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a b s t r a c t 

Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignant tumor. Treatment of RMS usually 

includes primary tumor resection along with systemic chemotherapy. Two-dimensional (2D) cell culture systems 

and animal models have been extensively used for investigating the potential efficacy of new RMS treatments. 

However, RMS cells behave differently in 2D culture than in vivo, which has recently inspired the adoption of 

three-dimensional (3D) culture environments. In the current paper, we will describe the detailed methodology 

we have developed for fabricating a 3D engineered model to study alveolar RMS (ARMS) in vitro. This model 

consists of a thermally cross-linked collagen disk laden with RMS cells that mimics the structural and bio- 

chemical aspects of the tumor extracellular matrix (ECM). This process is highly reproducible and produces a 

3D engineered model that can be used to analyze the cytotoxicity and autophagy induction of drugs on ARMS 

cells. The most improtant bullet points are as following: 

• We fabricated 3D model of ARMS. 
• The current ARMS 3D model can be used for screening of chemotherapy drugs. 
• We developed methods to detect apoptosis and autophagy in ARMS 3D model to detect the mechansims of 

chemotherapy agents. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

a r t i c l e i n f o 

Protocol name: Alveolar Rhabdomyosarcoma 3D model 

Keywords: Biofabrication, Rhabdomyosarcoma, Apoptosis, Autophagy, Cell death 

Article history: Received 12 April 2021; Accepted 26 July 2021; Available online 27 July 2021 
Specifications Table 
Subject area: Pharmacology, Toxicology and Pharmaceutical Science 

More specific subject area: Chemotherapy detection in 3D culture 

Protocol name: Alveolar Rhabdomyosarcoma 3D model 

Reagents/tools: • Silicone elastomer kit, polydimethylsiloxane (PDMS) (SYLGARD TM 184, Dow Corning). 
• Vacuum chamber (Model 280 A, Thermo Fisher Scientific). 
• Glass slides (12-550C, Thermo Fisher Scientific). 
• Scalpel ( 08- 927- 5B , Thermo Fisher Scientific). 
• Neutralized Type I Collagen Solution, 5 mg/ml, Bovine (PureCol EZ Gel, Advanced 

Biomatrix). 
• 5 mm diameter biopsy punches (21909-142, VWR). 

Cell Culture: 

• Human alveolar Rhabdomyosarcoma cell line (RH30) [RC13, RMS 13, SJRH30] (ATCC®

CRL- 2061 TM ). 
• Mouse muscle cell line (C2C12) (ATCC® CRL-1772 TM ). 
• Roswell Park Memorial Institute (RPMI-1640) with L-glutamine and 25 mM HEPES 

(12-115Q, BioWhittaker). 
• Dulbecco’s Modified Eagle’s Medium (DMEM, 50-003-PB, CORNING). 
• Penicillin-streptomycin (15140-122, Thermo Fisher Scientific). 
• Fetal bovine serum (FBS) (3160501, Thermo Fisher Scientific). 
• Trypsin-EDTA (15400-054, Thermo Fisher Scientific). 
• Incubator (Model #3403, Thermo Fisher Scientific). 
• T75 flasks (10062-160, VWR). 

( continued on next page ) 

http://creativecommons.org/licenses/by/4.0/
https://www.fishersci.ca/shop/products/graham-field-single-use-scalpels-4/089275b
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Live/Dead Viability Assay: 

• Live/dead viability kit (L3224, Thermo Fisher Scientific). 
• Dulbecco’s phosphate buffered saline (DPBS) (50-003-PB, CORNING). 
• Confocal microscope (LSM 980, Zeiss). 

Immunocytochemistry 

• IgG free bovine serum albumin (BSA) (Jackson ImmunoResearch Inc.). 
• Formaldehyde 37% (CAAAAA16163, VWR). 
• Triton X-100 (9002-93-1, Bio Basic Canada Inc.) 
• Primary antibodies (Cell Signalling Technology): 
• p62 (5114, 1:10 0 0 dilution). 
• Cleaved PARP (Asp 214) (D64E10) XP® (5625, 1:100 dilution). 
• LC3B (D11) XP® (3868, 1:100 dilution). 
• Secondary antibodies (Jackson ImmunoResearch Inc.): 
• Alexa Fluor® 488 AffiniPure Donkey Anti-Rabbit IgG. 
• Alexa Fluor® 647 AffiniPure Donkey Anti-Mouse IgG. 
• 4’,6-Diami- dino-2-Phenylindole, Dihydrochloride (DAPI) (D1306, Thermo Fisher 

Scientific). 

