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Abstract

Automatic segmentation of the prostate from 2-D transrectal ultrasound (TRUS) is a highly 

desired tool in many clinical applications. However, it is a very challenging task, especially for 

segmenting the base and apex of the prostate due to the large shape variations in those areas 

compared to the midgland, which leads many existing segmentation methods to fail. To address 

the problem, this paper presents a novel TRUS video segmentation algorithm using both global 

population-based and patient-specific local shape statistics as shape constraint. By adaptively 

learning shape statistics in a local neighborhood during the segmentation process, the algorithm 

can effectively capture the patient-specific shape statistics and quickly adapt to the local shape 

changes in the base and apex areas. The learned shape statistics is then used as the shape constraint 

in a deformable model for TRUS video segmentation. The proposed method can robustly segment 

the entire gland of the prostate with significantly improved performance in the base and apex 

regions, compared to other previously reported methods. Our method was evaluated using 19 

video sequences obtained from different patients and the average mean absolute distance error was 

1.65 ± 0.47 mm.
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I. Introduction

Prostate cancer is the second leading cause of cancer death in men in the U.S. [1]. 

Transrectal ultrasound (TRUS) is currently the most commonly used imaging modality for 

image-guided biopsy and therapy of prostate cancer due to its real-time nature, low cost, and 

simplicity. Accurate segmentation of the whole prostate from TRUS can play a key role in 

biopsy and therapy planning [2], and allow for surface-based registration between TRUS and 

other imaging modalities (e.g., MRI) during the image-guided intervention [3]. However, 

segmentation of the prostate from TRUS is a challenging problem due to the inhomogeneous 

intensity distribution of the prostate and the low SNR of ultrasound. Extraction of the 

prostate boundary in the base and apex areas is even more difficult because of the large 

shape variations in those areas.

A number of methods for prostate segmentation in static 2-D TRUS images have been 

reported in the past decade [4]–[12]. However, poor segmentation performance of the 2-D 

model-based methods in the base and apex areas of the prostate was also indicated. There 

are several reasons for that. First of all, boundaries of the prostate in the base and apex 

can be quite different from patient to patient. More importantly, the prostate shape changes 

significantly from frame to frame with little movement of the TRUS probe. Thus, a global 

population-based 2-D shape model is not able to capture the variation effectively for the 

segmentation. Although 3-D-based methods may have better segmentation performance in 

the base and apex [13], [14], they have limited use in clinical applications because 3-D 

TRUS is still in its early stage. Segmentation of the 3-D images reconstructed from 2-D 

frames is not an option either due to the image blurring and other artifacts caused by 

ultrasound probe motion and the organ movement [15].

In order to improve the performance of the prostate segmentation in the base and apex 

areas, we propose adaptively learning the local shape statistics for segmenting the prostate 

in TRUS video sequences, which usually cover the whole prostate by sweeping the gland 

with a ultrasound probe as shown in Fig. 1. To the best of our knowledge, this is the first 

method that addresses the segmentation of the whole prostate gland from 2-D TRUS video 

sequences [16], [17].

Dynamic shape priors have been used in previous works for segmenting and tracking the 

left ventricle in cardiac images [18]–[20]. However, those methods build the dynamic model 

using predefined training set and the model cannot be updated online as new segmentation 

results become available. Thus, their applications are limited to segmenting targets under 

cyclic motion like the heart. Recently, Shi et al. [21] used both population-based and 

patient-specific shape statistics for segmenting the lung fields in serial chest radiographs. 

