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Saccharomyces cerevisiae as host 
for the recombinant production of polyketides 
and nonribosomal peptides
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Abstract 

As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of 
the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hor-
mones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to 
include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These 
compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of 
infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are gener-
ated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates 
and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep 
catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must 
be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of 
the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous 
production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, 
prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this micro-
bial host.
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Background
Polyketides and nonribosomal peptides encompass 
diverse groups of specialized molecules that are produced 
by bacteria, fungi, plants, and marine organisms [1, 2]. 
Their natural functions comprise the adaptation to envi-
ronmental changes, the defense of resources or habitats, 
self-protection against predators and herbivores, as well 
as inter- and intraspecific communication [3]. Because 
many of these compounds possess potent antibiotic, 

immunosuppressive or antiinflammatory properties, they 
represent important resources for therapeutic drugs [4].

The development of economically feasible manufactur-
ing processes remains an ambitious challenge for many 
of these compounds. Due to their complex molecular 
scaffolds, chemical syntheses of polyketides and nonri-
bosomal peptides can be tortuous. The need to introduce 
and later remove protecting groups, the use of precious 
metal catalysts or toxic reagents affects production costs 
as well as sustainability [5, 6]. On the other hand, bio-
technological approaches can be hampered by low yields 
and purification difficulties [7]. In many cases, the natu-
ral producers of polyketides and nonribosomal peptides 
show unfavorable process properties, which impede their 
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industrial application. Examples are instable produc-
tion due to long cultivation times [8] or high sensitivity 
against shear stress in stirred tank reactors, as observed 
for many filamentous and mycelia-forming microorgan-
isms [9]. One way to overcome such issues is to recon-
stitute the biosynthesis of the target molecule in an 
industrially proven host organism. Microorganisms like 
Escherichia coli, Saccharomyces cerevisiae, or Aspergillus 
nidulans are frequently exploited as heterologous hosts 
to establish production processes for different chemical 
compounds [10–13].

The single-celled ascomycete S. cerevisiae is one of 
the most prominent microbial workhorses in academia 
and industry. As a robust, fast growing and safe organ-
ism, encoding no toxic or viral genes, budding yeast is of 
particular interest for biotechnological applications. The 
ease of transformation with exogenous DNA in conjunc-
tion with extremely efficient homologous recombination 
capabilities make S. cerevisiae a primary choice for the 
recombinant production of pharmaceutical drugs and 
other high value chemicals. Over the years, a number of 
techniques have been developed for the genetic engineer-
ing of S. cerevisiae, which exploit homologous recom-
bination and are used for genome editing and pathway 
reassembly. Examples include transformation-associated 
recombination cloning [14–18], long terminal repeat-
guided cloning [19, 20] and CRISPR/Cas9 [14, 21–23]. 
This arsenal has been expanded by many plug-and-play 
tools, which facilitate the assembly and expression of 
large DNA fragments [18, 20, 22, 24–32]. Other scien-
tific breakthroughs include the development of bidirec-
tional expression plasmids [33, 34] and synthetic minimal 
expression systems for S. cerevisiae [35–37], which make 
pathway refactoring in this model organism feasible.

The use of yeast as a heterologous host was pioneered 
in the 1980s when strains were constructed for the manu-
facturing of pharmaceutical proteins, like interferon-α 
[38, 39] and insulin [39, 40]. At this time, the explora-
tion and comprehension of yeast’s fundamental secretory 
expression pathways paved the way to a successful matu-
ration and secretion of recombinant proteins. Of particu-
lar relevance in this context is the leader sequence of the 
mating type peptide pheromone α-factor in S. cerevisiae, 
which was found to convey secretory competence to a 
multitude of heterologously expressed fusion proteins, 
including interferon-α and insulin [38, 40, 41]. These 
fusion proteins are processed by proteolytic enzymes of 
the secretory pathway, which remove the leader sequence 
prior to secretion of the mature heterologous protein [39, 
42].

Not all pharmaceutically relevant polypeptides that are 
produced with yeast originate from humans. The expres-
sion of viral proteins, such as the Hepatitis B surface 

antigen [43], led to the development of the first recom-
binant vaccines. Nowadays, S. cerevisiae and the methy-
lotrophic yeast Pichia pastoris are preferred hosts in 
vaccine development and are also used for the expression 
of protozoal proteins and tumor-associated antigens [44, 
45].

In contrast to pharmaceutical proteins, it was not until 
the beginning of the twenty-first century that yeast was 
explored as a production platform for small molecules, 
including chemical feedstocks, biofuels, food additives, 
flavors, and cosmetics [42]. Due to its innate metabo-
lism, yeast produces several intermediates of com-
mercial value, such as ethanol and glycerol. The same 
applies, however, for many microorganisms. What makes  
S. cerevisiae particularly appealing is its long established 
industrial use as well as the available omics data for this 
organism, which facilitates rational metabolic engineer-
ing on the basis of mathematical models [42, 46–52]. 
The implementation of artificial pathways is also feasi-
ble and allows the production of molecules that do not 
naturally occur in yeast. An illustrative example is that of 
enantiopure lactic acid, which serves as raw material for 
the production of polylactide polymers [53]. Significant 
efforts were invested to establish competitive production 
rates in recombinant S. cerevisiae strains and to develop 
a manufacturing process at a commercial scale [54, 55].

Due to their molecular weight, polyketides and nonri-
bosomal peptides can also be ascribed to the small mol-
ecules. However, these compounds are distinguished by 
highly complex chemical structures, which permit selec-
tive binding to biological targets and receptors. Interest-
ingly, the two natural product classes feature a unifying 
assembly mechanism which, together with their produc-
tion in yeast, will be covered in this review. Our contri-
bution complements previous publications in the field 
[28, 47, 56, 57], which focus mainly on heterologous 
expression as a means for natural product discovery and 
enzyme characterization. For this reason, special empha-
sis will be placed on metabolic engineering aspects that 
are specific for polyketide and nonribosomal peptide bio-
synthesis. Furthermore, we provide a comprehensive and 
up-to-date overview of the recombinantly made polyke-
tides and nonribosomal peptides, including the achieved 
titers.

Main text
Enzymology of polyketide and nonribosomal peptide 
biosynthesis
Polyketide synthases
In nature, polyketides are enzymatically formed by con-
secutive Claisen condensation reactions of short chain 
acyl derivatives. On the biochemical level, the assem-
bly of polyketides is very much reminiscent of fatty 
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acid biosynthesis, although it involves a larger vari-
ety of starter and extender units. Moreover, it shows 
an increased flexibility in the reductive processing of 
these building blocks [58]. Due to these peculiarities, 
polyketides exhibit a tremendous structural diversity, 
which ranges from polyenes, polyethers, and enediynes 
to macrolides, phenolic as well as polycyclic aromatic 
compounds.

The enzymes, which are responsible for the biosyn-
thesis of these molecules, are called polyketide syn-
thases (PKSs). Based upon their architecture, they can 
be divided into three classes [3]. Type I PKSs are large, 
modularly organized proteins of microbial origin. They 
possess multiple catalytic domains with specific func-
tions. While most bacterial type I PKSs follow a sequen-
tial assembly logic, their fungal counterparts typically 
operate in a repetitive fashion. The latter is also true for 
type II PKSs, which form complexes of monofunctional 
proteins. Up to now, type II PKSs have only been found 
in few prokaryotic groups, e.g., in actinomycete bacteria. 
In contrast, the type III PKSs represent the most widely 
distributed class of all PKSs with members known from 
bacteria, fungi, (micro-)algae and plants. Structurally, 
they are much smaller and less complex than the other 
two PKS classes. They consist of a homodimeric ketosyn-
thase, which governs the entire assembly process from 
substrate discrimination to chain elongation and product 
release. In the following, we will focus exclusively on the 
assembly mechanisms of type I PKSs. Readers who want 
to learn more about type II and type III PKSs are referred 
to the reviews by Wang et al. [59] and Shimizu et al. [60].

Type I PKSs can be easily distinguished by their modu-
lar architecture. Each module represents an operational 
unit that catalyzes the incorporation of a specific acyl 
building block into the growing polyketide chain and, 
if applicable, also the reduction of this moiety. For the 
elongation of a polyketide chain, every module requires 
three catalytic domains. The acyltransferase (AT) domain 
selects the correct substrate from a pool of cellular 
acyl-CoAs and transfers it onto the acyl carrier protein 
(ACP) domain (Fig. 1A). For this, the ACP domain must 
have undergone prior phosphopantetheinylation to pro-
vide a thiol group for the binding of the substrate (see 
“Enzymes for the posttranslational activation of PKSs 
and NRPSs” section). Afterwards, the β-ketoacylsynthase 
(KS) domain mediates the intrinsic Claisen condensation 
between the ACP-tethered substrate and the previously 
formed, KS-bound polyketide intermediate. This reaction 
is accompanied by a decarboxylation and results in the 
formation of a β-ketoacyl thioester (Fig. 1B).

