAm), are a hallmark of aging.1 

Over the last decade, several DNAm-based biomarkers of aging have been identified; 

these “epigenetic clocks” are calculated by combining DNAm states across select sites to 

estimate age.2–5 Interestingly, growing evidence indicates the epigenome may both provide 

a signature of accumulated biologic aging as well as influence subsequent aging processes.6 

Thus, epigenetic clocks could not only distinguish those with accelerated (or decelerated) 

biologic aging, but also monitor interventions to delay aging.7 In research to date, a variety 

of epigenetic clocks have been published. The primary existing clocks were developed 

in blood samples (eg, the Hannum,2 PhenoAge4 and GrimAge5 clocks) or across many 

tissues (eg, the Horvath clock3); most were trained to predict chronologic age, although 

recent “second generation” clocks have been trained to predict aging-related phenotypes 
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(PhenoAge4, GrimAge5), such as mortality. Epigenetic clocks have been noted as the most 

successful aging biomarkers yet.1

Although the prevalence of neurodegenerative diseases of aging, such as Alzheimer’s 

dementia or Parkinson’s Disease, is increasing,9,10 limited research has examined epigenetic 

clocks in brain tissue. In previous reports,11,12 calculating several different epigenetic clocks 

designed in peripheral blood samples or across many tissues simultaneously, there were 

reasonable correlations of epigenetic age with chronologic age even in specimens from up 

to 6 different brain regions – suggesting these clocks may have applications in brain tissue. 

Indeed, in initial research in the Religious Orders Study (ROS) and Rush Memory and 

Aging Project (MAP), the Horvath and PhenoAge clocks were calculated in post-mortem 

dorsolateral pre-frontal cortex (DLPFC); after controlling for chronologic age, clock age was 

related to amyloid beta (Aβ) load and to pathologic Alzheimer’s disease (AD) diagnosis, 

although there was little association with several clinical dementia-related outcomes.4,13

Recently, an epigenetic clock trained in human cortex tissue was developed,14 although 

little is known regarding how this “Cortical” clock may predict pathologic or clinical 

neurodegenerative phenotypes, and whether it may perform better for neurodegenerative 

outcomes than clocks developed in blood samples or across many tissues. To fully 

understand how blood-based, multi-tissue-based, and brain-based epigenetic clocks function 

as biomarkers of brain aging, further examination of clocks in brain tissue is crucial.

Thus, we used post-mortem DLPFC from 721 older participants of ROS and MAP, to 

calculate four established epigenetic clocks (Hannum, Horvath, PhenoAge, GrimAge); 

for comparison, we also calculated the recent Cortical clock, which was developed in 

cortical tissue and trained to predict chronologic age. We examined associations of each 

of these clocks to a variety of age-related neuropathologies, and to key age-related clinical 

phenotypes.

MATERIALS AND METHODS

Study Populations

The Religious Orders Study was initiated in 1994,15 and includes older priests, nuns 

and brothers from across the US, free of known dementia at the time of enrollment. 

Participants agreed to annual neurological exams, neuropsychological testing, and blood 

draw, and signed an informed consent and Anatomic Gift Act to donate their brains at 

death. Over 1,468 participants completed a baseline evaluation. The follow-up rate and 

autopsies exceed 90%. The Rush Memory and Aging Project was established in 1997,15 

with virtually identical design and data collection, and includes older men and women 

from across the Chicago metropolitan area, without known dementia at enrollment; over 

2,170 participants completed a baseline evaluation to date. The follow-up rate exceeds 90% 

and the autopsy rate exceeds 80%. Both studies were approved by an Institutional Review 

Board of Rush University Medical Center. All participants signed an informed consent 

and Anatomical Gift Act for organ donation. For the work described here, we leveraged 

DNA methylation profiling previously completed in frozen DLPFC tissue from over 700 

decedents, representing all available specimens at the time profiling was completed.
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Assessment of DNA Methylation States and Epigenetic Clocks

In the brain specimens, DNA methylation was measured in DLPFC tissue. Briefly, 100mg 

frozen sections were thawed on ice, with the gray matter dissected from the white matter, 

as previously described in detail.16 The Qiagen QIAamp DNA mini protocol was used 

for DNA isolation. DNA methylation profiles were generated using the Illumina Infinium 

HumanMethylation450 platform. In recent work with these specimens, processing methods 

were updated compared to our previous publications.16 The raw signal intensities were 

imported into the R statistical environment with functions from the methylumi package 

and further processed with the wateRmelon package. Initial quality control assessment was 

performed using functions in the methylumi package to exclude samples with inefficient 

bisulfite conversion (< 90%) as well as outliers. Further preprocessing was conducted using 

the wateRmelon package17 by applying a p-filter. Probes having more than 1% of samples 

with a detection p-value greater than 0.05 and a beadcount lower than 3 in more than 5% 

of samples were excluded. Finally, the filtered data were normalized with ‘dasen’. Non-CpG 

SNP (single nucleotide polymorphism) probes, probes that had been reported to contain 

common (MAF >5 %) SNPs in the CG or single base extension position, or probes that 

were non-specific or mismapped, were flagged and disregarded in the evaluation of our 

results. The resulting dataset for analysis here consisted of 730 samples with 423,841 probes 

each. At each probe, DNAm level was represented as a beta value, that is, the ratio of the 

methylated probe intensity to the sum of methylated and unmethylated probe intensities. The 

values ranged from 0 to 1, where a larger value indicates higher methylation.

