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In addition to CD4* T cells and neutralizing antibodies, CD8" T cells contribute to protective immune responses against SARS-CoV-2
in patients with coronavirus disease 2019 (COVID-19), an ongoing pandemic disease. In patients with COVID-19, CD8" T cells
exhibiting activated phenotypes are commonly observed, although the absolute number of CD8" T cells is decreased. In addition,
several studies have reported an upregulation of inhibitory immune checkpoint receptors, such as PD-1, and the expression of
exhaustion-associated gene signatures in CD8" T cells from patients with COVID-19. However, whether CD8" T cells are truly
exhausted during COVID-19 has been a controversial issue. In the present review, we summarize the current understanding of CD8™"
T-cell exhaustion and describe the available knowledge on the phenotypes and functions of CD8" T cells in the context of
activation and exhaustion. We also summarize recent reports regarding phenotypical and functional analyses of SARS-CoV-2-

specific CD8" T cells and discuss long-term SARS-CoV-2-specific CD8" T-cell memory.
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INTRODUCTION

Since the initial reports of pneumonia cases of unknown origin in
Wuhan, China, in late December 2019 [1], novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has been rapidly
spreading worldwide. Coronavirus disease 2019 (COVID-19),
caused by SARS-CoV-2 infection, manifests with a broad spectrum
of clinical symptoms, from asymptomatic infection to critical
disease [2]. COVID-19 has threatened public health and had a
devastating economic impact. Global efforts are underway to
control the COVID-19 pandemic. Prophylactic COVID-19 vaccines
using various platforms have been approved since December
2020, and their administration has started in populations
throughout the world [3-7].

A better understanding of host immune responses to SARS-CoV-2
is crucial to the development of effective vaccines and therapeutics
and ending the current pandemic. SARS-CoV-2 infection elicits the
activation of both innate and adaptive immunity [8-11]. In adaptive
immunity, CD8™ T cells play an essential role in controlling viral
infection by killing virus-infected cells and producing effector
cytokines. Since the emergence of COVID-19, remarkable progress
has been made in understanding CD8" T-cell responses against
SARS-CoV-2. It is now clear that SARS-CoV-2-specific CD8" T-cell
responses are detected in the acute and convalescent phases of
COVID-19 [12-17]. In addition, recent studies using animal models
have reported that CD8" T cells contribute to protection from the
development of severe COVID-19 [18, 19].

In COVID-19 patients, the CD8" T-cell population undergoes
quantitative and qualitative changes. Decreased cell number and
activation phenotypes are frequently observed, particularly in
severe disease [16, 20-24]. Previous studies have also reported
exhaustion phenotypes of CD8" T cells in patients with severe
COVID-19 based on the upregulation of inhibitory receptors (IRs)
[20, 25-30], which may impair host defenses and result in poor
disease outcomes. In contrast, no significant evidence of CD8"
T-cell exhaustion has been observed in several single-cell RNA
sequencing (scRNA-seq) analyses [31, 32]. However, all of these
studies have the limitation of their conclusions relying on the
expression of IRs or transcripts related to T-cell exhaustion without
information on the antigen specificity of CD8" T cells and their
effector functions. Our previous study using major histocompat-
ibility complex class | (MHC-l) multimers demonstrated that PD-17
SARS-CoV-2-specific CD8* T cells are functionally active in terms of
interferon (IFN)-y production, implying that these cells are not
truly exhausted [33].

Several reviews have already summarized and discussed
different aspects of CD8* T-cell responses to SARS-CoV-2 in terms
of cross-reactivity, kinetics, and protective roles [34-39]. In the
current review, we focus on the activation and exhaustion of CD8"
T cells in patients with COVID-19. We summarize the current
understanding of CD8" T-cell exhaustion and discuss available
knowledge regarding the activation and exhaustion of CD8*
T cells in the context of COVID-19.
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Fig. 1 Key features of exhausted CD8" T cells. Exhausted CD8™ T cells are characterized by a loss of effector functions, sustained expression of

inhibitory receptors, altered transcriptional and epigenetic landscape, and metabolic reprogramming

THE CHARACTERISTICS OF EXHAUSTED CD8* T CELLS

An overview of CD8" T-cell exhaustion

During acute viral infection, naive CD8" T cells that recognize
antigens presented on MHC-I by their T-cell receptors (TCRs) are
activated and undergo clonal expansion and differentiation into
effector CD8" T cells [40, 41]. Effector CD8" T cells produce
cytokines, including IFN-y and tumor necrosis factor (TNF), and
directly kill target cells [42]. In the subsequent contraction phase
following antigen clearance, a small proportion of effector CD8"
T cells differentiate into memory CD8" T cells [40, 41]. Memory
CD8"' T cells rapidly exert effector functions upon antigen re-
encounter, playing a crucial role in host protection during
reinfection [41].