Experimental design: The fabrication workflow for creating 3D TEM for studying RMS in vitro. (A) PDMS is 

poured onto a glass slide. The cured polymer is cut into sections which are each punched 

with a biopsy punch to create the molds. ( B ) Collagen hydrogel is mixed with cells and 

pipetted into each mold. The hydrogel filled molds are placed in 12 well plates and 

thermally crosslinked for 45 min at 37 °C before being submerged with cell media for 

culture. ( C ) After 12 h of culture in the 3D constructs, cytotoxic drugs are added as desired 

to the culture media. Following a 48 or 96 h exposure to the cytotoxic drugs, the cells are 

analyzed using brightfield microscopy, immunocytochemistry, or live/dead viability assays 

(Fig. 1). 

Trial registration: N/A 

Ethics: N/A 

Value of the protocol: The most important points about the protocol are as following: 1- Our method provides a 

simple and easy method for 3D culture of alveolar Rhabdomyosarcoma to detect 

chemotherapy response, 2- Our method established an easy way to measure autophagy 

and apoptosis in alveolar Rhabdomyosarcoma cells in 3D culture. 

ntroduction 

Rhabdomyosarcoma (RMS) is a rare and aggressive malignant soft tissue tumor that is usually

iagnosed in children [ 1 , 2 ]. The combined annual incidence rate of all RMS cancers is 4.5 cases per

illion children [ 3 , 4 ]. Despite being the most common pediatric soft tissue tumor, the rarity of RMS

ncreases the difficultly of recruiting patients for clinical studies and, in many cases, their results are

imited by small samples sizes. The most common subtype is embryonal RMS which accounts for over

0% of all RMS diagnoses and has a 5-year survival rate of 73.4% [ 4 , 5 ]. This is a favorable diagnosis

n comparison with alveolar RMS (ARMS), a less common pediatric subtype with significantly poorer

utcomes and a 5 year survival rate of only 47.7% [4] . 

Typical treatment of childhood RMS is a multimodal therapy including chemotherapy and surgical

umor resection with or without radiation [6–8] . Patients with either ARMS or metastasis at diagnosis

re considered to be at high risk with poor prognosis and therefore, warrants more intensive

reatment [ 6 , 9 ]. Chemotherapy for pediatric RMS typically consists of an alkylating agent such as

yclophosphamide or ifosfamide combined with vincristine and actinomycin [6] . Alkylating agents act

y covalently modifying DNA, which interferes with DNA replication and transcription [10] . This is

articularly effective in quickly replicating tumor cells with p53 mutations or other damages to the

NA repair mechanisms, however this treatment can also induce side effects on other rapidly dividing

on-cancerous cells such as hematopoietic progenitors or reproductive cells [10] . 

Clinical evidence suggests that there is significant potential to improve the medical treatment of

MS patients. Further exploration of innovative and targeted treatment techniques is necessary to

eet this clinical need. Tissue engineering techniques are well poised to aid in the discovery and

valuation of new RMS treatments that will improve patient outcomes and survival rates 
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Fabricating a 3D bioengineered in vitro model of RMS to detect programmed cell death 

We set out to design a 3D engineered model (EM) for studying ARMS in vitro that mimicked the

in vivo tumor microenvironment and could be fabricated reproducibly through a robust process. The 

ECM of ARMS tumors in vivo is largely dependent on the ECM produced by the host’s adjacent stromal

cells, albeit slightly modulated by the secretions of cancerous cells [11] . Since collagen is a major

component of the ECM of several human tissues, it is a great candidate for the formation of EM. In a

report by Stracca-Pansa et al. [12] , they showed that in 9 cases of ARMS there is only 1 patient with

primarily Collagen V ECM and 1 patient with primarily laminin ECM. In another study, investigators

showed that the ECM secretion by explant of pediatric tumors are different. They showed that the

explant of different types of Rhabdomyosarcoma produced both interstitial collagen type I and III

and basement membrane collagen type IV [13] . To identify the proper ECM to use in our ARMS 3D

culture investigations, we performed experiments on human ARMS cell lines (RH30) and cultured 

them for 72 h and then collected their culture media and measure active transforming growth factor

beta 1 (TGF- β1) as TGF- β1 is involved in biosynthesis of ECM [14–16] . Our results showed that

