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Abstract

Purpose of review: In this article, we introduce the concept of model interpretability, review 

its applications in deep learning models for clinical ophthalmology, and discuss its role in the 

integration of artificial intelligence in healthcare.

Recent findings: The advent of deep learning in medicine has introduced models with 

remarkable accuracy. However, the inherent complexity of these models undermines its users’ 

ability to understand, debug and ultimately trust them in clinical practice. Novel methods are being 

increasingly explored to improve models’ “interpretability” and draw clearer associations between 

their outputs and features in the input dataset. In the field of ophthalmology, interpretability 

methods have enabled users to make informed adjustments, identify clinically relevant imaging 

patterns, and predict outcomes in deep learning models.

Summary: Interpretability methods support the transparency necessary to implement, operate 

and modify complex deep learning models. These benefits are becoming increasingly 

demonstrated in models for clinical ophthalmology. As quality standards for deep learning models 

used in healthcare continue to evolve, interpretability methods may prove influential in their path 

to regulatory approval and acceptance in clinical practice.
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Introduction

Deep learning has received increasing attention as a promising solution to longstanding 

challenges in medicine including diagnostic accuracy and optimization of clinician 
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workflow [1–6]. Within ophthalmology, diagnostic models for age-related macular 

degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP) 

have demonstrated expert-level accuracy [7–16]. With some notable exceptions, these 

models have largely been implemented in research contexts. Numerous technical and 

socio-environmental factors impede real-world implementation of deep learning, including 

model complexity [7, 17]. As models increase in complexity, their reasoning becomes more 

difficult for users to understand and ultimately trust [18–20**]. To address this, varied 

approaches have been studied to enhance model transparency [21, 22*]. In this article, we 

review applications of interpretable deep learning in ophthalmology and discuss its role in 

the successful integration of deep learning models into healthcare.

The cost of complexity in deep learning

Machine learning is a subfield of artificial intelligence (AI) wherein algorithms learn 

patterns from input data and adjust their internal parameters accordingly to generate accurate 

predictions [1]. Deep learning is a subfield of machine learning which utilizes neural 

networks that process data in “hidden layers” between the inputs and outputs. Convolutional 

neural networks (CNNs), a key strategy in deep learning, manage hidden “convolutional” 

layers, each containing “filters” that can extract specific patterns from input images, creating 

an activation map. A convolutional layer thus outputs a set of activation maps that are 

passed on to the next layer. As the extracted information is passed consecutively through 

deeper layers, the features and their relationship with other features become hierarchically 

more complex. This functionality has introduced a generation of models that learn more 

efficiently, discover subtler patterns and analyse rich data formats like image and video. 

However, this multi-layered architecture substantially increases the model’s complexity and 

restricts the user’s control over learned features. This gives rise to the perception of deep 

learning models as “black boxes” that conceal how input features contribute to the final 

output [7, 23,24**,25].

Several problems arise from non-transparent models. Such models are not only inherently 

difficult to audit for quality, but also limit the user’s ability to “debug” or make 

informed adjustments to the underlying algorithm [26*]. “Black-box” models may 

also rely on misleading features in the data to generate predictions with falsely high 

accuracy, unbeknownst to users. Finally, models lacking ethical, human-centred monitoring 

may produce outputs that augment social biases or inadvertently discriminate against 

demographics within the dataset [27].

Interpretability as a solution

The concept of interpretability seeks to address these potential downsides. While a 

consensus has not been reached on a definition for the term, “interpretability” in the context 

of AI generally refers to the degree to which the reasoning behind a model’s outputs is 

evident to the user [21, 28, 29]. Interpretations refer to automated translations of a concept 

or methodology into a comprehensible medium like images or words ranging from heatmaps 

illustrating a fundus image features’ relative contribution to a diagnostic prediction, to 

textual explanations of a self-driving car’s actions [21,30,31*]. Focused efforts to clarify 
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the concept within medicine have shown that clinicians generally view interpretability as 

transparency in model reasoning, adjustable features, and limitations [19, 32].