On the other hand, when antigens persist in chronic viral
infection or cancer, the development of memory CD8" T cells fails,
and the effector functions of CD8™ T cells become impaired [43, 44].
This state of CD8" T cells is called “exhaustion.” CD8" T-cell
exhaustion was first reported in a previous study using a mouse
model of chronic lymphocytic choriomeningitis virus (LCMV)
infection [45]. LCMV-specific CD8" T cells that are continuously
stimulated by antigens exhibit impaired effector functions and
limited proliferation compared to conventional memory CD8"
T cells [46]. These findings have also been observed in human
patients with chronic viral infection or cancer [47, 48]. T-cell
exhaustion is evidently the main mechanism underlying immune
dysfunction during chronic viral infection and cancer [43, 44, 49],
and virus antigen-specific and tumor antigen-specific CD8" T cells
exhibit features of T-cell exhaustion and dysfunction [47, 48, 50-53].
CD8" T cell exhaustion is now considered a distinct differentiation
state of CD8™ T cells, with several key features (Fig. 1).

The loss of effector function

CD8"' T-cell exhaustion is characterized by progressive and
hierarchical impairment of effector functions. Generally, IL-2
production and proliferative capacity become compromised early,
followed by defects in TNF production and cytotoxicity [54]. The
loss of IFN-y production occurs in more severely exhausted CD8*
T cells [55]. When antigen stimulation is excessive, clonal deletion
or apoptosis of antigen-specific CD8" T cells occurs, which is
considered the end stage of CD8" T-cell exhaustion [54].
Functional loss of exhausted CD8" T cells eventually results in a
failure to eliminate the virus or tumor cells. Therefore, a correlation
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between viral load and the severity of exhaustion in chronic viral
infection can be explained by functional impairment of exhausted
CD8™ T cells. Furthermore, exhausted CD8™" T cells respond poorly
to homeostatic cytokines, including IL-7 and IL-15 [56], in relation
to their low expression of CD127 and CD122 [57].

The functions of exhausted CD8" T cells may vary across
diseases, possibly related to antigens and the immune micro-
environment. The absence of CD4" cells has been shown to
contribute to CD8™ T-cell exhaustion [58, 59]. In addition, a recent
study reported that hypoxia, which is frequently observed in
cancer, promotes functional impairment of T cells in the presence
of continuous TCR stimulation [60].

Sustained expression of inhibitory receptors

Another key feature of exhausted CD8" T cells is sustained
expression of IRs [43, 44]. IRs counteract T-cell activation to avoid
exaggerated immune activation. In particular, in antigen-persisting
conditions, IRs mediate T-cell exhaustion by negatively regulating
the activation of antigen-specific T cells.

Among the various IRs, PD-1 is a key molecule responsible for
T-cell exhaustion [43, 44]. PD-1 is a transmembrane glycoprotein
receptor belonging to the CD28 family [61]. An immunoreceptor
tyrosine-based inhibitory motif and an immunoreceptor tyrosine-
based switch motif are located in the intracellular region of PD-1
[44]. PD-1 has two ligands: PD-L1 (CD274 or B7-H1) and PD-L2 (B7-
DCQ) [62]. PD-L1 is expressed not only by immune cells but also by
nonimmune cells, including tumor cells, whereas PD-L2 is mainly
expressed by antigen-presenting cells [63]. In the case of T cells,
PD-1 expression is mainly induced and sustained by TCR-mediated
stimulation, but PD-1 expression can also be induced by cytokines
and other stimuli [62]. PD-1/PD-L1 engagement inhibits T-cell
activation via the recruitment of SHP-2 and subsequent depho-
sphorylation of signaling molecules [43, 64, 65]. PD-1 blockade has
been demonstrated to reinvigorate exhausted CD8" T cells and
reduce viral load during chronic LCMV infection [66, 67]. In tumor
models, the blockade of PD-1 signaling also enhances the
functions of CD8" T cells, with robust antitumor effects [68, 69].
On the basis of these results, cancer immunotherapy targeting PD-
1 has been developed and shown to have clinical benefits in
multiple types of cancer [70-74].