We used open source software at https://dnamage.genetics.ucla.edu/home to calculate DNA 

methylation age from four commonly used epigenetic clocks in the DLPFC: Hannum clock, 

Horvath clock, PhenoAge clock and GrimAge clock. The Cortical clock was calculated 

using publically-available code provided by the authors (https://github.com/gemmashireby/

CorticalClock). Briefly, the Hannum clock is based on 71 CpG sites,2 selected agnostically 

by regressing DNAm levels against chronologic age, in peripheral blood. The Horvath clock 

incorporates 353 CpG sites, also selected by regressing DNAm levels against chronologic 

age, but using 51 different tissue types.3 The newer PhenoAge clock is calculated from 513 

CpGs,4 representing 9 plasma biomarkers that predict mortality (rather than chronologic 

age), and the GrimAge clock incorporates 1030 CpG sites, representing 12 plasma 

biomarkers that predict lifespan, plus cigarette smoking.5 Finally, the Cortical clock was 

designed in postmortem cortical specimens,14 and, similar to the Horvath and Hannum 

clocks, was trained to predict chronologic age; the Cortical clock includes 347 CpG sites.

Assessment of Neuropathologic Outcomes

In the brain specimens, we considered the primary outcomes of AD pathology, other 

neurodegenerative neuropathology, and cerebrovascular pathology. In collecting the brain 

donations, the mean post-mortem interval was 9.1 (SD=7.9) hours. Details of the autopsy 

procedures are described elsewhere.18 In brief, the brain was removed, one hemisphere 

was frozen, and the other hemisphere was fixed in 4% paraformaldehyde for at least three 

days. The fixed hemisphere was cut into 1 cm slabs, and tissue blocks were obtained from 

pre-specified brain regions for neuropathological evaluation.
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Alzheimer Disease (AD) Pathology: For assessing AD pathology, we calculated a 

global score representing overall AD pathologic burden combining neuritic plaques, diffuse 

plaques, and neurofibrillary tangles. For this score, we used a modified Bielschowsky silver 

stain to visualize neuritic plaques, diffuse plaques, and neurofibrillary tangles in five cortical 

areas. Because the regional counts had wide means, standard deviations, and ranges, we 

first converted the raw counts to a standard distribution by dividing each person’s count by 

the SD for that particular count; next, we formed summary measures of neuritic plaques, 

diffuse plaques, and neurofibrillary tangles by averaging the standardized scores across all 

brain regions. Finally, we constructed the global AD pathology score by averaging the 

summary measures of the three AD pathologic indices, such that higher scores represent 

more pathology.

We also separately examined the percent area occupied by Aβ and tau tangle density, using 

image analyses (Aβ) and stereology (tau tangles) of immunohistochemically-stained brain 

sections. For these two measures, we used tissue from 8 cortical regions and then averaged 

findings across the regions to create two separate summary measures of the brain’s load of 

Aβ and density of tau-labeled tangles; again, higher scores represent greater pathology.

A pathologic diagnosis of AD was also rendered according to the National Institute on 

Aging (NIA)-Reagan criteria.19

Other Neurodegenerative Neuropathology: Immunohistochemistry with α-synuclein 

immunostain (1:20,000, Wako Chem. USA, Richmond, VA) was used for assessment of 

Lewy bodies in the substantia nigra, 2 limbic sites (entorhinal cortex, anterior cingulate 

cortex), and 3 neocortical sites (midfrontal cortex, superior or middle temporal cortex, 

inferior parietal cortex). We classified Lewy body disease as nigral, limbic, or neocortical 

using a modified version of the staging criteria of McKeith et al.20,21 Neocortical disease 

required Lewy bodies in frontal, temporal, or parietal cortex and was accompanied by nigral 

and/or limbic Lewy bodies. A dichotomous variable indicating presence of neocortical Lewy 

bodies was used in this analysis.

To identify limbic-predominant age-related TDP-43 encephalopathy neuropathological 

change (LATE-NC), we assessed transactive response DNA binding protein 43 kDa 

(TDP-43) pathology in 8 brain regions (amygdala, entorhinal cortex, hippocampus CA1 

and subiculum, dentate gyrus, anterior temporal pole, interior frontal, middle temporal 

cortex, and midfrontal cortex) using monoclonal antibodies (pS409/410;1:100), which 

stain pathologically phosphorylated TDP-43 proteins but not normal nuclear TDP-43. We 

classified those with stage 0 (no presence of TDP-43) or stage 1 (presence of TDP-43 

localized to the amygdala) as not having LATE-NC, and those with stage 2 (extension to 

the hippocampus and/or entorhinal cortex) or stage 3 (extension to the neocortex) as having 

LATE-NC.