Modules can feature up to three additional domains 
for the consecutive reduction of the β-keto functionality. 
A ketoreductase (KR) generates a β-hydroxyacyl and in 

conjuction with a dehydratase (DH) an α,β-unsaturated 
acyl intermediate. The action of an enoyl reductase (ER) 
eventually leads to a fully saturated product (Fig.  1C). 
Other than the KS, AT and ACP domains that are indis-
pensable for the chain elongation, the reductive domains 
are optional. The fact that PKSs do not necessarily carry 
out a full reductive cycle after the addition of an extender 
unit like fatty acid synthases is a strong driver for the 
product diversity associated with these enzymes. Once 
all domains have performed their respective function, the 
ACP-bound intermediate is forwarded to the KS domain 
of the next module, where another chain elongation takes 
place (Fig.  1D). This process is concluded when a so-
called termination module with a C-terminal thioester-
ase (TE) domain is reached. Following a final elongation 
step, the TE domain detaches the ACP-bound product 
by hydrolysis or lactonization. Afterwards the polyketide 
can be subject to further PKS-independent enzymatic 
modifications, such as glycosylations, halogenations, and 
alkylations.

A noteworthy deviation from the described assembly 
procedure is observed in fungal type I PKSs. Although 
these enzymes share the multidomain architecture of 
bacterial type I PKSs, they comprise only a single mod-
ule. This module catalyzes a defined number of chain 
elongations. This means that its domains are used repeti-
tively. In addition to the previously introduced domains, 
fungal PKSs possess characteristic domains for starter 
unit loading (SAT, starter unit AT domain), chain length 
control (PT, product template domain), and C-methyla-
tion (C-MeT domain). Based upon their reductive behav-
ior, the iteratively acting fungal enzymes are grouped 
into non-reducing (NR), partially reducing (PR) and 
highly reducing (HR) PKSs. Further information on these 
sophisticated catalysts and their programming can be 
found in the reviews by Herbst et al. [61] and Cox [1].

Nonribosomal peptide synthetases
Many bioactive peptides of microbial origin, such as the 
antibiotic penicillin [62] or the mycotoxin rhizonin [63], 
are not assembled by ribosomes. Instead the biosynthe-
sis of these molecules is conducted by large enzymes, 
which are known as nonribosomal peptide synthetases 
(NRPSs) [64]. The mechanisms underlying NRPS bio-
synthesis have very much in common with the previ-
ously introduced PKSs. NRPSs are organized in modules, 
each of which harbors a defined set of catalytic domains 
[64]. Adenylation (A) domains correspond functionally 
to the AT domains from PKSs. They are responsible for 
substrate recognition and delivery. Peptidyl carrier pro-
tein (PCP) domains hold the substrate monomers during 
the assembly process, which is mediated by condensa-
tion (C) domains. Eventually, a TE domain terminates the 
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Fig. 1  Substrate selection (A), chain elongation (B), reductive processing (C), and intermediate transfer (D) by type I PKSs. Domain notation: KS 
β-ketoacylsynthase, AT acyltransferase, ACP acyl carrier protein, KR ketoreductase, DH dehydratase, ER enoyl reductase

Fig. 2  Exemplary assembly of a dipeptide by a NRPS. Domain notation: A adenylation, C condensation, PCP peptidyl carrier protein, TE thioesterase
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biosynthesis and the product is released either as a linear 
peptide (Fig. 2) or as a macrolactam. A reductive release 
as aldehyde or alcohol is also possible, but requires a 
reduction (R) domain instead of a TE domain.

The main differences between PKSs and NRPSs are 
due to the building blocks that are utilized in the respec-
tive biosyntheses. The primary substrates of NRPSs 
are l-amino acids and not acyl-CoAs. Moreover, some 
A domains are known to be specific for aryl carboxylic 
acids or α-keto acids [65–67]. In any case, NRPS precur-
sors need to be activated in an ATP-driven reaction by 
the A domain before they can be attached to phospho-
pantetheinylated PCP domains. The actual condensation 
leads to the formation of an amide or ester bond and not 
to a Claisen product. Similar to the reductive domains in 
PKSs, there exist also non-essential domains in NRPSs, 
which take part in the modification of the product struc-
ture. For example, methyltransferase (MT) domains are 
used for site-specific methylations, while KR domains 
accomplish the reduction of incorporated α-keto acids. 
Epimerization (E) domains, which switch the configura-
tion of amino acid monomers from d to l, are frequently 
found in NRPS modules.

Of note, nature also uses NRPSs and type I PKSs in a 
combinatorial fashion. The unifying concept of carrier 
protein-based chain elongation likely contributed to the 
evolution of hybrid systems, which switch from PKS to 
NRPS interfaces and vice versa. Depending on the organ-
ization of the PKS and NRPS modules in discrete (stan-
dalone) or tethered polypeptides, these hybrid interfaces 
can be further classified [68]. The diversity of PKS-NRPS 
assembly lines is indeed remarkable and the same is true 
for the structures of the associated natural products, 
which encompass a number of medically relevant drugs 
[69–71].

Prerequisites for the production of polyketides 
and nonribosomal peptides in S. cerevisiae
Enzymes for the posttranslational activation of PKSs 
and NRPSs
The functional reconstitution of PKS and NRPS pathways 
requires the posttranslational activation of ACP and PCP 
domains into their respective functional holo-form. This 
posttranslational modification step is carried out by dedi-
cated phosphopantetheinyl transferases (PPTases). The 
phosphopantetheinylation reaction is Mg2+-dependent 
and involves the transfer of the phosphopantetheine moi-
ety from coenzyme A (CoA) onto a conserved serine resi-
due in the carrier protein. For this, the PPTases catalyze 
the nucleophilic side chain attack of the carrier protein 
serine on the 5’-pyrophosphate bond of CoA. The cova-
lently tethered phosphopantetheine arm is now capable 
of binding biosynthetic intermediates through a reactive 

thioester bond. Furthermore, the innate flexibility of 
the phosphopantetheine arm facilitates the transport 
of bound substrates onto distal catalytic centers of the 
megasynth(et)ases [72, 73].

PPTases are ubiquitous to all domains of life. Although 
PPTases from different organisms share only low levels of 
sequence homology, they can be classified into two major 
groups. The AcpS-type PPTases are mainly involved in 
fatty acid biosynthesis, whereas the Sfp-type PPTases are 
found in secondary metabolism [65, 73, 74]. S. cerevisiae 
is no natural producer of polyketides or nonribosomal 
peptides and, accordingly, lacks an inherent Sfp-type 
PPTase for the posttranslational activation of PKSs and 
NRPSs. The reconstitution of a broad-spectrum PPTase 
is hence obligatory for the heterologous production of 
polyketides and nonribosomal peptides in yeast [24, 75, 
76]. Sfp-type enzymes that are commonly applied for this 
purpose include Sfp from Bacillus subtilis [77], Svp from 
Streptomyces verticillus [78], as well as NpgA from Asper‑
gillus nidulans [79]. Still, NpgA is preferentially used for 
the heterologous biosynthesis of fungal natural prod-
ucts in yeast [80], which is likely due to its fungal origin. 
Although Sfp allows the reconstitution of fungal polyke-
tide pathways [75, 81], its use is mostly reported for the 
activation of bacterial enzymes, as exemplified in indigoi-
dine [82] and 1-octanol production [83].

Precursors for polyketide biosynthesis
Another critical factor for successful pathway recon-
struction is precursor supply. Acyl-CoA units are the 
building blocks of PKS biosynthesis. A sufficient sup-
ply of these molecules is hence needed for the heterolo-
gous production of polyketides in yeast. Various studies 
reported on the engineering of acetyl-CoA metabolism 
to improve the availability of this metabolite in the cyto-
sol. Proven approaches include the overexpression of the 
genes in the endogenous cytosolic acetyl-CoA biosyn-
thesis pathway, which increases the metabolic flux from 
ethanol via acetaldehyde to cytosolic acetyl-CoA [84], or 
the introduction of heterologous routes for acetyl-CoA 
generation [85]. Other PKS substrates with a limited 
cellular pool include propionyl-CoA and the important 
PKS extender units malonyl-CoA and methylmalonyl-
CoA [86, 87]. While propionyl-CoA is at least known to 
occur in yeast’s mitochondrial threonine catabolism [86, 
88, 89], methylmalonyl-CoA is no natural metabolite of 
S. cerevisiae [86, 88–90]. Therefore, the expansion of the 
acyl-CoA precursor pool is vital. To address this bot-
tleneck and achieve enhanced acyl-CoA precursor lev-
els, three fundamental strategies can be pursued. These 
strategies include (i) the manipulation of endogenous 
acyl-CoA pathways by repressor deregulation, silencing 
of degradation pathways, or overexpression approaches, 
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(ii) the feeding of acyl-CoA pathway precursors such as 
propionate, malonate or activated N-acetylcysteamine 
thioesters (SNAC-esters), and (iii) the refactoring of non-
native pathways for methylmalonyl-CoA, propionyl-CoA 
and butyryl-CoA biosynthesis [75, 86, 90].

In the focus of malonyl-CoA engineering is the enzyme 
acetyl coenzyme A carboxylase ACC1, which is responsi-
ble for the biosynthesis of malonyl-CoA from acetyl-CoA 
in a biotin and ATP-dependent reaction. Overexpression 
of acc1 by promoter exchange was reported to increase 
the malonyl-CoA pool in S. cerevisiae [87]. Furthermore, 
site-directed mutagenesis and subsequent deregulation 
of ACC1 enabled an improvement of polyketide biosyn-
thesis [91, 92]. A different approach involves the heter-
ologous expression of the codon optimized malonyl-CoA 
synthetase MatB from Rhizobium trifolii [28, 93]. Due 
to its substrate promiscuity MatB was also successfully 
used for the biosynthesis of methylmalonyl-CoA upon 
methylmalonate feeding [75]. The same precursor is also 
accessible through the reconstitution of a propionyl-CoA 
dependent methylmalonyl-CoA biosynthesis pathway. 
For this, the propionyl-CoA carboxylase (PCC) pathway 
was assembled in yeast by the introduction of three genes 
encoding a propionyl-CoA synthetase (PrpE), a tran-
scarboxylase subunit (PccB) and a biotin carrier protein/
biotin carboxylase subunit (AccA). This resulted in an 
efficient biosynthesis of methylmalonyl-CoA upon propi-
onate feeding [75].