In addition to PD-1, exhausted T cells express a battery of IRs,
including TIM-3, LAG-3, TIGIT, and CTLA-4 [75, 76]. Although

Cellular & Molecular Immunology (2021) 18:2325 -2333



individual expression of PD-1 or other IRs is not sufficient to
indicate CD8" T-cell exhaustion, the coexpression of multiple IRs is
considered a main characteristic of exhaustion. In exhausted CD8"
T cells, several IRs are coexpressed with PD-1 and provide a
synergistic inhibitory effect [53, 77, 78]. Exhausted CD8" T cells
with a higher number of coexpressed IRs have more severe
exhaustion [77]. Simultaneous blockade of multiple IRs leads to
robust reinvigoration of exhausted T cells in cancers and chronic
viral infections [70, 76].

Changes in the epigenetic and transcriptional landscape

In exhausted virus-specific CD8" T cells from chronically LCMV-
infected mice, the expression of multiple genes is altered,
including genes related to TCR and cytokine signaling pathways,
costimulatory pathways, and energy metabolism, as well as genes
encoding IRs and transcription factors [79]. Several studies using a
mouse model of chronic LCMV infection have also shown that
various transcription factors, including T-bet, Eomes, Blimp1, NFAT,
TCF1, IRF4, and TOX, are involved in CD8" T-cell exhaustion [80-
86]. In addition, BATF, which is commonly upregulated in both
HIV-specific CD8" T cells from HIV progressors and Jurkat cells
following PD-1 ligation, mediates PD-1-induced suppression of
T cells in vivo [87]. Although a master transcription factor specific
to exhaustion has not yet been identified, multiple transcription
factors are associated with exhaustion-specific gene expression
and function [80, 81, 87, 88].

Epigenetic regulation at the chromatin level also plays an
important role in controlling the differentiation and fate of CD8"
T cells. Recent technological advances in epigenetics have
enabled us to investigate the epigenetic characteristics of
exhausted CD8" T cells. Previous studies using an assay for
transposase-accessible chromatin with high-throughput sequen-
cing (ATAC-seq) have shown that the epigenetic landscape of
exhausted CD8" T cells is distinct from that of effector and
memory CD8% T cells [89, 90]. Remarkable differences in the
accessible chromatin regions were observed between exhausted
CD8"' T cells and effector/memory CD8" T cells [89, 90]. For
example, several open chromatin regions in the Ifng locus are
present in effector and memory CD8™ T cells but not in exhausted
CD8* T cells [90]. In contrast, open chromatin regions related to
IRs, such as PD-1, are specific to exhausted CD8" T cells [89, 90].

Metabolic reprogramming

The activation and clonal expansion of CD8" T cells are
accompanied by alterations in cellular metabolism. During acute
infection, a transition from mitochondrial oxidative phosphoryla-
tion to glycolysis is required for differentiation into effector CD8"
T cells [91-93]. Memory precursor T cells alter their cellular
metabolism to oxidative phosphorylation and fatty acid oxidation
[94]. In transcriptomic analysis, substantial alterations have been
observed in genes involved in metabolism and bioenergetic
pathways in exhausted CD8" T cells, suggesting that CD8" T-cell
exhaustion is accompanied by metabolic alterations [79].
Exhausted CD8" T cells are known to undergo metabolic
reprogramming, including decreased glycolysis and dysregulated
mitochondrial energetics [95]. Moreover, PD-1 signaling sup-
presses glycolysis and promotes fatty acid oxidation in CD8"
T cells by inhibiting PI3K/Akt and MEK/ERK signaling [96].
Furthermore, PD-1 blockade restores glycolysis in exhausted
CD8* T cells [97].