Cerebrovascular Pathology: To identify vessel disease, atherosclerosis severity grade 

was assessed by evaluation of circle of Willis vessels at the base of the brain. 

Vertebral, basilar, posterior cerebral, middle cerebral, and anterior cerebral arteries were 

evaluated along with their proximal branches. Severity of atherosclerosis was scaled semi
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quantitatively (none or possible, mild, moderate, severe) on the basis of involvement of each 

artery and number of arteries.

Additionally, severity of arteriolosclerosis was graded based on concentric hyaline 

thickening of vessel walls, specifically small arterioles less than approximately 50 μm in 

diameter. The scale ranged from none, to mild if the arterial wall was minimally thickened, 

moderate if the arteriolar wall thickness was up to twice the normal thickness, and severe, 

if the arteriolar wall thickness was more than twice the normal thickness or completely 

occluded.

Cerebral amyloid angiopathy (CAA) was examined using Aβ immunostaining of meningeal 

and parenchymal vessels in four regions (midfrontal, midtemporal, angular, and calcarine 

cortices). Three monoclonal antibodies against Aβ were used in immunostaining of sections: 

4G8 (1:9000; Covance Labs, Madison, WI), 6F/3D (1:50; Dako North America Inc., 

Carpinteria, CA), and 10D5 (1:600; Elan Pharmaceuticals, San Francisco, CA). In this 

analysis, we used a semi-quantitative scoring system as none, mild, moderate, and severe.

Uniform examination of cerebral infarcts was conducted to identify chronic infarcts; we 

identified all brain infarcts visible to the naked eye. Microscopic examination also provided 

identification of chronic microinfarcts. A minimum of 9 regions in 1 hemisphere were 

examined for microinfarcts on 6-μm paraffin-embedded sections stained with H&E. We 

created dichotomous summaries (presence vs. absence) for each of the two infarct variables.

Assessment of Clinical Neurologic and Other Outcomes

In addition to pathology, we considered several age-related clinical phenotypes, especially 

neurologic phenotypes. Participants underwent an annual, uniform structured clinical 

evaluation which included detailed cognitive testing. Scores from 17 cognitive tests were 

summarized in a global cognitive score, and 5 cognitive systems were evaluated, including 

episodic memory, semantic memory, working memory, perceptual speed, and visuospatial 

ability. For the global score and for each cognitive system, all test scores were transformed 

to z-scores, using the baseline means and standard deviations from the cohort, and then 

z-scores for each relevant test were averaged to create the composite scores.22 Further, all 

participants were evaluated annually by an experienced clinician who used cognitive and 

clinical data to diagnose any dementia, as well as Alzheimer’s dementia.23 As per research 

conventions regarding terminology,24 we use “Alzheimer’s dementia” to refer to clinical 

diagnosis prior to death (and “Alzheimer’s disease” [AD] to refer to post-mortem pathologic 

diagnosis).

In addition, we assessed Parkinsonian signs, using a composite measure averaging 4 separate 

signs based on a 26-item modified version of the motor portion of the United Parkinson’s 

Disease Rating Scale, which assessed bradykinesia, parkinsonian gait, rigidity, and tremor. 

Briefly, the score for each sign was calculated by adding the ratings for the individual items 

from each sign, dividing by the maximum possible score for the sign, then multiplying by 

100.25 A summary score was created, ranging from 0 to 100, and averaging the four scores 

from each sign. A higher summary score reflects expression of more severe Parkinsonian 

signs.
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We also calculated a summary score of motor function, based on: Purdue pegboard test (no. 

of pegs), finger-tapping test (taps/10 seconds), time to cover a distance of 8 feet (seconds), 

number of steps required to cover 8 feet (steps), 360 degree turn time (seconds), number 

of steps to complete a 360 degree turn (steps), leg stand (seconds), toe stand (seconds), 

grip strength (kilograms), and pinch strength (kilograms).24 The composite measure was 

constructed by converting each measure to a score using the mean from all participants at 

baseline and averaging all the motor tests together. Higher score represents better motor 

function.

Finally, since apolipoprotein E (APOE) genotype is strongly related to neuropathology and 

neurologic disease, we also examined APOE genotype;27 we excluded those with e2e4 

genotype, since it is more challenging to interpret this group.

Population for Analysis

For examining epigenetic clocks in DLPFC, we used 730 specimens that were part of 

previous research on DNAm and neurodegeneration, representing all available specimens at 

the time DNAm was profiled.27 We excluded 9 participants who did not have full covariate 

data available. For analyses of specific neuropathologic and neurologic outcomes, some 

participants were missing data, thus analytic samples varied somewhat across analyses. 

Finally, since the original training set for the Cortical clock included 88 of the ROSMAP 

DLPFC specimens,14 for all analyses of the Cortical clock, we also excluded those 88 

samples.