Following the successful reconstruction of the PCC 
pathway in S. cerevisiae the intracellular propionyl-
CoA level could be further raised through a combina-
tion of promoter exchange of PrpE, propionate feeding 
and deletion of the (methyl)citrate synthase genes cit2/3 
to impede degradation [86]. The implementation of an 
artificial reverse β-oxidation pathway via yeast’s native 
acetoacetyl-CoA pathway and deletion of the degradative 
fatty acyl-CoA oxidase Pox1 gave access to butyryl-CoA, 
thereby expanding the diversity of precursor molecules 
for polyketide biosynthesis in yeast [86, 94, 95].

One of the most intensive efforts to optimize yeast 
for secondary metabolite biosynthesis was performed 
by Keasling and coworkers, who generated a recombi-
nant yeast producing multiple short-chain acyl-CoA 
esters [90]. For this purpose, they introduced pathways 
for the biosynthesis of isovaleryl-CoA, propionyl-CoA, 
butyryl-CoA and hexanoyl-CoA into S. cerevisiae. More-
over, they optimized the production of the extender unit 
methylmalonyl-CoA. Isovaleryl-CoA biosynthesis was 
implemented by reconstitution of a bacterial 3-meth-
ylglutaconyl-CoA hydratase (LiuC), a glutaconate-CoA 
transferase (AibA/B) and its corresponding dehydroge-
nase (AibC) harnessing yeast’s native acetoacetyl-CoA 
pool. Butyryl- and hexanoyl-CoA biosynthesis were 

established from acetyl-CoA by integration of the bac-
terial enzymes β-ketothiolase (BktB), 3-hydroxyacyl-
CoA dehydrogenase (PaaH1), crotonase (Crt), and 
trans-enoyl-CoA reductase (Ter). For propionyl- and 
methylmalonyl-CoA biosynthesis, two pathways were 
engineered starting from malonyl-CoA or propionate, 
respectively, without the necessity of an external pro-
pionate or methylmalonate feed. For this, the genes for 
malonyl-CoA reductase (McrCa), 3-hydroxypropionyl-
CoA synthase (3Hpcs), acryloyl-CoA reductase (Acr), 
3-hydroxypropionyl-CoA dehydratase (3Hpcd), as well 
as the PrpE and PCC complex (PccB/AccA) had to be 
expressed. A propionyl-CoA independent methylmalo-
nyl-CoA biosynthesis was established with a crotonyl-
CoA carboxylase/reductase (CcrCa) from Caulobacter 
crescentus replacing the Acr-PrpE-PCC pathway [90].

The presented examples show that acyl-CoA engi-
neering involves extensive interventions in yeast’s pri-
mary metabolism. Since this rewiring affects cofactor 
and redox equivalents availability as well as ATP supply, 
additional rebalancing must be considered for an opti-
mal pathway reconstruction [96]. The Crabtree effect, 
i.e. the redirection of the glycolytic flux towards ethanol 
under aerobic conditions [97, 98], deserves particular 
attention in this context. The Crabtree effect withdraws 
carbons from cytosolic acetyl-CoA biosynthesis and, 
thus, its elimination would be desirable for heterologous 
polyketide production in S. cerevisiae. Although ethanol 
formation can be impaired by targeted inactivation of 
corresponding alcohol dehydrogenases, this interven-
tion also affects growth and glucose utilization due to 
an accumulation of acetaldehyde and acetate [85, 99]. 
It is important to mention that such trade-offs between 
growth and precursor supply are not uncommon. In 
Crabtree-negative yeasts, the detrimental effects on 
growth can be at least partially relieved by improving the 
acetate to acetyl-CoA conversion and the consumption of 
acetyl-CoA [84, 85].

Precursors for nonribosomal peptide biosynthesis
In nonribosomal peptide synthesis, amino acids repre-
sent the main building blocks. Accordingly, an adequate 
supply of amino acid units for the heterologous produc-
tion of nonribosomal peptides is required. Of particular 
interest are shikimate-derived amino acids and aryl car-
boxylic acids such as 2,3-dihydroxybenzoate (DHBA), 
anthranilic acid or salicylic acid, since they are often lim-
iting constituents in NRPS biosynthesis [100–102].

The shikimate pathway in S. cerevisiae is subject to 
feedback inhibition, which occurs on multiple lev-
els and is linked to core metabolic pathways as gly-
colysis and the pentose phosphate pathway [100, 103]. 
Significant engineering efforts have been directed 
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towards 3-deoxy-D-arabino-heptulosonate-7-phosphate 
(DAHP) synthase (Aro3 and Aro4) and chorismate 
mutase (Aro7), which are key enzymes initiating aromatic 
amino acid biosynthesis from phosphoenolpyruvate 
(PEP) and erythrose-4-phosphate (E4P). The construc-
tion of feedback-insensitive DAHP synthase (Aro4) vari-
ants in conjunction with Aro4 and Aro7 overexpression 
increased the flux through the aromatic amino acid path-
way [104]. The pentose phosphate pathway was found to 
have a lower carbon flux availability compared to the PEP 
pathway. Nonetheless, a sufficient supply of the rate limit-
ing substrate E4P could be achieved by rewiring the pen-
tose phosphate pathway [105]. Some studies identified 
the reduced substrate affinity of DAHP synthase towards 
E4P in comparison to PEP as a potential bottleneck. 
To address this issue, the conversion of pentose to E4P 
was enhanced by overexpression of transketolase (Tkl), 
transaldolase (Tal1) and ribose-5-phosphate ketolisomer-
ase (Rki1) [100, 105, 106]. In addition, the deletion of 
glucose-6-phosphate dehydrogenase (Zwf1) blocked the 
oxidative branch of the pentose phosphate pathway [107]. 
However, diversion of the carbon flux from glycolysis 
towards E4P continues to be a challenging endeavor for 
the biosynthesis of shikimate-derived secondary metab-
olites. As an example, Liu and colleagues demonstrated 
the necessity of extensive adaptations in glycolysis, pen-
tose phosphate pathway, and shikimate metabolism in 
order to assemble an artificial para-coumaric acid path-
way from tyrosine and phenylalanine [105].

Reconstitution of type I PKSs and NRPSs in yeast
Reconstitution of type I PKSs
An analysis of literature databases revealed that a num-
ber of polyketides were already successfully produced 
in S. cerevisiae (Table  1). Among them are compounds 
of pharmacological value, such as the cholesterol lower-
ing agent simvastatin or the anthraquinone emodin. In 
addition, the biosyntheses of the chemical feedstocks 
6-methylsalicylic acid (6-MSA) and orsellinic acid (OSA) 
were reconstituted and extensively engineered in yeast. 
A closer inspection of the data in Table  1 shows that 
with one exception the heterologously synthesized com-
pounds derive from iteratively acting PKSs of fungal or 
plant origin. On the one hand, this observation might be 
attributed to the smaller size of the respective enzymes 
in comparison to multimodular, bacterial PKSs. On the 
other hand, it might be due to the closer relatedness 
between the native producer and the host. In the fol-
lowing, we will illustrate important developments in the 
heterologous production of polyketides in yeast using 
selected compounds as examples. We will start with OSA 
and 6-MSA (“Orsellinic acid and 6-methylsalicylic acid” 
section), which are assembled by prototypical NRPKS 

and PRPKS, respectively [1]. Furthermore, they turned 
out to be useful model compounds in heterologous 
expression studies due to their low structural complexity 
and easy detection [81, 108]. Afterwards we will highlight 
the studies towards the reconstitution of lovastatin bio-
synthesis (“Lovastatin and simvastatin” section). Lovas-
tatin serves as example for a HRPKS-derived compound 
and represents a molecule of commercial interest. In 
“Polyketides of bacterial origin” section, the heterologous 
expression of bacterial PKSs will be addressed.

Orsellinic acid and  6‑methylsalicylic acid  Orsellinic 
acid (OSA) possesses potent antioxidative, neuroprotec-
tive and free radical scavenging properties [131–133] and 
represents a common building block in many fungal and 
lichen-derived secondary metabolites, such as depsides. 
For example, OSA is the precursor of the monoamine 
oxidase B inhibitor confluentic acid [134], the cathepsin 
K inhibitor F-9775A/B [135] and of melleolide antibiot-
ics [136]. Its biosynthesis from one acetyl-CoA and three 
malonyl-CoA units is performed by the NRPKS orsellinic 
acid synthase (OSAS). OSAS was first isolated from Peni‑
cillium madriti in 1968 [137]. Since then homologs of this 
enzyme were identified in diverse fungal and lichen-asso-
ciated ascomycetes (e.g., Aspergillus nidulans) as well as 
in some basidiomycete species, among them Coprinopsis 
cinerea and Armillaria mellea [93, 135–138]. Structurally, 
OSA closely resembles 6-methylsalicylic acid (6-MSA), 
which is the product of a PRPKS named 6-MSA synthase 
(6-MSAS). However, the domain architecture of fungal 
OSAS is only in parts similar to 6-MSAS (Fig. 3). OSAS 
lacks the KR domain, but possesses two subsequent ACP-
domains, which is a typical feature of fungal NRPKSs. 
Furthermore, the fungal OSAS exhibits an additional 
off-loading TE domain, which controls the chain length 
and the cyclization of the final product [1, 135]. The DH 
domain of 6-MSAS is replaced by a related PT domain, 
which catalyzes the regioselective aldol cyclization and 
aromatization of the template [135, 139–141].