Applications of interpretable AI in ophthalmology

The field of ophthalmology particularly stands to benefit from deep learning, largely due 

to its reliance on diagnostic imaging. Toward this end, varied interpretability methods 

have been designed to refine deep learning models and identify relevant clinical traits 

imaging patterns. To review these methods, we devise an intuitive classification of the varied 

interpretability techniques in ophthalmology, organizing them according to two fundamental 

characteristics: model-centric, in which solutions operate at the level of the model itself, and 

data centric, which target the relationship between inputs and outputs (Figure 1).

Model-centric: Surrogates—“Surrogates” or “proxy models” are intrinsically 

interpretable models designed to approximate the behaviour of a more complex, pre­

existing model [33, 34]. Decision trees are classic examples of intrinsically interpretable 

methods. They are composed of sequential “if-then” decisions that separate data into 

nodes, progressively branching outward until final classifications are reached, illustrating 

the model’s categorical decision making. Naïve Bayes classifiers are built upon conditional 

probabilities. The term “naïve” refers to the assumption that features are mutually exclusive, 

allowing the estimation of their individual contribution to the output [35]. These models 

can also be used as standalone, interpretable classifiers, as has been demonstrated in DR 

classification through decision trees by Mane & Jadhav, and Naïve Bayes by Harangi et al 

[36, 37].

Surrogate methods may be sorted into two categories. Global surrogates explain a complex 

model’s operations on the entire dataset. Contrastingly, local surrogates such as Local 

Interpretable Model-Agnostic Explanations (LIME) explain decisions for individual input­

output pairs [38]. Gheisari et al applied LIME to a glaucoma image classifier to illustrate the 

significance of vascularized regions of the superior and inferior retina, supporting previous 

studies on this finding [39].

Model-centric: Network visualization methods—Testing with Concept Activation 

Vectors (TCAV) “translates” activation maps into semantic concepts. A model is given a 

dataset of images, with some containing a specific feature (e.g. stripes). A simple linear 

classifier then isolates the activation maps associated with the images with the chosen 

feature and calculates its significance to the final prediction. TCAV was applied in a DR 

classification task to evaluate the weight of diagnostic fundus features like microaneurysms 

and pan-retinal laser scars. This revealed model’s tendency to overestimate DR severity by 

placing a high TCAV score on aneurysms, consequently allowing the experts to correct this 

behaviour [40].

Deconvolutional networks (DeConvNet) function in “reverse” by projecting activation maps 

from a convolutional layer back to the input space. Zhou et al used a model pre-trained 

with non-retinal images, and fine-tuned it with retinal images for a DR detection task. 

DeConvNet was implemented for individual layers pre- and post-training with retinal 

images, visualizing DR-specific features learned by the model. A focus on red and green 
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channels in the first layer and microaneurysm-like and vessel-like structures in deeper layers 

was revealed [41].

Class Activation Mapping (CAM) utilizes the global pooling layer of a CNN, which “pools” 

each activation map into a mean value. The following layers assign a weight to that value, 

providing the final class probability. These weights are similarly applied to the activation 

maps themselves, which are then added to produce a class-specific heatmap [42]. Worrall et 

al incorporate CAM in a ROP classifier, revealing emphasis on vasculature, consistent with 

clinical practice [43]. In DR classification, Gondal et al and Gargeya et al similarly confirm 

appropriate focus on hard and soft exudates as well as haemorrhages [44, 45]. In glaucoma 

detection, Maetschke et al and Ran et al use CAM to verify model focus on clinically 

relevant features such as the neuroretinal rim and lamina cribrosa [46, 47].

Data-centric: Examples—Adversarial examples are created by altering input images to 

produce counterexamples that lead to a maximal prediction of a desired output. Comparison 

of the counterexample to the original illustrates what feature transformations lead to either 

model outcome [48]. Chang et al utilized this technique for CNN detection of glaucomatous 

fundus features [49]. In referrable glaucoma images, a negative model outcome resulted 

when lowering the cup-to-disc ratio, illustrating this feature’s role in detection.

Google’s What-If Tool generates counterfactuals mainly for tabular datasets [50]. Abbas 

et al implemented this for visual acuity (VA) prediction from AMD patient data. They 

discovered differing final VA outcome predictions for an 84-year-old British male, and a 

female of the same age, nationality and initial VA. This indicated the decision boundary for 

an individual patient level [51].