Statistical Analysis

To enhance interpretability of results across the epigenetic clocks, we standardized each 

clock (ie, to mean=0, SD=1), and used this variable as the independent variable in models.

We utilized different statistical models across the neuropathologic and neurologic variables. 

Because we were only interested in the ability of the clocks to predict phenotypes above 

and beyond the effects of chronologic age, all statistical models include chronologic age 

as a covariate. For the dependent variables which were continuous measures (i.e., global 

AD pathologic score, amyloid load, and tau tangle density), we used linear regression 

models adjusted for chronologic age at death (continuous), education (years), sex, and 

depressive symptoms at baseline (CES-D score). We used a square root transformation 

of these outcomes in the regression models, due to the positively skewed distributions 

of data. To examine associations of the epigenetic clocks with categorical outcomes (AD 

pathologic diagnosis, cerebrovascular and other neurodegenerative neuropathologies, clinical 

diagnosis of Alzheimer’s dementia or any dementia, APOE genotype), we used either 

logistic regression or ordinal logistic regression models, controlling for chronologic age, 

education, sex, and depressive symptoms at baseline. While genotype would standardly be 

considered as an independent rather than dependent variable, we chose to maintain clock 

age as our independent variable in all models to facilitate comparison of findings across 

variables of interest here. For analyses of cognitive decline, and for change over time in the 

scores for Parkinsonian signs and motor function, we used linear mixed models, controlled 

for age at death, sex, education and depressive symptoms at baseline. A term for the 
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interaction of follow-up time by epigenetic clock age was used to estimate the relation of 

clock age to annual rates of decline.

We also conducted several sensitivity analyses. In one set of analyses, instead of epigenetic 

age, we examined epigenetic age acceleration, calculated as the residuals from regressing 

epigenetic age on chronologic age. Second, we were concerned about confounding from 

cell type proportions. Since there is no ideal method for calculating neuron proportion, we 

conducted two analyses using different approaches. In one, we used the most common 

approach of estimating neuron proportion using the CETS algorithm,28 which utilizes 

DNAm states from the Illumina array, and was thus available in all participants. In a 

second, we estimated neuron proportion using a deconvolution approach (digital sorting 

algorithm, DSA) based on cell type-specific genes derived from published reference data, 

using available transcriptomics from RNAseq in the DLPFC.29 We had adequate information 

available in 528 participants to calculate neuron proportion estimated from DSA. We then 

conducted two sets of analyses, creating models adding each of these variables to test for 

confounding by neuron proportion.

For all analyses, we calculated two-sided p-values, and 95% confidence intervals (CI); 

p-values <0.05 were considered statistically significant.

Data Availability

ROSMAP data can be requested at https://www.radc.rush.edu.

RESULTS

Among participants (Table 1), 36% were male and mean chronologic age at death was 

88.0 (SD 6.7) years. Participants were highly educated, with nearly three-quarters having at 

least 15 years of education. Absolute epigenetic ages in the DLPFC samples ranged from a 

mean of 1.6 (SD 5.8) years for the PhenoAge clock to 87.3 (SD 5.6) years for the Cortical 

clock. Pathologic AD diagnosis was identified in over half of participants, while other 

neurodegenerative disease pathologies were much less common; LATE-NC was found in 

approximately one-third of participants, and neocortical Lewy bodies were identified in less 

than 10%. Approximately 40–45% of participants had moderate or severe levels of cerebral 

vessel pathology (i.e., atherosclerosis, arteriosclerosis, or cerebral amyloid angiopathy). 

Chronic microinfarcts were identified in about one-quarter and gross macroinfarcts in about 

one-third of the brain specimens. For clinical phenotypes, diagnosis of dementia, including 

Alzheimer’s dementia, was identified in nearly half of participants, as of death. Finally, 

one-quarter of participants had an APOE e4 allele (e4e4 or e3e4).

Epigenetic Clocks and Neuropathology

We first examined the relations of epigenetic clock ages to AD pathology (Figure 1). We 

found that each SD increase in Hannum, Horvath, and PhenoAge clock age was related 

to approximately 30% greater likelihood of pathologic AD, which was significant across 

these three clocks, although there was no relation with GrimAge. Findings were stronger 

for the Cortical clock, where each SD increase in clock age was related to 90% greater 

likelihood of pathologic AD (OR=1.91, 95% CI 1.38, 2.62). Similarly, for levels of global 
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AD pathology as a continuous outcome (Figure 2), we found significant associations with 

all clocks except the GrimAge clock, such that each standard deviation increase in clock 

age was associated with greater mean levels of global AD pathology (all p<0.05 for 

Hannum, Horvath, PhenoAge, Cortical). Among the three blood- and multi-tissue based 

clocks, strongest relations were observed for the PhenoAge clock, where each SD increase 

in age was associated with an increment of 0.048 units of global AD pathology (p=0.005), 

after controlling for chronologic age at death, sex, educational attainment, and depressive 

symptoms at baseline. Nonetheless, there was a substantially greater association of Cortical 

age with global AD pathology; each SD increment in Cortical age was related to an 

increment of 0.12 units of global AD pathology (p<0.00001). Further, when considering 

molecularly specific Aβ load and tau tangle density (Figure 2), relations of Hannum, 