Interestingly, the occurrence of OSAS and 6-MSAS 
is not restricted to fungi. Instead, these enzymes were 
also reported for several bacteria in the order Actino-
mycetales, where they are involved in enediyne and oli-
gosaccharide antibiotic biosynthesis [142, 146, 147]. The 
domain organization in the bacterial OSAS deviates from 
its fungal counterpart and is actually more reminiscent 
of the 6-MSAS (Fig. 3) [1, 135, 144]. In fact, the bacterial 
OSAS only lacks the KR domain of 6-MSAS. Inactivation 
of the KR domain in a bacterial 6-MSAS can result in the 
biosynthesis of OSA instead of 6-MSA [144].

Ishiuchi et al. demonstrated for the first time the het-
erologous production of OSA and 6-methylorsellinic 
acid (6-MOSA) in S. cerevisiae with titers of 1.8 mg/l and 
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Table 1  Outline of microbial polyketides that were heterologously produced in S. cerevisiae, including the type of reconstituted PKS, 
its origin and product titer

Structural Class Compound PKS type, protein size,
domain architecture

Origin Product titer [mg/l] Literature

Anthracenone TAN-1612 and derivatives NRPKS, 1794 aa, 194.9 kDa,
SAT-KS-AT-PT-ACP

Fungal 8–10 [109]

Anthraquinone Emodin NRPKS, 1760 aa, 191.8 kDa,
SAT-KS-AT-PT-ACP

Fungal 592.5 [110]

Anthraquinone Endocrocin NRPKS, 1760 aa, 191.8 kDa,
SAT-KS-AT-PT-ACP

Fungal 134.5 [110]

Anthraquinone DMAC Type III, 404 aa, 44.6 kDa,
KS

Plant Not reported [111]

Benzoisochromane-
quinone

Dihydrokalafungin Type III, 404 aa, 44.6 kDa,
KS

Plant Not reported [111]

Benzochromenone (nor)-rubrofusarin NRPKS, 2067 aa, 225.1 kDa,
SAT-KS-AT-PT-ACP-TE

Fungal 0.2–1.1 [112]

Benzenediol lactone Brefeldin A precursors HRPKS, 2374 aa, 257.3 kDa,
KS-AT-DH-ER-KR-ACP

Fungal 0.5–4 [113]

Benzenediol lactone Monocillin II and 
pochonin D

HRPKS, 2383 aa, 260.2 kDa,
KS-AT-DH-core-ER-KR-ACP
NRPKS, 2090 aa, 228.6 kDa,
SAT-KS-AT-PT-ACP-TE

Fungal 1.3–15 [114]

Benzenediol lactone 7’,8’-dehydro-zearalenol HRPKS, 2349 aa, 253.6 kDa,
KS-AT-DH-core-ER-KR-ACP
NRPKS, 2049 aa, 222.9 kDa,
SAT-KS-AT-PT-ACP-TE

Fungal 20 [115, 116]

Benzenediol lactone 10,11-dehydro-curvularin HRPKS, 2389 aa, 260.6 kDa,
KS-AT-DH-MT*-KR*-ER-KR-ACP
NRPKS, 2079 aa, 227.7 kDa,
SAT-KS-AT-PT-ACP-TE

Fungal 11 [117]

Benzenediol lactone trans-resorcylide, 
zearalane, lasicicol, 
10,11-dehydro-curvu-
larin, …

HRPKS, varied,
KS-AT-DH-ER-KR-ACP
NRPKS, varied,
SAT-KS-AT-PT-ACP-TE

Fungal 8–9 [114, 115, 118–120]

Benzenediol lactone Monocillin II, 10,11-dehy-
drocurvularin, lasicicol, 
lasilarin, radilarin, 
radiplodin

HRPKS, varied,
KS-AT-DH-ER-KR-ACP
NRPKS, varied,
SAT-KS-AT-PT-ACP-TE

Fungal  
(combinatorial)

0.1–10 [118]

Benzo[b]xanthene Bikaverin NRPKS, 2036 aa, 221.5 kDa,
SAT-KS-AT-PT-ACP-TE/CLC

Fungal 0.7–41 [121]

Coumarin Mellein PRPKS, 1786 aa, 193.5 kDa,
KS-AT-DH-KR-ACP

Fungal Not reported [122]

Isocoumarin de-O-methyldiaporthin NRPKS, 2181 aa, 239.3 kDa,
SAT-KS-AT-ACP-ACP-TE/CLC*

Fungal 0.8–1.7 [93]

Furo[2,3-h]- isochromene Chaetoviridin A and 
cazaldehyde precursor

HRPKS, 2383 aa, 257.2 kDa,
KS-AT-DH-MT-ER-KR-ACP
NRPKS 2746 aa, 298.9 kDa,
SAT-KS_AT-PT-MT-ACP-R

Fungal 0.5–1 [123–125]

Lactone Triketide lactone Type I, ~ 180 kDa,
KS-AT-KR-ACP-TE

Bacterial  
(combinatorial)

0.5–1 [75]

Phenol 3-ethyl- and 3-propyl-
phenol

PRPKS, 1775 aa, 190.7 kDa,
KS-AT-DH-KR-ACP

Fungal 2.6–12.5 [86]

Phenolic acid m-cresol PRPKS, 1775 aa, 190.7 kDa,
KS-AT-DH-KR-ACP

Fungal 589 [126]

Phenolic acid 5-methyl-
orsellinic acid

NRPKS, 2590 aa, 283.7 kDa,
SAT-KS-AT-PT-ACP-ACP-MT-TE

Fungal Not reported [127]

Phenolic acid 6-methyl-
orsellinic acid

NRPKS, varied
SAT-KS-AT-DH-ACP-MT-RED or
SAT-KS-AT-DH-ACP-ACP-MT-EST

Fungal 0.5–1.7 [93]

Phenolic acid 6-methyl-
salicylic acid

PRPKS, 1775 aa, 190.7 kDa,
KS-AT-DH-KR-ACP

Fungal 200–2009 [80, 81, 87, 91, 126]
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0.5–1.7  mg/l, respectively [93]. The achieved OSA titer 
with S. cerevisiae is lower than in the native producer 
A. nidulans (3.7  mg/l) [135], which supplies a vast pool 
of acyl-CoA precursor units for the biosynthesis of pol-
yketides [148]. Therefore, a possible explanation for the 
lower production of OSA in yeast could be the limited 
availability of malonyl-CoA, which is a known bottleneck 
in its metabolism. Although MatB had been expressed 
in the heterologous host to increase its cellular malonyl-
CoA level, it is evident that this approach relies on an 
exogenous supply of malonate [75, 129, 149]. Since the 
uptake of malonate is assumed to depend on passive dif-
fusion [149–151], the concentration of available malonate 
in the culture medium could be a limiting factor for OSA 
biosynthesis in yeast. Further, the pH of the medium is 
of note, as it directly influences the equilibrium of the 
dissociated and undissociated form of malonic acid, and 
hence the ability of this precursor to cross the plasma 
membrane. A possible solution to promote malonate 
uptake, is the reconstitution of a functional malate per-
mease, e.g., Mae1 of Schizosaccharomyces pombe, which 
was previously demonstrated to compensate for the lack 
of malonate import [149, 150].

An alternative option for increasing the malonyl-CoA 
pool was pursued in the reconstitution of 6-MSA biosyn-
thesis. Here, the acetyl coenzyme A carboxylase ACC1 
was targeted (see “Precursors for polyketide biosynthe-
sis” section). For instance, the Nielsen group reported a 
6-MSA titer of 554 mg/l following the overexpression of 
ACC1 [87]. Another promising approach was described 
by the Da Silva group [91]. In this study, the negative 
regulation of ACC1 activity by the serine/threonine 
protein kinase Snf1 was abolished. As Snf1 is a globally 
acting regulator affecting several metabolic pathways, 
such as gluconeogenesis, β-oxidation and the general 
stress response, deletion of Snf1 was ineligible. Instead, 
the phosphorylation site of Snf1 in ACC1 was mutagen-
ized, following its identification in a sequence alignment 
between rat and S. cerevisiae ACC1. In this way, ACC1 
was successfully deregulated, which led to a threefold 

increase in 6-MSA production [91]. Noteworthy, the 
benefit of ACC1 deregulation with regard to malonyl-
CoA supply was also independently demonstrated by the 
Nielsen group, who analyzed its impact on the produc-
tion of fatty acid ethyl esters and 3-hydroxypropionic 
acid [92].