The method has also been applied to segmenting the prostate from series of 3-D CT scans 

[22]. In their work, the initial several images are segmented with population-based shape 

statistics. As more segmentation results become available, patient-specific shape statistics 

are obtained to guide segmentation for better accuracy. However, their method can only 

deal with segmenting a series of images of a static object, since the dynamic shape changes 

occurred in a short period of time are smoothed over the whole shape set and not captured.
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In this paper, we propose a new TRUS video segmentation framework for segmenting 

the intersected prostate shape from any part of the gland by using both global population

based shape statistics (GPSS) and adaptive local shape statistics (ALSS). The TRUS video 

sequences to be segmented in our work were obtained by sweeping the prostate from the 

base to apex in the axial orientation with an ultrasound probe. Our proposed method starts 

segmenting the prostate using GPSS. After segmenting enough number of video frames 

for shape modeling, the local patient-specific shape statistics can be learned and applied to 

guide the segmentation. Unlike the work in [21] and [22], where the patient-specific shape 

model is built by using all the available images, the patient-specific shape statistics in our 

work is adaptively updated to get local shape changes using a relatively small group of 

frames. In other words, the local shape statistics is continuously recomputed using a set 

of local training shapes by discarding old shapes. In this way, not only the patient-specific 

shape statistics but also the shape variations in a local neighborhood can be effectively 

captured, which provides very good shape prior guidance for the segmentation. Therefore, 

the whole prostate, especially the base and apex areas, can be successfully segmented from 

TRUS.

The rest of the paper is organized as follows. The learning of GPSS and ALSS is presented 

in Section II. The complete TRUS video segmentation framework is provided in Section III. 

The performance of the proposed method is demonstrated in Section IV with quantitative 

evaluation on TRUS video sequences. Conclusion is drawn in Section V.

II. Prostate Shape Modeling

The methods for learning the prostate shape statistics are presented in this section. We start 

shape modeling from GPSS and then extend it to ALSS.

A. Global Population-Based Shape Statistics

GPSS describes the statistics of the shapes covering all the areas of the prostate from a 

population. Thus, the training shape set is composed by the manually segmented contours 

from the base to the apex of the prostate in the axial orientation of different subjects. The 

principal component analysis-based shape modeling method proposed by Cootes et al. [23] 

is employed in our work for computing GPSS. Each prostate shape S in the training shape 

set is represented by l 2-D points as the vector

S = x1, x2, …, xl; y1, y2, …, yl
T (1)

which is an observation in the 2l -dimensional space. In our study, the contour points 

are extracted from the shapes by using equally spaced sampling. In order to establish the 

correspondence between the contour points from different shapes, the sampling is always 

performed clockwise and starts from the point where a ray cast from the center of the 

shape toward left meets the shape. The computed GPSS SG consists of a mean shape, an 

eigenshape matrix, and the corresponding eigenvalues. The mean shape is computed as
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SG = 1
L ∑

i = 1

L
Si (2)

where L is the number of the training shapes. Subtracting the mean shape from each training 

shape, a (2l × L)-dimensional matrix P can be constructed by considering the resulting 

shape differences as column vectors. By using singular value decomposition, the matrix is 

decomposed as

P = UΣV . (3)

The orthogonal column vectors of the matrix U are the modes of shape variation, i.e., 

eigenshapes. The diagonal matrix Σ is composed of the corresponding eigenvalues, which 

are the magnitudes of the shape variations. The modes are ordered according to the 

percentage of variation that they explain. In our paper, we set the percentage threshold 

as 98% of the total variation to choose the first k largest modes for a compact representation. 

GPSS is only computed once in the training phase using all the provided training shapes.

With the computed shape statistics, a new shape S can be decomposed by using the mean 

shape and the eigenshapes and represented by a parameter vector b as

b = UT S − SG . (4)

The approximation of the shape constrained by the shape statistics is obtained by

S = SG + Ub . (5)

Some shape samples generated by using GPSS are shown in Fig. 2.

B. ALSS

ALSS SA
t  is continuously learned at each time t during the segmentation process, which 

describes the statistics of the prostate shape in a local area. Each ALSS consists of a mean 

shape, an eigenshape matrix, and the corresponding eigenvalues. To adaptively capture the 

shape changes in local neighborhood, ALSS is learned from the N most recent segmented 

contours {Si|i = t − N + 1, …, t} of a subject. The mean shape is computed as

SA
t = 1

N ∑
i = t − N + 1

t
Si (6)

and the eigenvalues and eigenvectors are computed by

Pt = UtΣtVt . (7)

The computed ALSS instance SA
t  at time t is then used for segmenting the frame at t 

+ 1 with the segmented contour St for initialization. Once the segmentation is done, the 
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obtained prostate shape St+1 will be added into the training shape set and shape St−N+1 will 

be removed. ALSS is updated using (6) and (7) with the new set of training shapes and 

denoted as St+1. With the updated ALSS, we move to segment the next frame. The learning 

and segmentation process is repeated until the whole video sequence is segmented. Sample 

shapes generated by ALSS at different times are shown in Fig. 3.