Horvath and PhenoAge clocks to pathology were primarily observed for Aβ; results 

were significant or borderline significant for the Hannum, Horvath and PhenoAge clocks 

(adjusted mean difference in Aβ for each SD increase in clock age=0.130, p=0.01 for 

Hannum; mean difference-0.10, p=0.08 for Horvath; ; and mean difference=0.119, p=0.009 

for PhenoAge). Again, findings were most pronounced for the Cortical clock (mean 

difference=0.280, p=0.0003). In addition, Cortical age was strongly related to tau tangle 

density (mean difference for each SD increase in clock age=0.26, p=0.003), while among 

the other clocks, we found only a borderline significant association of older Hannum clock 

age to greater mean tangle density (adjusted mean difference for each SD increase in clock 

age=0.100, p=0.06).

We next investigated the relation of epigenetic clock ages to other neurodegenerative disease 

pathologies and to cerebrovascular disease pathologies (Figure 3), to evaluate the breadth of 

age-related pathologies which may be associated with epigenetic age. Across the Hannum, 

Horvath, PhenoAge and GrimAge clocks, we observed no association of clock ages to 

LATE-NC or to neocortical Lewy body pathology, with odds ratios mostly ranging from 

approximately 1.0 to 1.2. However, we found a highly significant, 2-fold greater odds of 

Lewy body pathology with each SD increment in Cortical age (OR=2.00, 95% CI 1.27, 

3.17).

For cerebrovascular disease pathologies (Figure 3), we first considered measures of cerebral 

vessel disease. We did not find that older clock age was related to higher levels of 

atherosclerosis, arteriolosclerosis, or CAA. Across the five clocks and the three measures 

of vessel diseases, most ORs were either less than 1.0, or near the null value of 1.0 (Figure 

3). Unexpectedly, we found that for cerebral atherosclerosis, older Hannum, Horvath, and 

Cortical clock ages were related to less pathology, with statistically significant ORs of 

approximately 0.7. We found no relations of epigenetic clock ages to presence of infarcts; 

odds ratios of chronic microinfarcts with each SD increase in clock age were 0.89, 0.98, 

1.03, 1.56, and 1.10, for the Hannum, Horvath, PhenoAge, and Cortical clocks, respectively, 

and none were significant. Similarly, odds ratios for the clocks ranged from 0.82–1.15 for 

gross macroinfarcts; none of these ORs were significant.
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Secondary Analyses: Epigenetic Clocks and Clinical Aging Phenotypes

We also considered clinical aging-related phenotypes (Table 2): dementia, cognitive decline, 

Parkinsonian signs, motor decline, and APOE genotype. Specifically, for the Hannum, 

Horvath, and PhenoAge clocks, we found that older epigenetic ages were not related to 

greater odds of clinical Alzheimer’s dementia, or to worse rates of global cognitive decline 

over time, or to decline in any of five specific cognitive systems; we found unexpected 

inverse relations for older GrimAge with lower odds of dementia and significantly better 

rates of cognitive decline over time for global cognition, semantic memory and working 

memory. Across the four established blood-based and multi-tissue clocks, we observed no 

associations of epigenetic clock ages in DLPFC to trajectories of Parkinsonian signs, global 

motor decline or, or to APOE genotype.

However, we found clear associations of Cortical age with virtually every clinical phenotype 

we considered, after controlling for chronologic age as well as sex, educational attainment, 

and depressive symptoms (Table 2). For example, each standard deviation increment in 

Cortical age was related to over 50% greater odds of Alzheimer dementia (OR=1.54, 95% 

CI 1.14, 2.08), and Cortical age was also significantly associated with worse trajectories of 

decline on our global composite score, as well as on all five specific cognitive systems. 

Moreover, beyond cognition, we observed a borderline significant association of older 

Cortical age with worse increases in Parkinsonian signs (p=0.05). Finally, there was a 50% 

greater likelihood of APOE e4 genotype with older Cortical age (OR=1.49, 95% CI 1.06, 

2.09).

Sensitivity Analyses

We examined associations of epigenetic age acceleration to each phenotype; age acceleration 

represents the extent to which each individual’s epigenetic age is higher (or lower) than 

expected based on chronologic age. All findings were virtually identical to those we found 

here for epigenetic age (data not shown in Tables). Additionally, in analyses controlling 

for neuron proportion, using the two different approaches to estimating neuron proportion, 

all results remained generally similar; that is, control for neuron proportion did not 

meaningfully change any findings (data not shown in Tables).