6-MSAS also served as a model enzyme to investi-
gate the influence of bacterial (Sfp) and fungal (NpgA) 
PPTases on polyketide biosynthesis in S. cerevisiae [80]. 
This study revealed that the fungal PPTase NpgA out-
performs Sfp in respect of 6-MSA product titers. The 
achieved titer was even superior to the native produc-
ers Aspergillus terreus and Penicillium griseofulvum [80]. 
Recently, the Boles group reported further important 
parameters for achieving high 6-MSA titers [126]. Ini-
tially, the group analyzed the production of this polyke-
tide in S. cerevisiae using different variants of 6-MSAS, 
which were constitutively expressed from a 2µ multicopy 
plasmid. These studies revealed that the adaptation of the 
6-MSAS codons to the tRNA pools in yeast has a strong 
positive effect on 6-MSA productivity. Furthermore, it 
was demonstrated that the selection of a suitable  cul-
tivation medium is crucial and should not be neglected 
in heterologous expression experiments. Notable prod-
uct titers were only obtained in a medium supporting 
high cell density growth. Further experiments suggested 
that the production of 6-MSA is primarily limited by the 
availability of the corresponding PKS. This bottleneck 
could be relieved by combined chromosomal and episo-
mal expression of 6-MSAS in S. cerevisiae [126].

The 6-MSA titers that were achieved in the aforemen-
tioned studies vary from 200 mg/l to 2 g/l and it can be 
assumed that this divergence is not only due to different 
genetic engineering strategies. Different host strains and 
cultivation conditions were used in these investigations, 
which makes a direct comparison of the reported titers 
difficult, if not impossible. Still, one can conclude that S. 
cerevisiae is a very promising host for the production of 
this polyketide, if the titers of the native producer P. gri‑
seofulvum and A. terreus (up to  0.2  mg/l) [80] or other 

An asterisk indicates an inactive domain. EST indicates an esterase/lipase. Additional information regarding the native producer organism, the properties of the 
expression strain, and the titer increase compared to the native producer are given in Additional file 1: Table S1

Table 1  (continued)

Structural Class Compound PKS type, protein size,
domain architecture

Origin Product titer [mg/l] Literature

Phenolic acid Orsellinic acid NRPKS, 1728 aa, 190.2 kDa,
KS-AT-PT-ACP-TE

Fungal 1.8 [93]

Statin Monacolin L and J acid HRPKS, 3038 aa, 335.0 kDa,
KS-AT-DH-MT-ER*-KR-ACP-C

Fungal 20–75 [128–130]

Statin Simvastatin HRPKS, 3038 aa, 335.0 kDa,
KS-AT-DH-MT-ER*-KR-ACP-C

Fungal 55
(in vitro)

[128]
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heterologous hosts, such as A. nidulans (455 mg/l) [152] 
are taken into account. The improvements in 6-MSA 
biosynthesis clearly underline the great potential for the 
high-level production of fungal polyketides in yeast. In 
particular, the overexpression and deregulation of ACC1 
should also be applicable to other systems, which rely on 
the sufficient availability of malonyl-CoA as precursor. 
ACC1 is the rate-limiting enzyme for the intracellular 
conversion of acetyl-CoA to malonyl-CoA and represents 
the major source of this relevant precursor for PKS bio-
synthesis. Other overarching concepts are codon opti-
mization and overexpression of PKS genes. In addition, 
fungal PPTases are likely advantageous for the heterolo-
gous expression of fungal PKSs.

Lovastatin and  simvastatin  Lovastatin is known as a 
potent cholesterol-lowering agent. Industrially, this poly
ketide is produced by solid state and submerged fermenta-
tion of the native producer A. terreus, which is a filamen-
tous fungus and opportunistic pathogen [153]. However, 
alternative non-pathogenic host systems with more 
favorable process properties, such as A. oryzae, P. pastoris 

and S. cerevisiae, have been explored for the production of 
lovastatin [154].

A pair of iteratively acting HRPKSs, namely the lov-
astatin nonaketide synthase LovB and the lovastatin 
diketide synthase LovF execute the biosynthesis of the 
two polyketide building blocks from which lovastatin is 
assembled. In detail, LovB synthesizes the intermediate 
dihydromonacolin L acid (DMLA) from malonyl-CoA 
and acetyl-CoA in cooperation with the enoylreductase 
LovC and the multifunctional esterase LovG. The DMLA 
intermediate is further processed by the cytochrome 
P450 monooxygenase LovA to form the intermediates 
monacolin L acid (MLA) and monacolin J acid (MJA) 
by successive dehydration and hydroxylation. This pro-
cess is assisted by the cytochrome P450 oxidoreductase 
CPR, which is functioning as an electron donor enzyme 
to regenerate the hem-containing LovA using the reduc-
ing equivalent NADPH. Subsequently, the LovF-derived 
diketide methylbutyryl-CoA is linked to MJA by the 
action of the thioesterase-like acyltransferase LovD to 
yield lovastatin (Fig. 4) [129, 130, 154–156].

In an initial reconstitution attempt, the lovasta-
tin nonaketide synthase LovB and the associated 

Fig. 3  Domain architecture of OSA- and 6-MSA-forming enzymes and their products. A OSAS from the ascomycete Aspergillus nidulans [135] and 
the basidiomycete Armillaria mellea [136]; B OSAS from the basidiomycete Coprinopsis cinerea [93]; C OSAS from the bacterium Micromonospora 
echinospora ssp. calichensis [142]; D 6-MSAS from the ascomycete Penicillium patulum [143]; E 6-MSAS from the bacterium Streptomyces antibioticus 
[144, 145]
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enoylreductase LovC were expressed from a plasmid in 
an NpgA-carrying yeast strain [157]. Although phospho-
pantetheinylation of LovB took place, the production 
of a monacolin precursor could not be observed. The 
absence of the corresponding metabolite was assumed 
to be caused by domain inactivity or impeded product 
shuttling. Subsequent in  vitro and in  vivo studies con-
firmed the incapability of LovB to release correctly pro-
cessed compounds and demonstrated the necessity of 
an interacting TE domain to direct the off-loading [129, 
130]. Although, TE domains from other PKSs, e.g., from 
the enzymes engaged in hypothemycin [116] and zearale-
none biosynthesis [158] were successfully used to com-
plement the production of DMLA, the achieved product 
titers remained extremely low with only 400 µg/l. Further 
research efforts identified LovG and not LovD as the 
native LovB-interacting TE domain. LovG proved also to 
be crucial for the correct iterative function of the entire 
enzyme complex. Not only does this enzyme catalyze 
the product release, but it is also involved in the clear-
ing of incorrectly processed intermediates from LovB, 
thus having an important proofreading function dur-
ing chain elongation. In the contrary, the second TE-like 
enzyme LovD was identified to exclusively interact with 
the lovastatin diketide synthase LovF. The importance of 
these findings could be demonstrated in another expres-
sion study. Coexpression of lovG, lovC and lovB yielded a 

titer of 35 mg/l DMLA in vivo. Episomal coexpression of 
lovB, lovC, lovG, lovA and the cpr from A. terreus, which 
served to bypass redox limitations, eventually led to the 
production of the lovastatin precursor MJA with a titer of 
20 mg/l [130].

Up to now, the total biosynthesis of lovastatin has 
not been established in yeast. However, the Tang group 
recently described the biotechnological production 
of simvastatin (Fig.  4) [128], which is a semisynthetic 
derivative of lovastatin. For this, the essential pathway 
genes for MJA biosynthesis were expressed together 
with lovD in S. cerevisiae. Methylbutyryl-CoA, which is 
required for lovastatin biosynthesis, but cannot be gen-
erated in yeast in the absence of LovF was replaced with 
the artificial acyl donor α-dimethylbutyryl-S-methyl-
mercaptopropionate (DMB-SMMP). The latter was fed 
to the expression culture and, subsequently, introduced 
into the biosynthesis exploiting the natural substrate 
promiscuity of LovD. Initially, only 0.5 mg/l simvastatin 
were produced, but extensive engineering efforts helped 
to increase the polyketide yield considerably. Specifically, 
the authors knocked out the pyruvate carboxylase Pyc2 
and the lysophospholipase Nte1, which is involved in 
lipid biosynthesis regulation. Furthermore, overexpres-
sion of LovA increased the conversion of DMLA to MJA, 
resulting in a maximum titer of 75  mg/l MJA. Another 
engineering target was the LovD-catalyzed reaction, 

Fig. 4  A Biosynthesis of lovastation and generation of its semisynthetic analogue simvastatin. LovB lovastatin nonaketide synthase (LNKS), LovC 
enoylreductase, LovG multifunctional esterase, LovA cytochrome P450 monooxygenase, CPR cytochrome P450 reductase, LovF lovastatin diketide 
synthase (LDKS), LovD thioesterase-like acyltransferase, DMB-SMMP dimethylbutyryl-S-methyl mercaptopropionate. B Domain architectures of LovB, 
LovC and LovF. ER0 dysfunctional enoylreductase



Page 12 of 24Tippelt and Nett ﻿Microb Cell Fact          (2021) 20:161 

which had been identified as a major bottleneck in simva
statin production. Experimental evidence indicated that 
pH-dependent transport limitations and toxicity issues of 
DMP-SMMP impeded higher conversion rates. Although 
adjustment of the culture pH had a positive effect on 
simvastatin production, the achieved titer (5.9 mg/l) was 
still low, corresponding to a MJA conversion of less than 
15%. When DMP-SMMP was added to a freshly pre-
pared lysate of the MJA-producing and LovD-expressing 
S. cerevisiae strain, the simvastatin titer increased up to 
55 mg/l [128].