III. TRUS Video Segmentation

A. Model-Based Segmentation

The GPSS and ALSS are used together with the discrete deformable model (DDM) [4] for 

prostate segmentation. The DDM consists of a deformable contour S represented by a series 

of K contour points, i.e., S = {vi|i = 1, …, K}, and an associated energy functional. The 

prostate is segmented from TRUS video sequences by deforming the contour to minimize 

the energy functional in each frame. In our paper, the energy functional of a contour point vi 

in DDM for segmenting the video frame at time t is defined as

Et vi = Eimage
t vi + Eint

t vi + Eshape
t vi . (8)

The image term Eimage
t vi  in (8) attracts the contour toward the prostate boundary by 

searching for prostate boundary features in the image. The easily observable dark-to-bright 

transition around the prostate in TRUS images is considered as a discriminative boundary 

feature [4], [24], which is obtained by computing the contrast of the normal vector profile 

(NVP) of a candidate contour point

Eimage
t vi = 1

2mpT ⋅ fi . (9)

The contrast filter p is a vector defined as [1, …, 1, −1, …, −1]T with length 2m, where 2m 
denotes the total number of points on NVP. Let n denote the normal direction of the contour 

at point vi, which is pointing from inside to outside. NVP fi is a vector [fi1, fi2, …, fi2m]T, 

where the element fij is the intensity of the jth pixel at location vij = vi + (j − m)δn and δ is a 

spacing parameter.

The internal energy term Eint
t vi  in (8) preserves the geometric shape of the contour during 

deformation by applying the constraints of continuity and curvature as in [25]. In our study, 

we consider the case when Eint(vi) includes the second-order term, i.e., the computation of 

Eint(vi) involves the contour points vi−1 and vi+1. The internal energy term can be computed 

as

Eint vi = α vi − vi − 1 + vi + 1 − vi − 2d
+ β vi − vi − 1 − vi + 1 − vi

(10)

where α and β are the weights of the continuity and curvature, respectively, and d is the 

average distance between neighboring model points. The first term on the right side of (10) 
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tends to keep the contour points from either too close or too far. The second term smooths 

the model by penalizing sharp angles.

The shape energy term Eshape
t (v) applies the shape constraint derived from a priori shape 

statistics to the segmented contour. It is defined by the distance between point vi from the 

contour and the corresponding point vi′ from the shape prior St estimated by using either 

GPSS or ALSS

Eshape
t vi = γ vi − vi′ (11)

where γ is a positive weighting parameter. The correspondence between the points is 

determined by the orders that the contour points are sampled from the shapes as presented in 

Section II-A.

The shape constraint plays a key role in prostate segmentation, where the essential part is 

the estimation of the shape prior St. The shape statistics St used for segmenting frame t is 

defined as

St =
SG, if t − t0 < N

SA
t , if t − t0 ≥ N

(12)

where t0 is the starting frame number and N is the number of frames that are used for 

computing ALSS. The shape statistics definition in (12) indicates that GPSS is used when 

segmenting the first N frames. After that, ALSS can be initialized using the segmented 

shapes, which then takes over the shape constraint term. Once available, ALSS will also be 

updated adaptively during the segmentation process as described earlier.