UNCOUPLING T-CELL EXHAUSTION FROM ACTIVATION

Considering that CD8" T-cell exhaustion results from persistent
stimulation of T cells, it is challenging to distinguish T-cell
exhaustion from activation. The surface markers and transcrip-
tional signatures of exhausted CD8" T cells closely overlap with
those of activated CD8" T cells [88, 98-100]. In addition, most
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characteristics of CD8" T-cell exhaustion are individually insuffi-
cient to identify exhausted CD8" T cells. In particular, because the
majority of IRs are also transiently expressed in effector CD8"
T cells during activation, IR expression is not a unique feature of
exhausted CD8™ T cells [44, 101]. A previous study also showed no
impairment of cytokine production in CD8" T cells expressing a
diverse array of IRs, indicating that IR expression may not be
directly linked to dysfunction [102]. In transcriptomic analyses of
CD8" tumor-infiltrating lymphocytes from tumor-bearing mice,
many IRs are present in the activation/dysfunction gene module
but not in the dysfunctional gene module [103]. Furthermore,
genes related to the cell cycle pathway, migration, cytotoxic
molecules, and costimulatory receptors are commonly upregu-
lated in both exhausted and activated CD8" T cells [79].

Therefore, simultaneous consideration of diverse features,
including dysfunction, sustained IR expression, transcriptional
and epigenetic alterations, and metabolic derangement, is needed
to identify bona fide exhausted CD8" T cells and uncouple them
from activated CD8* T cells.

AN OVERVIEW OF CD8" T-CELL RESPONSES AGAINST SARS-
COV-2 IN PATIENTS WITH COVID-19

Since the outbreak of COVID-19, we have gained much informa-
tion about CD8" T-cell responses to SARS-CoV-2. Early studies
reported that SARS-CoV-2-specific CD8" T-cell responses are
successfully elicited by SARS-CoV-2 infection [12, 13, 17]. SARS-
CoV-2-specific CD8" T-cell responses have been identified in
~70% of convalescent individuals after recovery from COVID-19
[12]. These responses are specific to a wide range of SARS-CoV-2
antigens, including spike, nucleocapsid, and membranous pro-
teins, as well as other nonstructural proteins [12, 13, 17].

A series of studies suggest a critical role of CD8" T cells in
protecting against the development of severe COVID-19. SARS-
CoV-2-specific CD8" T-cell responses correlate with low disease
severity during the acute phase [104]. Memory T-cell responses
have been detected in COVID-19 convalescent individuals even in
the absence of SARS-CoV-2-specific antibodies [105]. In addition,
CD8" T cells from the bronchoalveolar lavage fluid of patients
with severe/critical COVID-19 exhibit a lack of dominant clones
compared to those from the bronchoalveolar lavage fluid of
patients with mild disease [106].

Recently, studies using animal models revealed the importance
of CD8" T cells in controlling SARS-CoV-2 infection. Limited viral
clearance in the respiratory tract was observed in CD8"-depleted
convalescent rhesus macaques upon SARS-CoV-2 rechallenge,
implying that memory CD8" T cells are required for the clearance
of SARS-CoV-2 [18]. Furthermore, T-cell vaccination that does not
elicit neutralizing antibodies partially protects SARS-CoV-2-
infected mice from severe disease [19].

THE CD8" T-CELL POPULATION IN PATIENTS WITH COVID-19
The upregulation of activation markers and inhibitory
receptors

There is a growing body of evidence that circulating CD8" T cells
from patients with severe COVID-19 exhibit an activated
phenotype characterized by increased expression of CD38, HLA-
DR, and Ki-67 [16, 20-22, 107]. In addition, a recent study
analyzing airway immune cells revealed that CD8™ T cells from the
airways of patients with COVID-19 were predominantly tissue-
resident memory T cells and that these cells have an elevated
proportion of activated cells [108].

An exhausted CD8" T-cell phenotype with an upregulation of
IRs, such as PD-1, TIM-3, LAG-3, CTLA-4, NKG2A, and CD39, has
been described in patients with COVID-19, particularly in those
with severe disease [20, 25-29]. In addition, an scRNA-seq analysis
of peripheral blood mononuclear cells (PBMCs) showed that the
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exhaustion score in the CD8" effector cluster was significantly
higher in patients with severe COVID-19 than in healthy donors
and patients with moderate disease [109]. Moreover, increased
PD-L1 expression has been reported in basophils and eosinophils
from patients with severe COVID-19 [110].

