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Abstract

Purpose: The potential to compute volume metrics of emphysema from planar scout images 

was investigated in this study. The successful implementation of this concept will have a wide 

impact in different fields, and specifically, maximize the diagnostic potential of the planar medical 

images.

Methods: We investigate our premise using a well-characterized chronic obstructive pulmonary 

disease (COPD) cohort. In this cohort, planar scout images from computed tomography (CT) 

scans were used to compute lung volume and percentage of emphysema. Lung volume and 

percentage of emphysema were quantified on the volumetric CT images and used as the 

“ground truth” for developing the models to compute the variables from the corresponding scout 

images. We trained two classical convolutional neural networks (CNNs), including VGG19 and 

InceptionV3, to compute lung volume and the percentage of emphysema from the scout images. 

The scout images (n=1,446) were split into three subgroups: (1) training (n=1,235), (2) internal 

validation (n=99), and (3) independent test (n=112) at the subject level in a ratio of 8:1:1. The 

mean absolute difference (MAD) and R-square (R2) were the performance metrics to evaluate the 

prediction performance of the developed models.

Results: The lung volumes and percentages of emphysema computed from a single planar scout 

image were significantly linear correlated with the measures quantified using volumetric CT 

images (VGG-19: R2= 0.934 for lung volume and R2 = 0.751 for emphysema percentage, and 

InceptionV3: R2 = 0.977 for lung volume and R2 = 0.775 for emphysema percentage). The mean 

absolute differences (MADs) for lung volume and percentage of emphysema were 0.302 ± 0.247L 

and 2.89 ± 2.58%, respectively, for VGG-19, and 0.366 ±0.287L and 3.19±2.14, respectively, for 

InceptionV3.
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Conclusions: Our promising results demonstrated the feasibility of inferring volume metrics 

from planar images using CNNs.
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I. INTRODUCTION

Medical imaging is one of the most widely used clinical modalities to screen, diagnose, and 

manage patients. In essence, there are two types of images, including two-dimensional (2-D) 

(or planar imaging) and three-dimensional (3-D) (or volumetric images). Planar images 

(e.g., chest x-ray (CXR), mammogram) usually are less burdensome to the patient, less 

time-intensive to interpret, and more widely available when compared to volumetric imaging 

(e.g., a computed tomography (CT) scan, magnetic resonance imaging (MRI)). Specifically, 

a patient’s exposure to ionizing radiation is orders of magnitude less during CXR compared 

to a CT scan. The primary issue with planar images is the superposition of tissues that 

limits the ability to unambiguously isolate and visualize individual anatomical structures. 

This inherence characteristic makes it challenging to reliably detect small abnormalities and 

quantify the volumetric characteristics of normal or abnormal anatomy depicted on planar 

images.

When a radiologist or clinician orders a radiographic examination, the balance between 

the type of radiographic examination and the benefit or detriment to a patient is often 

considered. Is a specific type of planar imaging (e.g., chest x-ray (CXR) or mammogram) 

sufficient to reach a diagnosis, or is a volumetric examination (e.g., a computed tomography 

(CT) scan or magnetic resonance imaging (MRI)) required? The choice for a specific 

imaging modality often evolves over time through clinical experience and scientific 

advancement. For example, whether a CXR or a CT scan should be used to screen 

individuals at risk of lung cancer has been addressed by the National Lung Screening 

Trial (NLST) [1–3]. NLST reported that the benefit of low-dose CT lung cancer screening 

(i.e., the reduction of lung cancer mortality by 20%) outweighed the potential deleterious 

effects associated with increased exposure to ionizing radiation when compared to screening 

individuals using CXR. Another example is the use of mammography and MRI for breast 

cancer screening among women. Although MRI can enable a sensitive and accurate 

diagnosis of breast cancer, its cost and burden to the patient outweigh its benefit when 

compared to mammography. Hence, two-view planar mammography remains the initial and 

ubiquitous examination for breast cancer screening, while MRI is often ordered to manage 

women who are at higher than average risk for developing breast cancer and/or women with 

heterogeneous to extremely dense breasts [4]. In both examples, significant improvement 

in the diagnostic performance of planar images (CXR or mammograms) could potentially 

obviate the need for a volumetric radiographic examination.