B. Energy Minimization

A two-step optimization strategy is used to minimize the energy in (8). In the first step, the 

iterative shape fitting method of the active shape model (ASM) is employed [23]. To quickly 

deform the shape to get close to the prostate boundary, only the first and the third terms 

of (8) are used in this step. In each iteration, a deformable contour is first updated via a 

local search around its current location along the normal directions of the contour for the 

dark-to-bright transition of prostate boundary. Then shape statistics St is used to constrain 

the newly updated deformable contour according to (12). In our work, three iterations are 

done in a coarse-to-fine multiresolution fashion. The ASM fitting method is robust but not 

accurate enough due to the strong shape constraint. However, it can provide a very good 

starting point for the deformable segmentation in the second step.

In the second step, deformable segmentation is performed. In each iteration of the 

deformable segmentation, the deformable contour is updated via a local search with all the 

three terms of the energy function (8) considered simultaneously. Since the internal energy 

term is second order, i.e., computation of the term requires more than one contour point, 

a full search for minimization is computationally very expensive. For fast computation, 

the dynamic programming technique in [26] is used in our study for energy minimization. 
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It guarantees to get the global minimum inside the search range and the computational 

complexity is only O(nm3), where n is the number of contour points and m is the size of 

search range.

C. Segmentation Scheme

The overall segmentation scheme of the proposed method is shown in Fig. 4. In our method, 

GPSS is first computed by using a number of manually segmented contours obtained from a 

number of different subjects’ TRUS video sequences. The GPSS deformable contour defined 

in (8) is used to segment the first N frames from frame 0 to frame N − 1 independently. The 

mean shape SG in the GPSS is used to automatically initialize the segmentation contour. The 

resulting shapes {Si|i = 0, …, N − 1} will be stored. After that, an initial ALSS, denoted by 

SA
N − 1, is computed by using the segmented contours from those N frames. This ALSS is 

then used as the shape constraint of the deformable contour for segmenting the next frame.

As shown in the second row of Fig. 4, the deformable contour using ALSS will go back to 

segment the first frame of the video sequence, which is now considered as the (N + 1)th 

frame, with the previous segmentation result as the initialization. After the segmentation is 

done, the obtained prostate shape SN will be added into the training shape set and shape S0 

will be removed. ALSS is learned by using the new set of training shapes and denoted as 

SA
N. With the updated ALSS, the deformable contour moves to segment the next frame with 

shape SN as initialization. The learning and segmentation process is repeated until the whole 

video sequence is segmented.

IV. Experiments

A. Materials

The TRUS video sequences used in our experiments were obtained using an iU22 ultrasound 

system (Philips Healthcare, Andover, MA). The 2-D TRUS scan was performed from the 

base to the apex of the prostate in the axial orientation with a Philips C9-ultrasound probe. 

The TRUS images were digitized by using a video card. Each frame has 640 × 480 pixels. 

The pixel sizes of the frame-grabbed images were 0.15 and 0.18 mm in 4 and 5 cm depth 

settings, respectively. In our experiments, 19 video sequences with 3064 frames in total 

were grabbed from 19 different patients for prostate cancer biopsy. Manual segmentation 

performed by an experienced radiologist was considered as the ground truth for validation. 

Since the frames were continuously grabbed with a frame rate of 30 frames/s, the change 

between neighboring frames was small. Thus, the radiologist only manually segmented 301 

frames from all the video sequences with equal temporal distance.

B. Parameter Setting

In our experiments, the deformable contour had n = 64 contour points. Three iterations 

of deformable segmentation were performed for each frame. The size of search range in 

each iteration was m = 11, i.e., five search points on each side of the contour. When doing 

deformable segmentation, all the energy terms in (8) were normalized into the range of [0, 

1]. The weighting parameters in (10) and (11) were set to α = 0.4, β = 0.4, and γ = 0.5.
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As a special parameter to our proposed method, the best training set size N for learning 

ALSS was determined by using an experiment. For each value of N between 1 and 20, 

ten randomly selected video sequences were segmented and quantitatively evaluated. Note 

that ALSS is the segmentation result of the previous frame when N = 1. The variation of 

performance by changing the value of N is shown in Fig. 5. The overall smoothed red curve 

clearly indicates that the segmentation error first decreased as N increased and then became 

larger and larger as N continued to increase after 6. The reason is that if too few shapes 

are used for learning ALSS, the segmentation may be too restrictive to the previous shapes 

and errors can be easily accumulated during the segmentation process. On the other hand, 

if the training shape set is too big, ALSS will not be able to quickly adapt to the shape 

changes and thus results in larger segmentation errors. Therefore, N = 6 was chosen in our 

experiments and ALSS-6 is used to indicate the proposed method for convenience.