DISCUSSION

In this study of postmortem DLPFC from over 700 older women and men, we found that 

only an epigenetic clock trained in brain tissue14 had clear and compelling relations with 

neurodegenerative pathologies as well as clinical neurologic phenotypes, from dementia to 

cognitive decline to Parkinsonian symptoms. Further, older Cortical age was associated with 

APOE e4 genotype, consistent with a large body of research identifying APOE as a robust 

genetic marker not only of dementia30 but also of longevity.31 In contrast, several blood

based and multi-tissue epigenetic clocks that we examined in brain specimens demonstrated 

limited ability to identify neuropathologic profiles or clinical neurologic diseases/conditions 

– although we specifically selected four different clock markers to span both traditional 

clocks designed to predict chronologic age and second generation clocks designed to predict 

biologic/health profiles of aging. Our findings provide evidence of the critical necessity 
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for bespoke clocks32 of brain aging for advancing research to understand, and eventually 

prevent, neurodegenerative diseases of aging.

Despite the importance of finding molecular markers which can represent biologic aging 

in the brain, there is limited existing literature on DNAm clocks in brain tissue. In our 

own previous research examining basic characteristics of several epigenetic clocks in the 

ROSMAP DLPFC, we reported reasonable correlations of clock age with chronologic age at 

death;12 Pearson correlations were 0.64 for the Hannum clock, 0.69 for the Horvath clock, 

and 0.51 for the PhenoAge clock, with a higher correlation of 0.83 for the Cortical clock. 

We observed similar correlations in a smaller set of posterior cingulate cortex specimens, 

and comparable findings across several brain regions have been reported by others.11 While 

this would appear supportive of the value of epigenetic clocks in brain tissue, including 

those clocks developed in blood or other tissues, nonetheless, the Hannum, Horvath, and 

PhenoAge clocks primarily predicted amyloid burden, and few other phenotypes here, while 

older GrimAge was largely unrelated to the variety of neurologic phenotypes we examined 

(GrimAge is the only clock which includes CpG sites for cigarette smoking, which has 

modest relation with dementia33 and is inversely related to Parkinson Disease,34 perhaps 

explaining its poor performance here). These findings are in contrast to previous research 

in systemic diseases, in which these four clocks were calculated in blood samples, and 

uniformly predicted risks of cancer, cardiovascular diseases, and mortality.35 Our results 

together with this previous research underscores the importance of now tailoring clocks 

to specific disease processes by developing clocks in specific tissues (ie, brain tissue 

for research in neurodegeneration). Interestingly, we had previously found generally low 

correlations between the epigenetic clock ages (or clock age acceleration) calculated in 

41 paired DLPFC and blood specimens,12 which could indicate that the blood-based and 

multi-tissue clocks may not represent congruous concepts in their tissue of origin as in 

brain tissue specifically. That may be one possible explanation for their larger inability to 

broadly identify neuropathology or neurologic outcomes. Indeed, this may also emphasize 

the potential value of future clocks which target CpG sites that are conserved across brain 

and other tissues, potentially yielding clocks which better represent aging processes in the 

brain and are still applicable across more accessible tissues (eg, blood).

There are substantial strengths of this study. We had an extremely well-characterized 

population, in terms of both neuropathologic and clinical indices, providing the ability to 

examine epigenetic clock ages in relation to a range of age-related neuropathologic and 

neurologic phenotypes. Further, we had very high follow-up and autopsy rates, reducing bias 

due to missing data.

There are also limitations to consider. First, cerebrovascular pathologies were less prevalent 

than neurodegenerative pathologies, thus we had better ability to identify relations of the 

epigenetic clocks to neurodegenerative (especially AD pathology, which utilized continuous 

measurement scales) than to cerebrovascular pathology. This could explain our mostly null 

findings for the associations of epigenetic clock age to several measures of cerebrovascular 

neuropathology. While it remains possible that the epigenetic clocks are simply not related 

to cerebrovascular pathology, this is inconsistent with evidence that DNAm (in peripheral 

blood) appears to predict development of vascular diseases.36 Second, cellular composition 
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of cortical tissue changes with aging and disease,16 and DNAm states may also differ across 

cell types; thus the cell type proportion may confound relations of epigenetic clock age and 

the phenotypes we examined. We used several different approaches to estimating neuron 

proportion in each specimen, and found that none of these covariates meaningfully changed 

our results when added to statistical models. However, we cannot rule out the possibility 

that more accurate measures of neuron proportion may have produced different findings. In 

addition, our clocks were generated from one cortical region and many of the pathologies 

are widespread or elsewhere in the brain. It is possible that other brain regions would yield 

different results. However, in a smaller study (n=180), we previously reported reasonable 

correlations of epigenetic clock ages measured in DLPFC and in posterior cingulate cortex (r 

from 0.4 to 0.9 across the four clocks). Similarly, Lu et al.11 also found good correlations of 

the Horvath clock across three different cortical brain regions. Thus, there is no clear basis 

for believing that findings would be substantially different in other cortical regions, although 

this certainly deserves additional research. Further, our research considered associations of 

epigenetic clock ages to neurologic phenotypes; findings indicate specific associations but 

cannot establish epigenetic modifications as causal in the process of brain aging. Finally, 

our study population included exclusively older persons. Most of these epigenetic clocks 

were designed in participants with a wide range of ages, and limited representation of the 

oldest ages.2–5 Interestingly, the Cortical clock is not only the first clock trained in brain 

specimens, but also included substantially larger samples of older age groups in the training 

set than previous clocks. There is evidence that the Horvath, Hannum, and PhenoAge clocks 

may function worse in the oldest age groups;14,37 thus it is possible that the Cortical clock 

performed better in our population due at least in part to the older age of our participants, 

and that the other clocks could be somewhat better markers of brain aging in populations 

with younger age ranges. Still, the most common neurodegenerative diseases occur in older 

persons, thus effective biomarkers of brain aging are crucial within older demographic 

groups (even the Cortical clock was developed to predict chronologic ages from 1 through 