Important lessons were learnt from the reconstitu-
tion of lovastatin biosynthesis genes in yeast, which can 
be regarded as a showcase for complex HRPKS systems. 
First, TE-mediated proofreading and product release 
were identified as crucial factors in the overall produc-
tion performance. The example of LovG shows that, con-
trary to PPTases, TE domains cannot be easily replaced 
by nonnative enzymes if high yields are to be obtained, 
especially when the TE has further proofreading func-
tionalities. Secondly, PKS performance might depend 
on interactions with tailoring enzymes. The balancing of 
biocatalytic activities can pose a formidable challenge for 
the genetic engineer. Last, yet importantly, we note that 
substrate and/or product toxicity as well as transport 
limitations can have a considerable impact on the pro-
ductivity of a heterologous host. Although such issues are 
not always foreseeable, they can be solved by procedural 
improvement, as nicely illustrated in the production of 
simvastatin with a yeast cell extract.

Polyketides of bacterial origin  The only example in which 
a modular type I PKS of bacterial origin was reconsti-
tuted in yeast has been reported by the Kealey group and 
involved the production of triketide lactone (TKL) [75]. 
For this, the researchers used an artificial enzyme com-
prising module 2 of the deoxyerythronolide B megasyn-
thase (DEBS) fused directly to the DEBS-TE domain 
[159, 160]. The corresponding PKS gene was coexpressed 
with tRNA genes to support the sufficient translation of 
codons that are rarely used by yeast. In addition, refactor-
ing of the PrpE-PCC pathway (see “Precursors for poly
ketide biosynthesis” section) and feeding of propionate 
and N-acetylcysteamine-propyl-diketide thioesters were 
necessary to achieve TKL production, albeit at very low 
titers (0.5–1 mg/l) [75].

Recently, Jakočiūnas and colleagues attempted to 
express the bacterial type II PKS, which is involved in 
actinorhodin biosynthesis, in S. cerevisiae [111]. Despite 
using codon optimized genes, no evidence for the pro-
duction of actinorhodin or any of its biosynthetic inter-
mediates was obtained. Although the actinorhodin PKS 
is structurally different from type I PKS systems, this 

finding underlines the difficulty to reconstitute bacte-
rial PKSs in yeast. It is particularly noteworthy that 
Jakočiūnas and colleagues still achieved the production 
of a late stage actinorhodin intermediate named dihy-
drokalafungin in yeast by replacing the actinorhodin PKS 
with a plant-derived type III PKS. The latter had been 
described to generate a polyketide of identical chain-
length as the bacterial PKS and was now successfully 
combined with other heterologous enzymes from the 
actinorhodin pathway [111].

Apart from the two aforementioned studies, we did 
not find further references on the production of bacterial 
polyketides with S. cerevisiae. Due to the lack of litera-
ture reports, it remains elusive if yeast actually represents 
a suitable host for multimodular, bacterial PKSs. In fact, 
the requirements to express bacterial type I PKSs in  
S. cerevisiae are multifold and still underexplored in 
many aspects. Dependency on external substrate sup-
ply in case of rare acyl-CoAs, expression of G + C rich 
genes, codon usage, coexpression of bacterial tRNAs to 
compensate translation bottlenecks and provision of ste-
reoisomers for selective PKS domains are only some of 
the issues to consider, when switching from a bacterial 
to a yeast host system. Since the functional expression of 
bacterial PKSs in yeast seems to require extensive engi-
neering efforts, alternative approaches, such as the use of 
analogous enzymes [111], might be more worthwhile.

Reconstitution of NRPS
Similar to the situation with PKSs, S. cerevisae has been 
preferentially used as a host for NRPSs of fungal origin 
(Table  2). A closer analysis of the successfully reconsti-
tuted assembly lines reveals that they are distinguished 
by a comparatively modest size. The largest NRPSs, 
which were transferred to yeast, are the ACV synthetase 
from penicillin biosynthesis and the fumiquinazo-
line F-forming synthetase TqaA, with a size of 426 and 
438  kDa, respectively. Although the two enzymes could 
be functionally expressed, the observed product titers 
were extremely low. Much more promising results were 
obtained after the reconstitution of smaller NRPS sys-
tems, featuring only one or two adenylation domains. 
Among them, those enzymes that deviate from the lin-
ear assembly mechanism of NRPSs were found to sup-
port particularly high product titers in yeast. Examples 
are the beauvericin NRPS and the atromentin synthetase. 
Overall, this suggests a correlation between the size of 
the heterologously expressed enzyme and the achiev-
able product titer. The following paragraphs highlight 
the reconstitution of exemplary NRPSs. The penicillin 
NRPS ("Penicillin" section) was chosen to represent the 
enzymes following a sequential or linear assembly strat-
egy, in which every module is recruited only once during 
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the biosynthesis. This selection was made because of the 
medicinal importance of penicillin. The biosyntheses of 
beauvericin and of the related bassianolide are carried 
out by iteratively acting NRPSs. Unlike the atromentin 
synthetase, these enzymes feature a canonical domain 
architecture including C domains, which is why they are 
discussed in detail here (“Beauvericin and bassianolide” 
section). In “Indigoidine” and “Peptides derived from 
multimodular bacterial NRPSs” sections, we will intro-
duce the only bacterial NRPSs that were successfully 
reconstituted in yeast, namely the indigoidine NRPS and 
a combinatorial enzyme.

Penicillin  The β-lactam benzylpenicillin (syn. penicil-
lin G) is naturally produced by the filamentous fungi 
Penicillium chrysogenum and P. notatum. It is a potent 

inhibitor of bacterial cell wall biosynthesis and one of the 
groundbreaking discoveries of the twentieth century to 
treat infectious diseases. In P. chrysogenum the biosyn-
thesis of penicillin involves four enzymes: PcbAB, PcbC, 
PclA, and PenDE. The trimodular NRPS PcbAB, which is 
also known as ACV synthetase, initiates the biosynthesis 
with the assembly of the intermediate ACV from l-α-
aminoadipic acid, l-cysteine and l-valine. Subsequently, 
the isopenicillin N synthase PcbC catalyzes the charac-
teristic β-lactam ring formation, which converts ACV 
into isopenicillin N. The final biosynthetic step is per-
formed by the acyl-CoA-isopenicillin N acyltransferase 
PenDE in conjunction with the phenylacetyl CoA-ligase 
PclA. These two enzymes, which are located in the perox-
isome of P. chrysogenum, are responsible for the replace-
ment of the α-aminoadipyl moiety with a phenylacetic 

Table 2  Outline of NRPS-derived secondary metabolites that were heterologously produced in S. cerevisiae, including characteristics 
of the reconstituted NRPS, its origin and product titer

An asterisk indicates an inactive domain. Additional information regarding the native producer organism, the properties of the expression strain, and the titer increase 
compared to the native producer are given in Additional file 1: Table S2

Structural Class Compound NRPS assembly mode, protein 
size, and domain architecture

Origin Product titer [mg/l] References

β-Lactam Benzylpenicillin linear, 3791 aa, 426.0 kDa,
A-PCP-C-A-PCP-C-A-PCP-E-TE

Fungal 14.9 × 10–6 [24, 48]

Benzodiazepine Asperlicin C/D iterative, 2442 aa, ~ 276 kDa,
A-PCP-C-A-PCP-C

Fungal Not reported [161]

Benzodiazepine Benzo-diazepinedione linear, 2359 aa, 261.4 kDa,
C-A-PCP-C-A-PCP-E

Fungal 2 [76]

Benzoquinone Atromentin iterative, 921 aa, 101.9 kDa,
A-PCP-TE

Fungal Not reported [162]

Cyclic dipeptide Tryprostatin A/B linear, 2211 aa, 242.8 kDa,
A-PCP-C-A-PCP-C

Fungal 0.1–36 [163, 164]

Cyclodepsipeptide Bassianolide iterative, 3147 aa, 348.3 kDa,
C-A-PCP-C-A-MT-PCP-PCP-C

Fungal 21.7–26.7 [165, 166]

Cyclodepsipeptide Beauvericin iterative, 3190 aa, 351.9 kDa,
C-A-PCP-C-A-MT-PCP-PCP-C

Fungal 33.8–105.9 [165, 166]

Dioxolane Phenguignardic acid iterative, 947 aa, 104.5 kDa,
A-PCP-TE

Fungal 15 [162]

Dipeptide D-Phe–L-Leu linear, 1088 aa, 122.7 kDa,
A-PCP-E
linear, 1276 aa, 143.9 kDa,
C-A-PCP-TE

Bacterial 
(combina-
torial)

Not reported [167]

Furanone Aspulvinone E iterative, 926 aa, 102.4 kDa,
A-PCP-TE

Fungal 13 [162]

Furanone Butyrolactone IIa iterative, 931 aa, 102.6 kDa,
A-PCP-TE

Fungal 35 [162]

Phenolic aldehyde 2,4-dihydroxy-5,6-dimethyl-benzalde-
hyde

iterative, 2590 aa, 283.7 kDa,
SAT-KS-AT-PT-ACP-ACP-MT-TE linear, 

1069 aa, 118.9 kDa,
A-ACP-R

Fungal Not reported [127]

Pyridone Indigoidine iterative, 1283 aa, 141.2 kDa,
A-Ox-PCP-TE

Bacterial 980 [82]

Pyridone Preaspyridone iterative, 3930 aa, 431.3 kDa,
KS-AT-DH-MT-ER*-KR-ACP-C-A-PCP-R

Fungal 4 [168]

Quinazoline (7-hydroxy)-fumiquinazoline F linear, 3955 aa, 437.9 kDa,
C-A-PCP-C-A-PCP-E-C-A-PCP-C

Fungal 0.4–2 [76, 93]
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acid unit, converting isopenicillin N to benzylpenicillin 
(Fig. 5) [169].