A significant amount of research has been dedicated to developing computer tools to 

facilitate the detection and diagnosis of a variety of lung diseases depicted on CXR images 

in an effort to improve radiologists’ performances and ease the workload. Recently the use 
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of deep learning technology, namely convolutional neural network (CNN), has demonstrated 

remarkable performance in medical image analysis [5–12]. In research involving CXR, most 

investigations leveraged publicly available CXR datasets that only have bimodal disease 

assessment as positive or negative [13–17]. The disease type and location were typically 

manually labeled by a clinician to establish “ground truth,” which is a time- and cost­

consuming endeavor. The accuracy and consistency of these datasets can be significantly 

compromised by reader variability.

In this study, we attempted to explore whether the planar images can be used to 

quantitatively assess the volume metrics of the disease or other important regions of 

interest by leveraging the state of the art of Artificial Intelligence (AI). Chronic obstructive 

pulmonary disease (COPD) was used as an example. COPD is a leading cause of disability 

and death in the United States and worldwide [18, 19], which is typically caused by chronic 

bronchitis and/or emphysema. Emphysema typically involves the physical damage of lung 

parenchyma (alveoli), which can be visualized and accurately quantified using chest CT 

scans. Many investigations have been performed to quantify the percentage of emphysema 

and its morphological characteristics using chest CT examinations [20–24]. However, chest 

CT scans are not typically used in clinical practice to confirm a clinician’s suspicion 

for emphysema, to assess the percentage of emphysema, or to observe the progress of 

emphysema until late in the disease process. A clinician often relies on a CXR to assist in 

diagnosing emphysema despite the poor sensitivity of a CXR to detect early disease and the 

inability to quantify the presence of emphysema. In practice, a CXR is the most common 

radiographic exam and used to diagnose the presence of many other lung diseases [25], 

such as pneumonia and interstitial lung disease (ILD), because of its low level of radiation 

exposure, straightforward implementation, low cost, and portability. However, the sensitivity 

of a CXR to detect and quantify the presence of emphysema is suboptimal based on the 

limitation described above.

We believe that AI software has the potential to increase the information that can be 

extracted from planar images beyond a subjective assessment or past research effort that 

focused on only the planar images. Our novel approach is to use volumetric image datasets 

to train software to extract similar 3-D information from planar images. Chest CT scans 

and CXR were used to evaluate this novel concept. Specifically, AI software was developed 

to compute lung volume and percentage of emphysema from planar scout images, which 

are part of a routine chest CT scan. If successful, this research could not only significantly 

increase the utility of a CXR for the clinical management of COPD patients but would also 

provide the “proof of concept” for developing AI software for 2-D images by using 3-D 

images as the gold standard.

II. MATERIALS AND METHODS

A. Scheme overview

Chest CT scans from the participants in a COPD cohort were used to compute lung 

volume and the percentage of emphysema, which serve as the “ground truth” for machine 

learning and validation. Emphysema was quantified as the percentage of lung voxels with 

a Hounsfield (HU) value less than <−950 HU. The scout images acquired as part of the 
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CT scans were used as an alternative to planar CXR images. Two classical convolutional 

neural networks (CNNs) were used to compute the lung volume and the percentage of 

emphysema present in the lungs. The performance of the CNN models was evaluated by the 

agreement between the values computed using the scout images and the “ground truth” from 

the corresponding CT scans.