108 years, and a clock trained exclusively in older persons might produce even better 

performance for the oldest ages). Overall, our findings in these ROSMAP DLPFC data 

strongly support the value of epigenetic clocks designed specifically in brain tissue in older 

women and men. Such work may provide important new biomarkers which can broadly 

subserve research to prevent or delay age-related neurodegeneration and neurodegenerative 

diseases.
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Aβ amyloid beta

APOE apolipoprotein E

CES-D Center for Epidemiologic Studies Depression

CAA cerebral amyloid angiopathy

CI confidence interval

DNAm DNA methylation

DLPFC dorsolateral pre-frontal cortex

LATE-NC limbic-predominant age-related TDP-43 encephalopathy 

neuropathological change

OR odds ratio

ROS Religious Orders Study

MAP Rush Memory and Aging Project

TDP-43 transactive response DNA binding protein 43
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Highlights

• We calculated five epigenetic clocks in 721 postmortem cortical specimens

• Epigenetic clocks trained in blood samples did not predict most neurologic 

phenotypes

• One epigenetic clock, trained in cortex, identified neurodegenerative 

phenotypes

• Findings provide convincing evidence for clocks developed in tissues of 

interest
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Figure 1. 
Relations of Epigenetic Clocks in Dorsolateral Prefrontal Cortex to Diagnosis of Pathologic 

Alzheimer’s Disease1

1 Odds ratios adjusted for age at death, sex, education, depressive symptoms at baseline. 

N=721 for Hannum, Horvath, PhenoAge, and GrimAge clocks; for Cortical clock, we 

excluded 88 specimens which had been in the original training set for this clock. Error bars 

represent 95% confidence intervals.
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Figure 2. 
Relations of Epigenetic Clocks in Dorsolateral Prefrontal Cortex to Global Alzheimer’s 

Disease Pathologies, and Amyloid and Tau Tangle Density1

1 Mean differences adjusted for age at death, sex, education, depressive symptoms at 

baseline. N=721 for Hannum, Horvath, PhenoAge, GrimAge clocks; for Cortical clock, 

we excluded 88 specimens which had been in the original training set for this clock.
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Figure 3. 
Odds Ratios of Neurodegenerative (Panel A), Cerebral Vessel (Panel B), and 

Cerebrovascular Pathology (Panel C) per Standard Deviation Increment in Epigenetic Clock 

Age in the Dorsolateral Prefrontal Cortex1

1Odds ratios adjusted for age at death, sex, education, depressive symptoms at baseline. 

LATE-NC, limbic-predominant age-related TDP-43 encephalopathy – neurologic change. 

N=721, except n=674 for LATE-NC, n=716 for cerebral atherosclerosis, n=714 for 

arteriolosclerosis, n=700 for cerebral amyloid angiopathy. For Cortical clock we further 

excluded 88 specimens which had been in the original training set for this clock.
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Table 1.

Characteristics of Participants
1

Mean (SD) or % (n)

DEMOGRAPHIC FACTORS

Male 36% (260)

Mean age at death 88.0 (6.7)

EPIGENETIC CLOCK AGE IN DORSOLATERAL PREFRONTAL CORTEX

Mean Hannum clock age 57.0 (3.2)

Mean Horvath clock age 79.7 (6.3)

Mean PhenoAge clock age 1.6 (5.8)

Mean GrimAge clock age 82.6 (4.7)

Mean Cortical clock age 87.3 (5.6)

ALZHEIMER’S DISEASE PATHOLOGY

Mean global Alzheimer’s Disease pathology 0.7 (0.4)

Mean amyloid 3.1 (3.5)

Mean tau tangle density 3.7 (6.6)

Pathologic Alzheimer’s Disease diagnosis 60% (433)

NEURODEGENERATIVE PATHOLOGY

LATE-NC
2 30% (200)

Presence of Lewy bodies 10% (72)

CEREBRAL VESSEL/CEREBROVASCULAR DISEASE PATHOLOGY

Cerebral atherosclerosis 46% (332) moderate or severe

Arteriolosclerosis 41% (294) moderate or severe

Cerebral amyloid angiopathy 35% (245) moderate or severe

Chronic microinfarcts, at least 1 26% (189)

Gross macroinfarcts , at least 1 35% (256)

COGNITIVE FUNCTION

Mean baseline global cognition −0.21 (0.69)