Data-centric: Attribution methods—Attribution methods interpret CNN decisions by 

revealing the contribution of different regions or features of an image to the output. This 

may manifest as heatmaps, also termed saliency maps, which highlight pixels of the image 

according to their significance.

Gradient methods derive heatmaps from information gathered during the second of two 

steps of model training: forward propagation and backpropagation. Forward propagation 

first calculates prediction accuracy by comparing the output to the original input labels, 

producing a “loss” value proportional to the difference. Backpropagation then updates its 

parameters to minimize this loss, guided by the gradient, or rate of change, of the loss 

associated with each parameter [52]. Gradient methods analyse backpropagation to calculate 

the gradient of the loss with respect to the input pixels, with higher values indicating higher 

significance of that pixel to the prediction [53].

Kuo et al utilized a specific gradient method, Gradient-weighted Class Activation Mapping 

(Grad-CAM) to interpret their keratoconus classifier, confirming that the model was 

following similar corneal topography features as ophthalmologists by focusing on the largest 

gradient differences in the scan [54, 55]. Medeiros et al applied Grad-CAM to a glaucoma 

classifier, showing significant activation in the region of the optic nerve and adjacent RNFL 

on fundus photography [56]. When applying Grad-CAM to DR detection, Chetoui et al 
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confirmed a model’s focus on exudates, microaneurysms and haemorrhage, validating its 

conformance with clinical reasoning [57**]. They additionally employed Grad-CAM for 

failure cases, showing that false predictions arose from artifacts, pale areas and image noise.

Occlusion methods modify image regions and compare the resulting change in model 

predictions to estimate the relative importance of these selectively altered areas. Kermany 

et al performed occlusion testing for a classifier trained to detect drusen, choroidal 

neovascularization and diabetic macular oedema [58]. Localization of drusen was found to 

be most accurate, compared to other findings. In an AMD classification model, Grassman et 

al noted that masking areas of the macula and fovea led to a confidence reduction, indicating 

their weight in prediction-making [59].

Attention mechanisms, as employed by Poplin et al, create a heatmap by relying first on 

a CNN encoder to reduce the image size and extract important features, followed by a 

decoder which projects only these features back into the original image size. This was used 

to visualize the decisions of a cardiovascular risk factor classifier trained on fundus images. 

This revealed that prediction of risk factors such as smoking, systolic blood pressure and age 

relied on blood vessels, whereas gender predictions appeared to draw from areas including 

the optic disc, macula and vessels, suggesting patterns imperceptible by the human eye [60].

Interpretability’s role in implementing deep learning solutions in medicine

Providing insights to a model’s reasoning and shortcomings may enhance the trust 

necessary to ultimately accept these models in clinical practice [61,62**,63]. For example, 

interpretability methods enable clinicians to monitor models’ reasoning for conformance 

to clinical standards and principles [26]. Some methods permit quality monitoring for 

systemic weaknesses or biases, as demonstrated by Winkler et al, who used heat maps to 

discover a melanoma detection model’s errant reliance on surgical skin marker artifacts 

in the training images to form predictions, rather than the features of the lesion alone 

[64]. Clinicians may also benefit from enhanced diagnostic accuracy and specificity, as 

demonstrated by Rajpurkar et al in a report of human participants in a tuberculosis detection 

experiment using chest radiographs aided by heatmaps [65]. Finally, a common barrier to 

training accurate models in medicine is infrequent access to large datasets that represent 

a population’s demographic and clinical traits. When designing models with imperfect 

datasets, interpretability is essential for ensuring fairness and equitable representation of 

marginalized demographics in predictions [66].

The complexity of trust

Despite these benefits, model interpretability may not be a “silver bullet” for user distrust. 