B. Study population

The study cohort consisted of 753 participants in an NIH-sponsored Specialized Center 

for Clinically Oriented Research (SCCOR) diagnosed with COPD at the University of 

Pittsburgh. The inclusion criteria for enrollment were age > 40 years and current or former 

smokers with at least a 10 pack-year history of tobacco exposure. The SCCOR participants 

completed pre- and post-bronchodilator spirometry and plethysmography, measurement of 

lung diffusion capacity, a chest CT examination, and demographic and medical history 

questionnaires. All subjects had a baseline CT scan. A subset of the subjects had repeat chest 

CT exams. Specifically, 385 subjects had a 2-year follow-up CT scan, 313 subjects had a 

6-year follow-up CT scan, and 75 subjects had a 10-year follow-up CT scan. The dataset 

included 495 participants diagnosed with COPD as defined by the Global Initiative for 

Obstructive Lung Disease (GOLD) [19, 26] and 258 participants without airflow obstruction 

(Table 1). All study procedures were approved by the University of Pittsburgh Institutional 

Review Board (#0612016). Written informed consent was obtained.

C. Acquisition of thin-section CT examinations and scout images

The chest CT exams were acquired on a 64-detector CT scanner (LightSpeed VCT, GE 

Healthcare, Waukesha, WI, USA) with subjects holding their breath at end inspiration 

without the use of radiopaque contrast. Scans were acquired using a helical technique at 

the following parameters: 32×0.625 mm detector configuration, 0.969 pitch, 120 kVp tube 

energy, 250 mA tube current, and 0.4 sec gantry rotation (or 100 mAs). Images were 

reconstructed to encompass the entire lung field in a 512×512 pixel matrix using the GE 

“bone” kernel at 0.625-mm section thickness and 0.625-mm interval. Pixel dimensions 

ranged from 0.549 to 0.738 mm, depending on participant body size. Planar scout images 

were acquired to set the frame of reference for the helical CT scan. In our cohort, the scout 

images had a consistent matrix of 888×733 and a pixel size of 0.5968×0.5455 mm. Only the 

CT scans with an available scout image were used in the study. In total, there were 1,446 

paired CT scans and scout images that included both baselines and follow-up exams.

D. Compute lung volume and percentage of emphysema depicted on CT images

To compute lung volume and percentage of emphysema in the lung, the lung was 

automatically segmented, and a threshold of −950 Hounsfield unit (HU) was applied to the 

segmented lung region to identify voxels associated with emphysema [20, 22]. Emphysema 

was quantified as the volume of voxels below the emphysema threshold as a percentage of 

the total lung volume. To reduce the effects caused by image noise or artifact, small clusters 

of voxels less than 3 mm2 (4 ~ 5 pixels) were removed from the emphysema computation 

[20, 27].
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E. CNN models for computing lung volume and percentage of emphysema on scout 
images

The unique strength of a CNN is its ability to automatically learn specific features (or 

feature map) by repeatedly applying the convolutional layers to an image [11, 12, 28–32]. A 

CNN is typically formed by several building blocks, including convolution layers, activation 

functions, pooling layers, batch normalization layers, flatten layers, and fully connected 

(FC) layers. Two classical CNN models called “VGG19” and “InceptionV3”, which have 

been widely used for 2-D image classification purposes [10, 33–39], were used to perform 

logistic regression [35, 36]. The objective of this study is to predict the continuous values 

of lung volume and emphysema percentage from scout images. In architecture, a CNN used 

for regression is almost the same as a CNN used for classification. The differences are: 

(1) a CNN-based regression uses a fully connected regression layer with linear or sigmoid 

activations, while a CNN-based classification network uses the Softmax activation function 

and (2) a CNN-based regression network typically uses the mean absolute error (MAE) or 

mean squared error (MSE) as the loss function, while a CNN-based classification network 

uses binary or categorical cross-entropy as the loss function [40]. In the implementation, 

other classical models for classification purposes (e.g., DenseNet or ResNet [37, 41]) can 

also be used for the regression purpose by adjusting activation and loss functions in the last 

layers [42, 43].

Several procedures were implemented to alleviate the requirement of deep learning for 

a large dataset: (1) The normalization of the scout image matrix. The objective of this 

normalization is to (1) limit the machine learning to the lung regions and feed the CNN 

models with a consistent size of images (e.g., 512×512) that is required by CNN. In the 

implementation, a deep learning-based algorithm described in [32] was used to segment the 

lung regions depicted on the scout images. Then, based on the center of the identified lung 

regions, a square box with a dimension of 400×400 mm2 was used to crop the lung regions. 