Early attempts to refactor β-lactam biosynthesis 
in yeast were described by Siewers et  al. [170]. The 
researchers used a plasmid for the combined expres-
sion of PcbAB and the PPTase NpgA, applying a galac-
tose-inducible, bi-directional promoter system. This 
approach yielded low amounts of the ACV intermediate 
(1 µg/g dry cell weight). While initial efforts to improve 
this titer, including the use of different PPTases and 
codon optimization of PcbAB, were met with limited 
success, the reduction of the cultivation temperature 
from 30 to 20 °C increased the ACV production titer to 
1 mg/g dry cell weight. This result was attributed to an 
improved solubility of the expressed proteins. Surpris-
ingly, the chromosomal integration of the biosynthetic 
genes dramatically decreased the product yield, which 
was referred to a lower dosage of the biosynthesis genes 
in comparison to a plasmid-based expression [170].

Despite this observation, Awan et  al. chose to inte-
grate the pcbAB-npgA expression cassette into the 
TRP1 locus of S. cerevisiae, when they attempted to 
reconstruct the entire penicillin pathway [48]. The 
missing three pathway genes, pcbC, pclA and penDE, 
were expressed from a plasmid. Subsequent investiga-
tions revealed that the production of benzylpenicillin 
depends on correct protein sorting in the heterologous 
host. In the native penicillin producer P. chrysogenum, 
the two enzymes PclA and PenDE are located in the 
peroxisome, which is essential for their functional-
ity [169, 171, 172]. The organelle is not only provid-
ing a microenvironment close to the ideal pH of these 
enzymes, but also enables an efficient biosynthesis by 
the accumulation of enzymes and substrates. A simi-
larly high substrate concentration is not possible in the 
cytoplasm due to toxicity issues [169, 173].

To probe the translocation of PclA and PenDE into the 
yeast’s peroxisome, Awan et al. used fluorescence tagging 
and microscopy. This analysis showed that the native per-
oxisome targeting sequence of these two enzymes is not 
compatible with the protein sorting system of S. cerevi‑
siae. To solve this problem, the inherent transit peptide 
sequences of PclA and PenDE were replaced with corre-
sponding signal sequences of S. cerevisiae. This approach 
successfully directed both enzymes into the host’s per-
oxisome and led to an initial penicillin G titer of 90 pg/
ml. After the expression conditions for each biosynthesis 
gene had been optimized by screening different promoter 
combinations, benzylpenicillin production reached 
5 ng/ml [48]. In another study, the same research group 
replaced the originally applied YRp system with a YEp 
expression vector in an engineered yeast strain. The ele-
vated copy number of the 2μ-derived plasmid promoted 

the expression of the biosynthesis genes and raised the 
production titer of benzylpenicillin to 14.9 ng/ml [24].

It is evident that the constructed recombinant  
S. cerevisiae strains cannot compete with industrial  
P. chrysogenum strains, which achieve titers of 40–50 g/l 
[174]. Nonetheless, the heterologous production of ben-
zylpenicillin is a noteworthy achievement. Not only does 
it illustrate the possibility to functionally express multi-
modular NRPS systems in yeast, but it also highlights the 
importance to consider subcellular localization of bio-
synthesis enzymes in heterologous hosts. Furthermore, it 
was demonstrated once again that the balanced expres-
sion of pathway genes, the expression background and 
the choice of cultivation conditions each have a signifi-
cant impact on the productivity of the host.

Beauvericin and  bassianolide  In nature, the two 
cyclodepsipeptides beauvericin and bassianolide are pro-
duced by the ascomycete Beauveria bassiana ATCC 7159. 
They are composed of alternating d-hydroxyisovaleric acid 
(d-Hiv) and N-methyl-amino acid units (l-phenylalanine 
in beauvericin or l-leucine in bassianolide biosynthesis). 
The NRPSs, which are involved in the cyclooligomeriza-
tion of these building blocks exhibit an unusual domain 
architecture featuring two successive PCP domains and a 
C-terminal C domain (Fig. 6). This organization is likely 
important for their specific mode of operation. During 
each iterative cycle, modules 1 and 2 recruit and con-
nect the respective monomers, though it is still unclear 
whether the actual oligomerization involves an elongation 
in dipeptidol units (parallel mode) or the successive addi-
tion of monomers (linear or looping mode). In any case, 
the C-terminal C domain stops the biosynthesis after a 
defined chain length has been reached through macrocy-
clization [166, 175].

From a medical perspective, beauvericin and bassia-
nolide are interesting due to their potent antiprolifera-
tive, antifungal, antibiotic, anthelminthic and insecticidal 
activities. Of further note are their effects on human 
cancer cells by activating apoptotic pathways and inhibit-
ing cell motility as well as metastasis [165, 176, 177]. It is 
therefore not surprising that these cyclodepsipeptides are 
attractive targets for heterologous production. Both, the 
beauvericin and the bassianolide NRPS, were individually 
expressed from a plasmid in a S. cerevisiae strain with a 
chromosomal copy of the NpgA-PPTase gene [165]. This 
resulted in production titers equivalent to those observed 
in B. bassiana, i.e., 33.8 mg/l beauvericins and 21.7 mg/l 
bassianolide, respectively. Feeding of the natural precur-
sors d-Hiv, l-phenylalanine and l-leucine improved the 
titer to 42.2 mg/l beauvericins and 26.7 mg/l bassianolide. 
To avoid expensive precursor feeding and support in situ 
d-Hiv formation, a pathway-associated ketoisovalerate 
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reductase (KIVR) from B. bassiana, which converts 
l-valine into d-Hiv, was overexpressed in the beau-
vericin-producing S. cerevisiae strain. This resulted in 
a further product titer increase up to 105.8  mg/l [165]. 
Interestingly, the feeding of more than 10  mM l-valine 
had a detrimental effect on beauvericin biosynthesis. 
Overall, optimization of precursor supply and reconsti-
tution of the pathway associated enzyme KIVR allowed 
the heterologous production of beauvericins and bassia-
nolide in better titers than those observed in the native 
producer.

Indigoidine  A bacterial NRPS, which was function-
ally expressed in S. cerevisiae, catalyzes the production 
of the pigment indigoidine. The domain architecture of 
the indigoidine synthetase (BpsA) is even more unusual 
than the aforementioned beauvericin NRPS. Unlike the 
latter, BpsA completely lacks a C domain and consists 
only of an A domain with an integrated oxidation (Ox) 
domain, a PCP and a TE domain. According to the actual 
biosynthetic model, indigoidine is assembled from two 
l-glutamine monomers, which are individually cyclized 

by BpsA. Upon their TE-mediated release, the two amino 
acid moieties undergo a spontaneous oxidative dimeri-
zation (Fig. 7), similar to the biosynthesis of indigo from 
two indoxyl molecules [178]. The Ox domain in BpsA was 
proposed to dehydrogenate both l-glutamine monomers 
at the C2-C3 positions, although it is still elusive, if the 
oxidation occurs on PCP-bound substrates.

The blue pigment indigoidine has attracted some inter-
est as an environmentally friendly dye, which is why its 
heterologous production was probed in S. cerevisiae 
[82, 179]. Briefly, a codon-optimized bpsA gene was sta-
bly integrated into the yeast genome using a CRISPR-
Cas9 approach [82]. Furthermore, the Sfp-PPTase was 
integrated into the yeast’s δ-sites [180], following a 
multicopy-integration protocol, which increases the 
copy number and stabilizes the insert [181]. Although 
not stated in the corresponding publication, this likely 
improved the phosphopantetheinylation of the intro-
duced NRPS. In sum, these efforts culminated in a yeast 
strain producing indigoidine.

An interesting observation was made during these 
investigations. Although the bpsA gene was constitutively 

Fig. 5  Penicillin biosynthesis in Penicillium chrysogenum. Domain notation: A adenylation, PCP peptidyl carrier protein, C condensation, E epimerase, 
TE thioesterase
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expressed, pigment production was clearly delayed in 
comparison to biomass formation when glucose was 
used as a carbon source. Investigations on carbon source 
dependency and production dynamics revealed that 
indigoidine formation is linked to carbon depletion and 
respiration of non-fermentable carbon sources. This 
can be explained by an increased flux of the TCA cycle 
during respiration and therefore an elevated concentra-
tion of α‑ketoglutarate, which is the direct precursor of 
l-glutamine. Subsequently, carbon depletion was imple-
mented into large-scale process development, using a sig-
nal-based pulse feeding strategy. After total consumption 
of glucose and fermentative by-products, the pulse-feed 
was applied to maintain the metabolic state of respira-
tion without the loss of biomass formation. Because of 
discrete production timing, the indigoidine titer could 
be raised up to 980 mg/l. In this regard, the recombinant 
yeast is outperforming the native producer Streptomyces 
lavendulae, which synthesizes only 5.5  mg/l of pigment 
[178]. However, it should be mentioned that indigoidine 
has also been heterologously produced in bacterial hosts, 
such as Streptomyces lividans, E. coli and Pseudomonas 
putida. Especially the industrially relevant P. putida 

turned out to achieve very high product titers of up to 
25.6 g/l [182].