In contrast, a number of studies have reported no evidence of
CD8™" T-cell exhaustion in patients with COVID-19, even in those
with severe cases. An early study performing scRNA-seq analysis of
PBMCs found that the T-cell exhaustion module score was not
significantly changed in CD8™" T cells from patients with COVID-19,
even in patients with severe cases with acute respiratory distress
syndrome, compared to healthy donors [31]. In addition, a recent
study using single-cell cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq) and TCR sequencing described
that a cluster of exhausted CD8" T cells was not associated with
COVID-19 [32]. In that study, the exhaustion of clonally expanded
CD8" T cells, as evaluated by IR expression, was not associated
with disease severity [32].

Discrepancies in the results may be derived from several factors.
First, there were differences in the criteria for disease severity
among studies. Second, the exhaustion gene sets used in the
analysis or the detailed method of analysis for the transcriptomic
data were different. Third, the demographics of the study cohorts
need to be considered.

The functions of CD8" T cells in patients with COVID-19

Several studies have reported that CD8" T cells from patients with
COVID-19 exhibit a decreased cytokine-producing capacity upon
stimulation with PMA/ionomycin [23, 27]. In contrast, another
study reported that CD8" T cells from patients with COVID-19
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exert higher effector functions, including the production of IL-2
and IL-17A and the expression of the degranulation marker
CD107a, upon anti-CD3/CD28 stimulation compared to cells from
healthy donors [25]. However, these studies examined the
functions of the CD8" T-cell population following ex vivo
stimulation with pan-T cell stimulants, not SARS-CoV-2 antigens;
thus, they lack information on the antigen specificity of CD8"
T cells.

SARS-COV-2-SPECIFIC CD8" T CELLS IN PATIENTS WITH
COoVID-19

The phenotype of SARS-CoV-2-specific CD8" T cells
Considering that only a proportion of the CD8" T-cell population
is specific to the infecting virus, it is important to examine the
phenotype and functions of viral-antigen-specific CD8™ T cells, not
the total CD8™ T cell population, during viral infection. SARS-CoV-
2-specific CD8" T cells from COVID-19 patients have been
investigated by many researchers (Fig. 2). Early studies examined
SARS-CoV-2-specific CD8" T-cell responses using ex vivo
stimulation-based functional assays, such as intracellular cytokine
staining and activation-induced marker assays [12, 13, 15, 17]. In
addition, scRNA-seq analysis following antigen-reactive T-cell
enrichment (ARTE) allowed us to investigate SARS-CoV-2-reactive
CD8™ T cells at the transcriptome level [111, 112]. However, all of
these assays have inherent limitations in that ex vivo stimulation
may change the phenotype of CD8" T cells. Moreover,
stimulation-based functional assays detect functioning T cells,
not virus-specific nonfunctioning cells. In contrast, MHC multimer
techniques, which directly detect antigen-specific T cells, do not
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have these caveats [113]. Several studies using MHC-I multimers
have examined the phenotypes of SARS-CoV-2-specific CD8"
T cells [16, 17, 33, 114, 115].

In the acute phase of COVID-19, SARS-CoV-2-specific MHC-I
multimer™CD8™ T cells express activation markers (CD38 and HLA-
DR), Ki-67, IRs (PD-1, TIM-3, and LAG-3), and cytotoxic proteins
(perforin and granzyme B), indicating that these cells are activated
and proliferate with a high cytotoxic capacity [16]. This finding is
in line with the result that SARS-CoV-2-reactive CD8' T cells
detected by stimulation-based assays express CD38, HLA-DR, Ki-
67, and PD-1 [16]. Similar results were observed in our analysis
with MHC-I multimer staining. In a longitudinal analysis, we found
that the expression of PD-1 and CD38 in MHC-I multimer™ cells
decreases during the course of COVID-19 [33]. We also observed
an inverse correlation between the expression of PD-1 and CD38
in MHC-l multimer™ cells and the number of days since symptom
onset. These kinetics suggest that PD-1 expression in SARS-CoV-2-
specific CD8™ T cells is transient, not persistent, in patients with
COVID-19. Thus far, relatively few studies have examined the
expression of IRs other than PD-1 in SARS-CoV-2-specific CD8™"
T cells. In the acute phase of severe COVID-19, a considerable
proportion of SARS-CoV-2-specific CD8% T cells express TIM-3,
LAG-3, TIGIT, and CTLA-4 [16]. The expression of TIM-3 and TIGIT in
SARS-CoV-2-specific CD8" T cells tended to be lower among
patients who recovered from mild COVID-19 than among patients
with acute severe COVID-19 [16].