The cropped lung regions were resized to a 512×512 pixel matrix. (2) The normalization of 

image intensity. Based on the maximum and the minimum values of the scout images, the 

intensity of the images was scaled into a range of [0, 255]. (3) The application of transfer 

learning. The pre-trained ImageNet weights for VGG19 and InceptionV3 were used to 

transfer the learning [44]. Transfer learning can improve learning efficiency and also reduce 

the requirement for a large and diverse dataset. To use the pre-trained ImageNet weight, we 

converted the grayscale images into an RGB form by simply replacing the red, green, and 

blue channels with the grayscale images.

To develop the deep learning-based regression models, the cases were split into three 

subgroups at the patient level: (1) training, (2) internal validation, and (3) independent 

test sets in a ratio of 8:1:1 (Table 1). The minority groups were oversampled to reduce the 

effect of data imbalance, which could significantly lead to bias and incorrect assessment 

of the prediction model. First, the values were binned based on emphysema percentage by 

5% in the training and internal validation sets (Table 1). Second, the cases in the bins were 

oversampled with a lower number of cases to ensure their equal distribution within each bin 

relative to the largest bin.
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The batch size was set at 8 for training the models. To improve the data diversity and the 

reliability of the models, the scout images were augmented using geometric and intensity 

transformations, such as rotation, translation, vertical/horizontal flips, intensity shift [−10, 

10], smoothing (blurring) operation, and Gaussian noises. The initial learning rate was set 

to 0.0001 and would be reduced by a factor of 0.5 if the validation performance did not 

increase in two epochs. An Adam optimizer was used in the training. The training procedure 

would stop when the validation performance of the current epoch did not improve compared 

to the previous fifteen epochs. Based on these parameters, we trained the VGG19 and 

InceptionV3 models for quantifying the lung volume and the percentage of emphysema from 

the scout images separately.

F. Performance validation

Two performance metrics were used to assess the performance on the independent testing 

dataset (scout images not used in training). Standard and adjusted R-squared (R2) were used 

to assess the linear relation between lung volume and percentage of emphysema computed 

from the CT scans and scout images. R2, namely the coefficient of determination, is an 

important and useful concept in statistics indicating the goodness of fit of a model. In 

regression, R2 measures how well the regression predictions approximate the real data 

points. If R2 is 1, it suggests that the regression predictions perfectly fit the data. Mean 

absolute difference (MAD) was computed as the average absolute difference between the 

two methods. MAD describes the absolution errors between the regression predictions and 

the data and gives us a very straightforward concept about the performance of the regression 

model. A p-value of less than 0.05 was considered statistically significant. The performance 

was stratified based on COPD severity. IBM SPSS v.25 was used for the analyses.

III. RESULTS

By testing the developed CNN model on an independent test set (Table 1), we found that 

lung volume and percentage of emphysema computed by the model using the planar scout 

images were significantly, linearly correlated with the values computed from chest CT scans 

(Table 2 and Fig. 1). For the VGG-19 model, the slope, intercept, R2, and adjusted R2 of 

the linear regression between the scout image and CT scan for the percentage were 0.870, 

2.312%, 0.751, and 0.749, respectively (Fig. 1(a)); and for lung volume of emphysema were 

0.934, 0.333L, 0.924, and 0.923, respectively (Fig. 1(b)). The mean absolute differences 

(MADs) between the two approaches were 0.302 ± 0.247 L for computing lung volume and 

2.89 ± 2.58% for computing the percentage of emphysema. For the InceptionV3 model, the 

slope, intercept, R2, and adjusted R2 of the linear regression between the scout image and 

CT scan for the percentage were 1.069, 0.310%, 0.775, and 0.773, respectively (Fig. 1(c)); 

and for lung volume of emphysema were 0.977, 0.406L, 0.927, and 0.926, respectively 

(Fig. 1(b)). The mean absolute differences (MADs) between the two approaches were 0.366 

± 0.287L for computing lung volume and 3.19 ± 2.14% for computing the percentage of 

emphysema.