Gaube et al describe “algorithmic aversion” in individuals who consistently rated expert 

advice as lower quality if labelled as AI-derived [67*]. Criticism of “black boxes” often 

overlooks other factors for acceptance of AI. An analysis of trust by Asan et al place 

robustness and fairness as pillars alongside transparency [20]. Kitamura et al argue that trust 

is built on prolonged experience with models that have demonstrated the ability to make 

consistently accurate predictions [68*]. Finally, the enhanced model performance granted 

by “black box” complexity may justify the distrust they engender. Deep learning models 
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bear the potential to detect otherwise imperceptible patterns, drive new scientific discovery, 

and enhance clinician accuracy [69]. Thus, enhancing interpretability at the cost of model 

complexity may sacrifice this added benefit.

It often goes unmentioned that clinicians themselves act as “black boxes” whose experiential 

reasoning cannot be distilled into a list of arguments or heatmaps. This raises the question of 

why human black-boxes are trusted and not AI. Hatherley discusses that trust encompasses 

fundamentally human concepts not found in AI like goodwill and moral responsibility which 

could explain the phenomenon of “algorithmic aversion’ [70]. Trust as defined by human 

terms may therefore be an unattainable ideal. We might instead strive for model reliability 

by establishing standards for robustness, fairness, and high performance.

Evaluating interpretability methods

It is important to consider whether interpretability methods truly reflect image features 

relevant to model output, or just feature rich portions of an image. In a review of 

8 common saliency map techniques, Arun et al demonstrate that none satisfied four 

basic criteria for localizing of image features, sensitive to model weight randomization, 

repeatability, and reproducibility [71*]. Adebayo et al demonstrate that gradient heatmaps 

can sometimes provide a seemingly correct appearance without reflecting the true internal 

model weights, and propose two “sanity checks” to evaluate the outputs’ correspondence 

to the learned weights of the model [72]. They first propose randomizing model weights 

so that the interpretability method output reflects no learned information relevant to the 

task. If the outputs reflecting randomized vs. non-randomized model weights look the 

same, the interpretability method may be highlighting features non-relevant features. They 

alternatively propose training a network on randomized input class labels. If the output of 

the interpretability method is invariant to the class label, then it is not valid for interpretation 

of a trained classification model. Further, feature rich portions of an image may be part of 

what a model learns, but not fully explain model reasoning, as illustrated by Chang et al 

using adversarial examples [49].

The most appropriate interpretability method may depend on the classification task at hand. 

For instance, some classification efforts rely on recognition of localizable patterns (e.g. cup­

to-disc ratios), to which techniques like Grad-CAM that illustrate learned representations 

graphically would be more suited. Others require assessment of more global features (e.g. 

cardiovascular risk in fundus photos), for which a technique that maps to higher order 

features such as regression concept vectors would be preferred. Finally, Doshi-Velez et al 

propose that a formal definition of interpretability must be established so as to provide 

standardized context for quality when evaluating explanations [73].

Thus, with growing interest in interpretability and new global regulations mandating the 

“right to explanation” in AI, we advocate for qualitative and quantitative evaluation of these 

methodologies in the context of a given application, integrating the user’s perception of 

explanation quality with an objective measurement of the accuracy to holistically represent 

the model’s intrinsic features [32, 69].
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Conclusion

Interpretability methods are powerful tools in meeting the evolving complexity and scrutiny 

of deep learning models in medicine. In the field of ophthalmology, model transparency has 

highlighted diagnostically important imaging features and contributed new clinical insights. 

As these methods proliferate, a clear definition of interpretability and accepted frameworks 

for evaluating their quality must be established. Ultimately, interpretable models may play a 

key role in integrating deep learning models into clinical practice.
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Key Points

1. Deep learning models’ inherent complexity undermines user understanding 

and increases risk for misinterpretation of outputs.

2. Interpretability methods enhance model transparency through mechanisms 

that provide explanations of the connection between features in input data and 

model output.

3. As interpretability methods become increasingly varied and utilized, 

approaches to evaluate their quality and efficacy must be established.

4. Interpretability methods may enhance user trust and contribute to the ultimate 

acceptance of deep learning models in modern healthcare.
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Figure 1: 
Classification of interpretability methods

Structured representation of the varied categories of interpretability methods discussed in 

this article. LIME = Local Interpretable Model-Agnostic Explanations; TCAV = Testing 

with Concept Activation Vectors; DeConvNet = Deconvolutional networks; CAM = Class 

activation mapping.
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