A recent scRNA-seq analysis of virus-reactive CD8" T cells
obtained using ARTE demonstrated that the proportion of the
“exhaustion” CD8% T-cell cluster characterized by increased
expression of exhaustion-associated genes, including HAVCR2
(TIM-3) and LAG3, was higher in SARS-CoV-2-reactive CD8" T cells
from COVID-19 patients than in influenza A virus (IAV)- and
respiratory syncytial virus (RSV)-reactive CD8™" T cells from healthy
donors [111]. Intriguingly, the exhaustion cluster showed sig-
nificant enrichment of cytotoxicity-related genes, such as GZMB,
GZMA, GZMH, PRF1, and TBX21, indicating that this cluster is not
associated with dysfunction. On the other hand, the proportion of
the cluster expressing high levels of genes encoding cytokines,
including IFNG, TNF, CCL3, CCL4, XCL1, and XCL2, was lower in
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SARS-CoV-2-reactive CD8* T cells from COVID-19 patients than in
IAV- and RSV-reactive CD8" T cells from healthy donors [111],
suggesting that SARS-CoV-2-reactive CD8" T cells have a reduced
capacity to secrete effector cytokines.

The functions of PD-1-expressing SARS-CoV-2-specific CD8"
T cells

To investigate the effector functions of SARS-CoV-2-specific CD8"
T cells, our group performed MHC-I multimer staining, followed by
proliferation assays and cytokine secretion assays (Fig. 3) [33].
SARS-CoV-2-specific MHC-I multimer™ T cells from individuals who
recovered from COVID-19 showed robust proliferation upon
ex vivo antigen challenge. In addition, despite the lower frequency
of IFN-y-producing cells in SARS-CoV-2-specific CD8" T cells than
IAV-specific CD8" T cells, IFN-y was produced by SARS-CoV-2-
specific CD8™ T cells regardless of their PD-1 expression. The same
results were observed when we analyzed SARS-CoV-2-specific
MHC-I multimer® cells from acute COVID-19 patients. These
findings indicate that PD-1" cells among SARS-CoV-2-specific
MHC-I multimer™ cells are not exhausted but functionally active in
the acute and early convalescent phases of COVID-19 and that PD-
1 needs to be considered an activation marker rather than an
exhaustion marker in patients with COVID-19. In addition, there
was no significant difference between patients with severe and
nonsevere COVID-19 in regard to IFN-y production by SARS-CoV-2-
specific MHC-I multimertCD8™" T cells. However, our study relied
on MHC-I multimers specific to HLA-A*02-restricted epitopes from
the spike protein. CD8" T cells specific to other SARS-CoV-2
epitopes restricted by other HLA-I allotypes may differ in
phenotype and function. In addition, given that the impairment
of IFN-y production occurs in the later stage of T-cell exhaustion
[55], the production capacities of other cytokines, such as IL-2 and
TNF, and cytotoxicity need to be examined further in SARS-CoV-2-
specific MHC-I multimertCD8" T cells.

Thus far, the phenotype and functions of SARS-CoV-2-specific
CD8™ T cells have been analyzed primarily in peripheral blood
[16, 17, 33, 114, 115]. However, previous studies in animal models
of respiratory viral infections have shown that tissue-resident
memory T cells in the respiratory tract critically contribute to
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protection from viral infection [116, 117]. In patients with COVID-
19, the expression of tissue-residency markers (CD69 and CD103)
and activation markers (PD-1 and HLA-DR) is higher in airway
CD8" T cells than in their peripheral blood counterparts [108],
indicating that tissue-resident CD8" T cells with an activated
phenotype are enriched in the airways. Therefore, additional
studies are needed to investigate whether SARS-CoV-2-specific
CD8™ T cells in the respiratory tract are exhausted or functional in
patients with COVID-19.

Moreover, comprehensive investigations on the transcriptional
and epigenetic dynamics of SARS-CoV-2-specific CD8% T cells
would provide new insights into the differentiation trajectories of
CD8" T cells and clarify whether CD8" T cells are truly exhausted
during the course of COVID-19.