On the whole, the VGG-19 model demonstrated a better performance than the IncepitonV3 

in inferring emphysema extent (Tables 2–4). For the cases without COPD, the VGG-19 
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model showed MAD of 2.30 ± 1.80%, R2 of 0.577, and the adjusted R2 of 0.566, while 

the InceptionV3 model showed MAD of 2.09 ± 1.37%, R2 of 0.710, and the adjusted R2 

of 0.703. For the VGG19 model, the strongest agreement was observed for the cases with 

severe COPD (GOLD IV) with a MAD = 1.39 ± 0.89%, R2 of 0.956, and adjusted R2 

of 0.947. For the InceptionV3 model, the strongest agreement was observed for the cases 

with mild COPD with a MAD = 3.46 ± 2.05%, R2 of 0.489, and adjusted R2 of 0.463. 

The one-way analyses of variance (ANOVA) showed that the linear trend was statistically 

significant (p < 0.01). Several examples with different levels of COPD severity were shown 

in Fig. 2 to demonstrate the performance of the developed algorithm.

IV. DISCUSSION

This study demonstrated the feasibility of using artificial intelligence to compute volume 

metrics from planar images by using 3-D datasets to initially train the algorithm. This 

concept was supported by the significant linear relationship between the lung volumes and 

percentages of emphysema computed separately using planar scout images and 3-D CT scan 

images with a slope close to unity and an average difference of less than 0.4 L and 3.0%, 

respectively. We believe that the use of a 3-D dataset as the reference standard (or ground 

truth) to train 2-D CNN-based prediction models for computing volume metrics is a novel 

approach. Notably, our primary objective is not to develop novel computer algorithms but to 

verify the feasibility of the premise we proposed in this study.

Typically, when applying machine learning technology to medical imaging, the creation of 

“ground truth” for training a machine requires time-intensive, manual labeling of a large 

number of images by an expert human reader, which is often vulnerable to inaccuracy 

and variability. In this study, the lung volume and percentage of emphysema that served 

as the “ground truth” for developing the 2-D models were automatically computed from 

CT scans. This strategy relieved the need for a human reader to outline the lung and 

regions of emphysema depicted on CT scans and thus significantly reduced the inherent 

variability between human readers. The underlying concept is applicable to planar images 

used to assess other diseases, such as pneumonia, interstitial lung disease (ILD), lung cancer, 

and breast cancer. In addition, the application of artificial intelligence to compute volume 

metrics from planar images will add a valuable quantitative diagnostic ability to planar 

images. This quantitative capability will enable a precise assessment of disease severity and 

accurate monitoring of disease progression, such as Covid-19, using a 2-D imaging modality 

that is typically less burdensome on a patient, easier to perform, less timely to interpret, 

and less costly. As demonstrated by the examples in Fig. 2, although it is straightforward to 

visually assess and quantify emphysema depicted on CT images, it is more challenging to 

visually assess emphysema depicted on planar scout images and particularly challenging to 

quantify the presence of emphysema depicted on planar scout images.

A number of classical CNN models have been developed and demonstrated 

exciting performance, including VGG16, VGG19, InceptionV3, ResNet, DenseNet, 

InceptionResNet, Xception, and NASNetMobile [45, 46]. We implemented and tested two 

classical CNN models, namely VGG19 and InceptionV3, in this study, which have been 

widely used in many applications [10, 33–39]. The promising performance suggested the 

Pu et al. Page 7

Med Phys. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unique strength of the deep learning technology in inferring 3-D measures from planar 

images. We note that the emphasis of this study is not to develop novel deep learning 

architecture but to test the feasibility of the proposed novel idea. If there is one CNN model 

that can demonstrate a reasonable performance for our specific problem, it will verify our 

hypothesis. When training the CNN model, we used a data over-resampling strategy to 

deal with data imbalance. The objective was to alleviate the bias of the prediction models 

caused by the data imbalance. In addition, several strategies, such as FOV normalization and 

ImageNet-based transfer learning, were used to reduce the requirement of deep learning for 

a relatively large dataset.

