Skip to main content
. Author manuscript; available in PMC: 2022 Aug 23.
Published in final edited form as: Angew Chem Int Ed Engl. 2021 Jul 20;60(35):19092–19096. doi: 10.1002/anie.202104871

Table 1.

Further reaction optimizationa

graphic file with name nihms-1717907-t0006.jpg

entry deviation in reaction condition yields of 3 (%)b

1 none 75 (72)c
2 Lithium-1-adamantanolate (LiOAd) instead of LiOtBu 75
3 LiOMe instead of LiOtBu 23
4 LiOiPr instead of LiOtBu 15
5 1 equiv LiOtBu instead of 1.5 equiv 42
6 2 equiv LiOtBu instead of 1.5 equiv 65
7 NiI2 or NiCl2·DME instead of NiBr2.DME 70–72
8 Ni(TMHD)2 instead of NiBr2·DME 53
9 Ni(PPh3)4 instead of NiBr2·DME 12
10 Ni(cod)2 instead of NiBr2·DME 52
11 other metals instead of NiBr2·DMEd 0
12 room temperature instead of 80 °C 10
13 60 °C instead of 80 °C 62
14 2-Me-THF instead of THF 70
15 1,4-dioxane instead of THF 60
16 MeCN or toluene instead of THF 35–38
17 NMP, DMF, DMSO or dioxane instead of THF 0–25
a

Reactions run at 0.10 mmol scale in 0.5 mL solvent.

b

1H NMR yields with pyrene as a standard.

c

The yield of isolated product from a 0.50 mmol scale reaction in 2.5 mL THF in parenthesis. dr is 1.1:1.

d

Pd(OAc)2, CuI, Co(OAc)2, FeCl2.