The development of SARS-CoV-2-specific T-cell memory
Accumulating evidence suggests that SARS-CoV-2-specific T-cell
responses are maintained in convalescent individuals up to
10 months post infection, indicating that SARS-CoV-2-specific
T-cell memory develops successfully and is long lasting [118-124].
As CD8* T cells that fail to become functional memory T cells
differentiate into exhausted T cells, these findings suggest that
CD8™ T-cell exhaustion may be limited in the majority of patients
with COVID-19.

Among subsets of memory T cells, stem cell-like memory T
(Tscm) cells are characterized by a high self-renewal capacity and a
multipotent ability to generate diverse memory subsets [125, 126].
Stem-like CD8" memory T-cell progenitors have been described
as being composed of two distinct subsets based on PD-1 and
TIGIT expression [127]. Our group recently showed that the
majority of SARS-CoV-2-specific Tscy cells from convalescent
COVID-19 patients are PD-17TIGIT  cells, suggesting that these
cells are not exhausted-like progenitors [124]. These findings also
support SARS-CoV-2-specific CD8" T cells being rarely exhausted
in patients with COVID-19. Limited exhaustion of SARS-CoV-2-
specific CD8" T cells and successful development of Tscym cells
lead to host protection upon re-exposure to SARS-CoV-2 among
COVID-19 convalescent individuals.

CD8" T-cell exhaustion and vaccine-induced memory T-cell
responses

Currently available vaccines using diverse platforms have been
shown to elicit protective T-cell immunity [4, 7, 128-130].
Currently, COVID-19 vaccines are administered not only to
unexposed individuals but also to COVID-19 convalescent
individuals. Given that exhausted CD8" T cells lose their potential
to differentiate into memory T cells, the potential CD8" T-cell
exhaustion in individuals who have had COVID-19 can impede
vaccine-induced development of T-cell memory. However,
because CD8" T-cell exhaustion is not evident in patients with
COVID-19, it is assumed that COVID-19-experienced individuals
successfully develop functional CD8" T-cell memory following
vaccination. Recent studies have reported that a single dose of
mRNA vaccine robustly induces spike-specific T-cell responses in
COVID-19 convalescent individuals [131].

THE EXHAUSTED-LIKE PHENOTYPES OF CD8" T CELLS IN
RESPIRATORY VIRAL INFECTIONS

An exhausted-like phenotype of CD8" T cells has been reported in
several studies of respiratory viral infections using mouse models.
PD-1 upregulation on virus-specific CD8% T cells and an
impairment of their effector functions have been observed during
infection with respiratory viruses, such as human metapneumo-
virus or influenza virus [132-134]. Similar to T-cell exhaustion
during chronic viral infections, the PD-1 pathway primarily
mediates functional impairment of CD8" T cells in acute
respiratory virus infection [132, 134]. However, this functional
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alteration occurs more rapidly than T-cell exhaustion [132].
Furthermore, whether the differentiation state and transcriptional
profiles of functionally impaired CD8" T cells in respiratory viral
infections are similar to those of exhausted T cells is not clear.
Before the COVID-19 pandemic, little was known about the
functional impairment or exhaustion of CD8" T cells during
respiratory viral infections in humans. Further investigations with
functional, transcriptomic, epigenetic, and metabolic profiling are
needed to clarify T-cell exhaustion in acute respiratory viral
infections.

CONCLUDING REMARKS AND PERSPECTIVES

Since the emergence of COVID-19, global efforts have rapidly
increased our knowledge of the immune responses to SARS-CoV-
2, including CD8" T-cell responses. However, information regard-
ing the role of SARS-CoV-2-specific CD8% T cells in protective
immunity is still limited. In addition, the differentiation dynamics
of CD8% T cells during the course of COVID-19, particularly
whether SARS-CoV-2-specific CD8" T cells become exhausted,
remain enigmatic. Further comprehensive studies on the func-
tional, transcriptional, epigenetic, and metabolic landscapes of
SARS-CoV-2-specific CD8™ T cells would help answer this question.
Moreover, considering that virus-specific effector T cells are
recruited to the site of inflammation, SARS-CoV-2-specific CD8"
T cells in the respiratory tract should be investigated. Deeper
investigation of CD8" T cells will help not only control the
ongoing COVID-19 pandemic but also prepare for any upcoming
pandemics.
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