Notably, the objective of this study is not to replace 3-D imaging modality (e.g., CT) with 

2-D imaging modality (e.g., CXR) but to improve the diagnostic performance of 2-D images 

and thus reduce the use of the relatively expensive CT and the exposure to unnecessary 

radiation. The relatively small errors (<3.0%), as demonstrated by the VGG-19 model, 

suggest the feasibility of inferring volume measures from 2-D images. Of course, to justify 

the error acceptance range and usability of such an AI model in clinical practice, additional 

investigative effort, such as an observer study, is needed. In this study, our emphasis is the 

technical feasibility of inferring volume measures from 2-D images.

Our experiments showed that the VGG-19 model had a better overall performance than the 

InceptionV3 model. The two models demonstrated different performances for cases with 

different levels of severity. For example, the VGG-19 model had the best performance for 

cases with severe COPD (MAD = 1.39%) and the worst performance for cases with mild 

COPD (MAD = 3.55%). In contrast, the InceptionV3 model had a worse performance for 

the cases with severe COPD (MAD = 4.4%). At the same time, as shown in Fig. 1, the 

developed regression models have somewhat large prediction errors for some cases (i.e., 

outliers). Unlike traditional methods based on handcrafted features, where we can identify 

the samples with large errors and then analyze the features of these samples, a CNN model 

does not involve any explicit image features, making it extremely challenging to identify the 

reason behind the decision of the prediction model. This “unexplainable” characteristic is an 

open problem associated with CNN-based deep learning. In the past years, a concept termed 

“Explainable AI” has been drawing significant investigative interest in machine learning 

[47, 48]. Unfortunately, this concept has not demonstrated its feasibility at this time. In our 

opinion, a possible reason for the cases with large errors may be that the characteristics 

associated with the relevant cases were not well learned based on the associated CNN 

architecture.

Notably, the primary emphasis of this study is to address a regression problem, namely 

inferring numeric measures from 2-D images, not a classification problem, namely 

classifying images into different categories or subgroups in terms of COPD severity. In 

clinical practice, the COPD severity level is determined based on the lung function measures 

(i.e., FEV1/FVC) [26], not the extent of emphysema. The extent of emphysema depicted on 

CT images only contributes partially to the COPD severity. In order to develop a prediction 

model for assessing COPD severity from planar images, a separate classification scheme 

should be used.
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We are fully aware that there are differences between the scout images and CXR images, 

albeit the underlying imaging mechanisms are similar. The primary differences lie in (1) 

the CXR images have much higher resolution than the scout images, and (2) the CXR 

images are the projections on a flat surface, while scout images are the projections on a 

somewhat curved surface. Our preliminary results on scout images and CT images suggest 

the feasibility of this idea, namely inferring 3-D measures from 2-D images. However, we 

cannot make a claim that a CNN model trained with scout images could be directly applied 

to CXR images. To implement this idea in practice, the CNN models need to be trained on 

CXR images separately.

There are some limitations with this study. First, the CNN models were developed and 

validated using a COPD cohort from a single institution using the same CT protocols. As 

a result, the diversity of the cases in the cohort is limited. However, we believe that our 

experimental results on an independent test set confirmed the feasibility of the proposed 

idea. Second, scout images were used instead of CXR images because populating a well­

characterized database of paired CXR and chest CT scans acquired on a patient within days 

is challenging. In clinical practice, a CXR often includes both posteroanterior (PA) and 

lateral views, which have an order of magnitude finer spatial resolution compared to scout 

images. Hence, it is desirable to combine PA and lateral views of a CXR to maximize the 

performance of assessing volume metrics from planar images. At this time, the available 

dataset of scout images and CT scans provided the opportunity to test the feasibility of 

our novel concept. Additional investigative efforts are needed to further verify the idea and 

its performance using CXR images and justify how it will help radiologists or clinicians 

diagnose diseases and assess their severity and progression.

V. CONCLUSION

Our preliminary results demonstrated that artificial intelligence tools have the potential to 

compute volume metrics from planar images. The significant linear correlation and the 

relatively small absolute difference between the two approaches in the computation of lung 

volume and percentage of emphysema in our well-characterized COPD cohort serve as a 

“proof of concept” that AI can be used to compute volumetric measures from planar images. 