The proposed method was developed in C++ based on ITK [27]. The method segments 

TRUS video in a fully automatic fashion. In our experiments, it took about 200 ms for 

segmenting each frame on a Core2 1.86 GHz PC.

C. Evaluation Methods

For performance comparison, we also implemented two other methods with the same 

parameter settings as the proposed method. The first method was to independently segment 

all the frames using GPSS (the segmentation strategy in [10] and [11]), which is hereafter 

denoted as Method-1. The mean shape SG in the GPSS was used to initialize the 

segmentation automatically. The second method had a very similar segmentation scheme 

as the proposed method but using only GPSS, which is denoted as Method-2 in the 

rest of the paper. Method-2 used the typical video segmentation strategy of propagating 

segmentation result of one frame to the next for initialization to take advantages of the 

similarity between the neighboring frames. The mean shape SG in the GPSS was used to 

automatically initialize the segmentation in the first frame.

For quantitatively evaluating the performance of the segmentation methods, two 

measurement methods were used. One is the mean absolute distance (MAD) error. Let 

vi and vi′ denote the ith contour point from a segmented contour and the ground truth, 

respectively, after equally spaced distance-based sampling [24]. The MAD is defined as

MAD = 1
n ∑

i = 1

n
vi − vi′ . (13)

Another quantitative measurement was the dice similarity coefficient (DSC) defined as

DSC = 2 As ∩ Ag
As + Ag

(14)

where As and Ag are the areas enclosed by the segmented contour and the ground truth, 

respectively. The standard deviation of the measurement was also computed to evaluate the 

variation of the segmentation results for each patient.
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D. Experimental Results

All the 19 video sequences were segmented using the three methods, respectively. The 

results are shown in Table I. It can be seen that ALSS-6 outperformed the other two methods 

in all of the cases. In terms of the average MAD over all the 19 patients, the segmentation 

error of ALSS-6 was 51.8% smaller than that of Method-1 and was 21.9% smaller than 

that of Method-2. The improvement in both comparisons was significant. In our study, the 

statistical significance was evaluated using paired t test (p < 0.05). The DSC measurement 

was consistent with the MAD result in general.

To show the robustness of the proposed method to initialization, we performed a set of 

experiments by varying the mean shape with random translation along X and Y axes (up to 

10 pixels), scaling (up to 15%), and rotation (up to 15°), respectively, as shown in Fig. 6. 

The segmentation results had no significant change (p > 0.05) in ten runs.

We also compared the performance of the three methods in the base, midgland, and apex 

regions separately. Fig. 7 shows some segmentation results of a TRUS video sequence in 

different regions. It can be seen that the segmentation results of ALSS-6 are generally 

very close to the prostate boundaries, while the other two methods are not very accurate, 

especially in the base and apex areas. For quantitative evaluation, the ground truth 

segmentations of each patient were sequentially divided into three groups with equal number 

of frames in each group. Since the video sequence was obtained by scanning through the 

prostate from the base to apex, the three groups were labeled as base, midgland, and apex 

in the specified order. The evaluation results are shown in Table II. Compared to Method-1 

and Method-2, the segmentation performance was significantly improved in all the regions 

by using ALSS-6.

The performance improvement of ALSS-6 in the base and apex regions is obvious. 

Compared to Method-1 and Method-2, ALSS-6 reduced the MAD errors by 49.4% and 

18.9% in the base and by 55.6% and 17.7% in the apex, respectively. It can also be observed 

that Method-2 performed better than Method-1 in the base and apex regions using the same 

GPSS. The reason is that Method-2 adaptively exploited the similarity between neighboring 

frames by using the segmented shape from the previous frame to initialize the segmentation 

of the next frame, while Method-1 treated each frame independently. By initializing the 

segmentation in the same way as Method-2, ALSS-6 obtained smaller segmentation errors 

because the large shape variations of the prostate in those areas were effectively captured by 

ALSS.