Nonetheless, S. cerevisiae can be considered as a suit-
able host for industrial indigoidine production, although 
further optimization is necessary to compete with  
P. putida. The example of indigoidine illustrates that 
pathway reconstitution requires a profound knowledge of 
the metabolic state and catabolic process regulations of 
the host at set fermentation conditions.

Peptides derived from multimodular bacterial NRPSs  It 
is quite obvious that the indigoidine synthetase cannot 
serve as a paradigm for the expression of bacterial NRPSs 
in S. cerevisiae due to its peculiarities. In fact, informa-
tion on the reconstitution of bacterial, multimodular 
NRPSs is scarce. A noteworthy exception is a study by 
Siewers et al., in which modules from two different bac-
terial NRPSs, namely the tyrocidine synthetase (TycA) 
and the surfactin synthetase (SrfAC), were introduced 
into yeast and individually expressed from 2µ multi-
copy plasmids [167]. To enable a functional interaction 
between the TycA and SrfAC modules, they had been 
furnished with compatible communication-mediating 

Fig. 6  Proposed model for beauvericin biosynthesis. Domain notation: C condensation, A adenylation, PCP peptidyl carrier protein, MT 
N-methyltransferase, C* starter condensation domain, CT C-terminal condensation domain

Fig. 7  Proposed model for indigoidine biosynthesis. Domain notation: AL-Gln adenylation domain selective for L-glutamine, Ox oxidation domain, 
PCP peptidyl carrier protein, TE thioesterase
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(COM) domains. These domains are known to mediate 
the necessary protein–protein interactions in multimod-
ular megasynthetase complexes to synergistically direct 
the assembly of a final product [183, 184]. The successful 
expression of both, TycA and SrfAC, was demonstrated 
by fluorescence microscopy after fusion of the NRPSs to 
fluorescent proteins. Furthermore, the in  vivo assembly 
of an artificial dipeptide was shown by LC/MS analyses, 
which confirmed the functionality of this artificial NRPS 
assembly line (Fig.  8). This result is noteworthy for two 
reasons. First, it illustrated a useful option for combina-
torial reprogramming of NRPSs. Secondly, the module 
splitting approach bears considerable potential for the 
successful reconstitution of large multimodular NRPSs in 
S. cerevisiae.

Conclusions
The polyketides and nonribosomal peptides that were 
heterologously produced in S. cerevisiae range from 
small aromatic molecules like 6-MSA and orsellinic acid 
to highly complex molecular scaffolds (Tables  1 and 2). 
The structural complexity of a product has apparently 
no effect on the success of a reconstitution approach. 
Strikingly, the majority of these compounds derive from 
iteratively acting NRPS or PKS systems. In contrast, there 
are only few compounds, such as fumiquinazoline F and 
benzodiazepinedione, which are biosynthesized on mul-
timodular assembly lines in a linear fashion. One reason-
able explanation for this circumstance could be the size 
of the reconstituted megaenzymes. The iterative enzymes 
only comprise a minimal set of catalytic domains that are 
used repetitively. Due to their small size, the ribosomal 
synthesis of these proteins imposes a bearable metabolic 
burden for the cell. In the contrary, the expression of 
large multimodular assembly lines might interfere with 
the endogenous protein biosynthesis of the host. Similar 
assumptions have been made by Süssmuth and Mainz, 

who speculated that multimodular NRPSs are energeti-
cally more costly and more prone to misfolding as well as 
proteolysis than iterative synthetases [2]. The metabolic 
burden hitherto has not received much attention in path-
way reconstitution approaches. However, our literature 
survey indicates that successful heterologous produc-
tion in yeast is likely connected to the size and maybe 
the assembly mode (linear or iterative) of the expressed 
enzyme. Therefore, the extent of the metabolic burden 
caused by heterologous expression should be considered 
as a limiting factor in both, PKS and NRPS, reconstitu-
tion. Adjustments, such as tRNA pool optimization and 
expression temperature reduction, can promote a suc-
cessful reconstitution, as exemplified in TKL [75] and 
ACV [170] biosynthesis. An interesting approach for 
multimodular pathway reconstruction might further be 
found in the “split-module” approach, which was tested 
successfully to assemble an artificial dipeptide [167].

Apart from metabolic burden constraints, our litera-
ture analysis exposed four central issues and solution 
concepts, which are particularly relevant for producing 
polyketides and nonribosomal peptides in yeast. They 
can be summarized as (i) sufficient availability of biosyn-
thetic precursors, (ii) adequate phosphopantetheinyla-
tion of the PKSs and/or NRPSs, (iii) balanced expression 
of tailoring enzymes, and (iv) efficient expression of PKSs 
and NRPSs.

	(i)	 The biosynthesis of polyketides and nonribosomal 
peptides undoubtedly requires a high and reliable 
level of precursor molecules. This can be achieved 
by in  situ biosynthesis exploiting the primary 
metabolism of the host or by exogenous supply. 
A rate-limiting bottleneck for the biosynthesis of 
malonyl-CoA is the acetyl coenzyme A carboxylase 
ACC1. On the one hand, ACC1 represents the only 
intrinsic source of this relevant PKS precursor in 
S. cerevisiae. On the other hand, it is affected by a 

Fig. 8  Combinatorial biosynthesis of a dipeptide using the tyrocidine (TycA) and surfactin (SrfAC) synthetases. Domain notation: A adenylation, PCP 
peptidyl carrier protein, E epimerization, COM communication-mediating, TE thioesterase
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strict catabolite-directed regulation through Snf1. 
Promising concepts to circumvent the bottleneck 
of insufficient malonyl-CoA production encompass 
ACC1 overexpression [87] and Snf1-deregulation 
[91, 92]. Also, a combination of both principles can 
be advantageous to increase the overall production 
performance, as exemplified in 6-MSA biosynthe-
sis. An alternative approach to bypass substrate 
limitations is the assembly of non-native precur-
sor routes, such as the MatB-catalyzed reaction 
from malonate to malonyl-CoA [28, 75, 93, 185]. 
The exogenous supply of biosynthetic precursors 
presupposes a sufficient cellular uptake by passive 
diffusion and/or dedicated transport systems. If 
substrate uptake is an issue, one might consider the 
reconstitution of appropriate uptake system. An 
illustrative example is the transporter Mae1 from 
Schizosaccharomyces pombe, which can be used 
to compensate for the lack of malonate uptake in 
S. cerevisiae [149]. A generally applicable option 
is to produce the PKSs and NRPSs recombinantly 
in yeast, but to conduct the biosynthesis under 
in vitro conditions following cell lysis. In this way, 
transport limitations can be circumvented, as 
nicely demonstrated in simvastatin biosynthesis 
[128].

	(ii)	 Phosphopantetheinylation is essential for the acti-
vation of NRPSs and PKSs and can be addressed 
by overexpression of PPTase genes in S. cerevisiae. 
While a clear recommendation for a specific type 
of PPTase cannot be deduced from the analyzed 
studies, it seems that the PPTase NpgA from A. 
nidulans is slightly better adapted for the activa-
tion of fungal PKSs and NRPSs than its bacterial 
homolog Sfp [80].

	(iii)	 There are many enzymes other than PKSs and 
NRPSs, which are involved in the processing and 
proofreading of biosynthetic intermediates. These 
tailoring enzymes can play a pivotal role in sec-
ondary metabolite biosynthesis and it has become 
clear that their mere co-expression is often insuffi-
cient to achieve high product titers in S. cerevisiae. 
Instead, a balanced expression of tailoring enzymes 
is necessary, which must also take specific require-
ments such as subcellular localization, pH optima 
and cofactor availability into account.

	(iv)	 A universal approach to elevate polyketide and 
nonribosomal peptide biosynthesis is based on 
overexpression of PKS and NRPS genes. For this, 
various strategies were pursued including the usage 
of strong constitutive promoters, the expression 
from multicopy (2µ-based) plasmids, or multi-
copy genomic integration. While overexpression 

was in general beneficial to increase the product 
yield, there is no clear evidence, which promoter 
or multicopy approach is superior. Still, there are 
only few investigations on how a balanced expres-
sion of single pathway enzymes can be used to 
minimize enzymatic bottlenecks in the concerted 
product formation of tailoring enzymes and PKS/
NRPS assembly lines. Screening of different pro-
moter combinations for all biosynthesis enzymes 
is a straightforward approach to identify expres-
sion conditions that lead to high product titers 
[48]. Another very useful strategy is to improve the 
translational efficiency, which is particularly impor-
tant for large proteins such as PKSs and NRPSs. 
This can be implemented by codon adaptation, as 
demonstrated in 6-MSA production [126], or by 
expressing tRNA genes with anticodon sequences, 
which are scarce in S. cerevisiae [75].

In summary, polyketides and nonribosomal peptides 
can be heterologously produced in S. cerevisiae. The 
existing literature indicates that it is even possible to 
exceed the titers of the native producer, depending on 
the type of biosynthesis enzyme and additional meta-
bolic engineering efforts. It is conceivable that other 
yeasts with higher biomass yields might be superior to  
S. cerevisiae in terms of polyketide and nonriboso-
mal peptide production, yet there are only few studies 
addressing this topic [186–191]. Recurring issues that 
are associated with the heterologous production of PKS- 
and NRPS-derived metabolites in S. cerevisiae have been 
described in this review together with possible solu-
tion strategies. We, the authors, hope that readers will 
find this review a useful guide for own PKS and NRPS 
reconstitution experiments in this exciting microbial 
workhorse.
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