Our novel concept is applicable beyond emphysema assessment and can be applied to other 

diseases and planar image types. In clinical practice, the implementation of our concept 

should significantly increase the functionality of planar images, which are less burdensome 

on a patient, easier to perform, less timely to interpret, and less costly.
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Fig. 1. 
Scatter plots of the lung volume and percentage of emphysema computed from CT scans 

versus scout image with the linear regression lines. (a) and (b) showed the scatter plots by 

the VGG-19 model, and (c) and (d) showed the scatter plots by the InceptionV3 model.
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Fig. 2. 
Examples of different levels of emphysema and the volume metrics computed from planar 

scout images (first row), the CT images (second row), the 3-D visualization of the 

emphysema quantified from the volumetric CT images (third row).
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Table 1:

Subject demographics and dataset distribution

Our Cohort SCCOR (n=753)

Age, year (SD) 64.7 (7)

Male, n (%) 414 (54.7)

Race

 White, n (%) 708 (94.0)

 Black, n (%) 34 (4.5)

 Other, n (%) 11 (1.5)

FEV1, % predicted (SD) 82.3 (21.3)

FEV1/FVC, % (SD) 60.6 (17.9)

Five-category classification

Without COPD 258 (T: 208, V: 25, I: 25)

GOLD I 146 (T: 116, V: 15, I: 15)

GOLD II 210 (T: 168, V: 21, I: 21)

GOLD III 77 (T: 61, V: 8, I: 8)

GOLD IV 62 (T: 50, V: 6, I: 6)

Sub-groups of the scout images before data balancing after data balancing

Training 1235 3924

Internal validation 99 290

Independent test 112 –

Abbreviations: SD – standard deviation, FEV1 - forced expiratory volume in one second, FVC - functional vital capacity, T – training, V – internal 
validation, I – independent test. GOLD – Global Initiative for Obstructive Lung Disease [26].
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Table 2:

Agreement for computing emphysema and lung volume using scout images versus CT scans

CNN models MAD R-square Adjusted R-square Slope Intercept

VGG-19

 Emphysema (%) 2.89 ± 2.58 0.751* 0.749* 0.870 2.312

 Lung volume (L) 0.302 ± 0.247 0.924* 0.923* 0.934 0.333

InceptionV3

 Emphysema (%) 3.19 ± 2.14 0.775* 0.773* 1.069 0.310

 Lung volume (L) 0.366 ± 0.287 0.927* 0.926* 0.977 0.406

MAD: mean absolute difference;

*
p≤0.01
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Table 3:

Agreement for computing the percentage of emphysema using scout images versus CT scans stratified by 

COPD severity when using the VGG-19 model.

COPD severity MAD (%) R-square Adjusted R-square

 Without COPD 2.30 ± 1.80 0.577* 0.566*

 GOLD I 3.55 ± 3.05 0.324* 0.290*

 GOLD II 3.72 ± 3.16 0.464* 0.445*

 GOLD III 2.32 ± 2.14 0.832* 0.808*

 GOLD IV 1.39 ± 0.89 0.956* 0.947*

GOLD: Global Initiative for Obstructive Lung Disease; MAD: mean absolute difference; COPD chronic obstructive pulmonary disease

*
p≤0.01
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Table 4:

Agreement for computing the percentage of emphysema using scout images versus CT scans stratified by 

COPD severity when using the InceptionV3 model.

COPD severity MAD (%) R-square Adjusted R-square

 Without COPD 2.09 ± 1.37 0.710* 0.703*

 GOLD I 3.46 ± 2.05 0.489* 0.463*

 GOLD II 3.67 ± 2.40 0.548* 0.532*

 GOLD III 5.06 ± 2.01 0.467* 0.391*

 GOLD IV 4.40 ± 2.47 0.969* 0.962*

GOLD: Global Initiative for Obstructive Lung Disease; MAD: mean absolute difference; COPD chronic obstructive pulmonary disease

*
p≤0.01
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