The performance of the three methods in the midgland region is also interesting. The results 

obtained by using Method-1 and Method-2 have no significant difference, which suggests 

that the similarity between neighboring frames was not very useful when segmenting the 

midgland. Compared to those two methods, however, ALSS-6 performed significantly better 

by reducing the segmentation errors by 20.8% and 19.4%, respectively. This is due to the 

fact that ALSS is patient specific and thus leads to better segmentation results than GPSS.
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E. Discussion

The advantages of the proposed method are threefold. First, ALSS can provide more 

accurate prostate shape constraint for segmenting a TRUS video sequence, because it is 

learned from the patient’s own data and thus specific to the subject. More importantly, 

compared to the work in [21] where all the segmented shapes were used to compute 

patient-specific global shape statistics, ALSS is more sensitive to the local shape changes 

as the TRUS probe moves to scan different regions of the prostate, since only shapes 

from the previous N frames are used for learning. This can significantly improve the 

prostate segmentation performance in the base and apex areas, by overcoming the large 

and rapid shape variations of the prostate in those areas. Finally, the proposed method is 

robust to the initialization. In general, a deformable contour using GPSS can obtain good 

segmentation results in the midgland area [10], [11]. In our study, we use the mean shape 

SG from the GPSS to automatically initialize the segmentation. After the initial N frames 

are independently segmented with GPSS, ALSS is obtained and used to resegment those 

frames, which can further prevent the segmentation from being led by an accidentally bad 

initialization.

V. Conclusion

In this paper, we proposed learning local shape statistics adaptively for segmenting the 

prostate in 2-D TRUS video sequences. By incorporating ALSS into a deformable contour, 

more accurate segmentation results were obtained for whole prostate segmentation as 

compared to other previous techniques. In particular, segmentation performance in the base 

and apex regions was significantly improved. To the best of our knowledge, this is the first 

method in the field that can successfully segment the base and apex of the prostate in 2-D 

TRUS by using the patient-specific and locally adaptive shape statistics. Application of the 

proposed segmentation strategy to 3-D ultrasound video segmentation may be investigated in 

our future work.
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Fig. 1. 
Example images of the prostate in the (a) base, (b) midgland, and (c) apex areas, 

respectively, for the same patient. There are large prostate shape variations between the 

images.
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Fig. 2. 
Example shapes generated by the GPSS. The mean shape SG is drawn in the second column. 

Shapes generated by varying the mean shape with the largest three modes of variation (σ1, 
σ2, σ3) are drawn in the first and third rows, respectively.
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Fig. 3. 

Example shapes generated by the ALSS. The mean shapes SA
t  at each time instance are 

drawn in the second row. Shapes generated by varying the mean shapes with the largest 

mode of variation σ1
t  at each time are drawn in the first and third rows, respectively.
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Fig. 4. 
Overall scheme of the proposed TRUS video segmentation method.
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Fig. 5. 
Variation of segmentation performance by changing the number of training shapes N for 

learning ALSS.
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Fig. 6. 
Automatic initialization of the segmentation by (a) using the mean shape SG of the GPSS, 

(b) with translation, (c) with scaling, and (d) with rotation.
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Fig. 7. 
Some segmentation results from the base, midgland, and apex regions obtained by using the 

three different methods (see the text) and by the expert, respectively.
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TABLE II

MAD Errors (mm) of the Three Different Methods (Described in the Text) in the Base, Midgland, and Apex 

Areas Over the 19 Video Sequences, Respectively

Region Method-1 Method-2 ALSS-6

base 2.44±1.16 1.94±1.04 1.63±0.74

mid-gland 1.46±0.57 1.45±0.54 1.21±0.49

apex 3.55±1.66 2.68±1.00 2.28±0.84
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