Mean baseline episodic memory −0.23 (0.86)

Mean baseline semantic memory −0.24 (0.91)

Mean baseline perceptual speed −0.27 (0.91)

Mean baseline working memory −0.12 (0.79)

Mean baseline visuospatial ability −0.11 (0.85)

Any dementia diagnosis as of death 44% (320)

Alzheimer’s dementia diagnosis as of death 43% (301)

OTHER AGING/NEUROLOGIC-RELATED FACTORS
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Mean (SD) or % (n)

Mean baseline Parkinsonian signs 11.1 (8.5)

Mean baseline motor function 0.9 (0.2)

ApolipoproteinE e4 genotype (e3e4, e4e4) 25% (171)

1
Sample size n=721, except n=674 for LATE-NC; n=716 for cerebral atherosclerosis; n=700 for cerebral amyloid angiopathy; n=714 for 

arteriolosclerosis; n=702 for clinical dementia; n=680 for global cognition, episodic memory, semantic memory, working memory; n=661 for 
perceptual speed, visuospatial ability; n=677 for Parkinsonian signs; n=635 for motor function; n=697 for apoliproteinE genotype. For the Cortical 
clock, sample size n=633 after excluding 88 specimens which had been part of the original training set for the Cortical clock.

2
LATE-NC, limbic-predominant age-related TDP-43 encephalopathy – neurological change
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Table 2.

Relation of Epigenetic Clocks in Dorsolateral Prefrontal Cortex to Clinical Phenotypes

EPIGENETIC CLOCKS

Outcomes 
1 Hannum Horvath PhenoAge GrimAge Cortical

CLINICAL DIAGNOSES Odds Ratio 
2 per SD increase in clock age OR (95% CI)

Alzheimer’s Dementia 1.14 (0.93,1.41) 1.03 (0.83,1.29) 0.89 (0.74,1.07) 0.62 (0.39,0.98) 1.54 (1.14,2.08)

Any Dementia 1.13 (0.92,1.38) 1.00 (0.81,1.24) 0.93 (0.78,1.12) 0.61 (0.39, 0.96) 1.50 (1.12,2.02)

COGNITIVE DECLINE Mean difference in annual rate of decline per SD increase in clock age2

β (p-value)

Global cognition −0.001 (0.9) 0.007 (0.3) 0.004 (0.5) 0.036 (0.01) −0.03 (0.003)

Episodic memory −0.004 (0.6) 0.010 (0.2) 0.005 (0.4) 0.031 (0.06) −0.03 (0.02)

Semantic memory −0.004 (0.6) 0.008 (0.4) −0.002 (0.8) 0.041 (0.04) −0.03 (0.04)

Perceptual speed −0.002 (0.7) 0.007 (0.3) 0.002 (0.7) 0.027 (0.1) −0.03 (0.04)

Working memory 0.002 (0.7) 0.004 (0.5) 0.002 (0.7) 0.041 (0.01) −0.03 (0.004)

Visuospatial ability −0.004 (0.5) −0.002 (0.7) −0.002 (0.8) 0.026 (0.07) −0.03 (0.003)

OTHER NEUROLOGIC 
PHENOTYPES

Parkinsonian signs 0.003 (0.7) −0.004 (0.7) −0.003 (0.7) −0.017 (0.4) 0.03 (0.05)

Motor function 0.001 (0.4) 0.002 (0.4) 0.001 (0.6) 0.003 (0.5) −0.001 (0.7)

GENETIC FACTORS
Odds Ratio

2

per SD increase in clock age
OR (95% CI)

ApoE e4 genotype (e3e4/e4e4) 1.13 (0.90, 1.42) 1.12 (0.88, 1.43) 1.11 (0.90, 1.36) 1.02 (0.62,1.70) 1.49 (1.06,2.09)

1
For Horvath, Hannum, PhenoAge, GrimAge clocks n=680 for global cognition, episodic memory, semantic memory, working memory; n=661 for 

perceptual speed and visuospatial ability; n=677 for Parkinsonian signs; n=635 for motor function; n=702 for Alzheimer’s dementia and 721 for 
dementia; n=697 for apoE. For Cortical clock we further excluded 88 participants who had been part of the original training set for the Cortical 
clock.

2
Odds ratios (OR) and mean differences adjusted for age at death, sex, education, and baseline levels of depressive symptoms

Neurobiol Dis. Author manuscript; available in PMC 2022 September 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Study Populations
	Assessment of DNA Methylation States and Epigenetic Clocks
	Assessment of Neuropathologic Outcomes
	Alzheimer Disease (AD) Pathology:
	Other Neurodegenerative Neuropathology:
	Cerebrovascular Pathology:

	Assessment of Clinical Neurologic and Other Outcomes
	Population for Analysis
	Statistical Analysis
	Data Availability

	RESULTS
	Epigenetic Clocks and Neuropathology
	Secondary Analyses: Epigenetic Clocks and Clinical Aging Phenotypes
	Sensitivity Analyses

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.

