TABLE 5.
Logistic regression model performances on testing data showing the median (90% CI) for each image and tissue type (ROI) (median values above 0.7 for all the performance metrics for the same model are highlighted with bold font).
| ROI | Image | Accuracy | AUC | Sensitivity | Specificity | 
| WM | T1w | 0.74 (0.66, 0.82) | 0.90 (0.84, 0.95) | 0.76 (0.67, 0.86) | 0.72 (0.59, 0.82) | 
| PD | 0.64 (0.58, 0.71) | 0.98 (0.95, 1.00) | 1.00 (1.00, 1.00) | 0.28 (0.17, 0.42) | |
| MT | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | |
| R1 | 0.82 (0.76, 0.88) | 1.00 (1.00, 1.00) | 0.64 (0.52, 0.75) | 1.00 (1.00, 1.00) | |
| R2* | 0.73 (0.63, 0.83) | 0.86 (0.78, 0.93) | 0.76 (0.62, 0.86) | 0.72 (0.58, 0.84) | |
| qMRIcomb | 0.93 (0.88, 0.97) | 1.00 (1.00, 1.00) | 1.00 (1.00, 1.00) | 0.86 (0.77, 0.94) | |
| NAWM | T1w | 0.73 (0.66, 0.82) | 0.86 (0.77, 0.93) | 0.76 (0.64, 0.87) | 0.70 (0.59, 0.81) | 
| PD | 0.37 (0.30, 0.44) | 0.67 (0.55, 0.81) | 0.74 (0.60, 0.87) | 0.00 (0.00, 0.00) | |
| MT | 0.81 (0.74, 0.89) | 0.79 (0.69, 0.90) | 0.76 (0.64, 0.87) | 0.86 (0.77, 0.94) | |
| R1 | 0.87 (0.80, 0.93) | 0.97 (0.93, 0.99) | 0.88 (0.77, 0.98) | 0.86 (0.77, 0.94) | |
| R2* | 0.66 (0.56, 0.76) | 0.83 (0.73, 0.94) | 0.76 (0.64, 0.87) | 0.56 (0.40, 0.72) | |
| qMRIcomb | 0.74 (0.67, 0.81) | 0.82 (0.73, 0.90) | 0.62 (0.48, 0.77) | 0.86 (0.77, 0.94) | |
| GM | T1w | 0.41 (0.32, 0.52) | 0.60 (0.47, 0.73) | 0.26 (0.16, 0.40) | 0.56 (0.43, 0.71) | 
| PD | 0.69 (0.61, 0.79) | 0.83 (0.74, 0.91) | 0.51 (0.38, 0.66) | 0.86 (0.77, 0.94) | |
| MT | 0.88 (0.82, 0.94) | 0.81 (0.71, 0.90) | 0.76 (0.64, 0.87) | 1.00 (1.00, 1.00) | |
| R1 | 0.82 (0.75, 0.87) | 0.81 (0.72, 0.88) | 0.64 (0.50, 0.74) | 1.00 (1.00, 1.00) | |
| R2* | 0.73 (0.65, 0.83) | 0.86 (0.78, 0.95) | 0.76 (0.64, 0.87) | 0.71 (0.58, 0.84) | |
| qMRIcomb | 0.81 (0.73, 0.88) | 0.86 (0.78, 0.93) | 0.76 (0.64, 0.87) | 0.84 (0.77, 0.95) |