RH30 cells secrets TGF- β1 ( > 1900 pg/ml) and stimulates collagen type I precursor secretion in the

media of RH30 cells (Ghavami and Gordon unpublished data). Therefore, it is reasonable to expect

there is a significant quantity of collagen-I in the ECM of ARMS tumors. Collagen-I hydrogel was

chosen as the biomaterial for our 3D TEM as it mimics the physiological ECM of the tumor site,

contains Arginylglycylaspartic acid (RGD) peptides for in vitro cell attachment [17] , and can form 3D

geometries through thermal crosslinking. The most straightforward biofabrication technique would 

be to pipette the cell-laden hydrogel precursor directly into a 96-well plate prior to culture, as

demonstrated by Musah-Eroje and Watson [18] . However, this would only allow nutrient and oxygen

penetration from one direction and also would produce a non-uniform construct due to the hydrogel’s

meniscus and the geometry of the base of the well. In order to create a construct with symmetrical

and uniform geometry, we designed polydimethylsiloxane (PDMS) molds that can be used to form 

disks of cross-linked cell-laden hydrogel with a consistent thickness and diameter ( Fig. 1 A,B). After

fabrication, these 3D constructs can be cultured in a 12 well plate and media will evenly penetrate

the uniform 3D geometry from the upper and lower surfaces of the disk ( Fig. 1 B). The transparent

collagen hydrogel allows for detailed analysis of the suspended cells through brightfield microscopy, 

immunocytochemistry (ICC), and live/dead viability assays ( Fig. 1 C). A detailed description of the

fabrication process along with the equipment and reagents required is presented below. 

Materials and equipment 

3D tissue engineered model 
• Silicone elastomer kit, polydimethylsiloxane (PDMS) (SYLGARD 

TM 184, Dow Corning). 
• Vacuum chamber (Model 280 A, Thermo Fisher Scientific). 
• Glass slides (12-550C, Thermo Fisher Scientific). 
• Scalpel ( 08- 927- 5B , Thermo Fisher Scientific). 
• Neutralized Type I Collagen Solution, 5 mg/ml, Bovine (PureCol EZ Gel, Advanced Biomatrix). 
• 5 mm diameter biopsy punches (21909-142, VWR). 

Cell Culture: 

• Human alveolar Rhabdomyosarcoma cell line (RH30) [RC13, RMS 13, SJRH30] (ATCC® CRL- 

2061 TM ). 
• Roswell Park Memorial Institute (RPMI-1640) with L-glutamine and 25mM HEPES (12-115Q, 

BioWhittaker). 
• Penicillin-streptomycin (15140-122, Thermo Fisher Scientific). 
• Fetal bovine serum (FBS) (3160501, Thermo Fisher Scientific). 
• Trypsin-EDTA (15400-054, Thermo Fisher Scientific). 
• Incubator (Model #3403, Thermo Fisher Scientific). 
• T75 flasks (10062-160, VWR). 

https://www.fishersci.ca/shop/products/graham-field-single-use-scalpels-4/089275b
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Fig. 1. The fabrication workflow for creating 3D TEM for studying RMS in vitro. (A) PDMS is poured onto a glass slide. The 

cured polymer is cut into sections which are each punched with a biopsy punch to create the molds. (B) Collagen hydrogel is 

mixed with cells and pipetted into each mold. The hydrogel filled molds are placed in 12 well plates and thermally crosslinked 

for 45 min at 37 °C before being submerged with cell media for culture. (C) After 12 h of culture in the 3D constructs, cytotoxic 

drugs are added as desired to the culture media. Following a 48 or 96 h exposure to the cytotoxic drugs, the cells are analyzed 

using brightfield microscopy, immunocytochemistry, or live/dead viability assays. 
Live/Dead Viability Assay: 

• Live/dead viability kit (L3224, Thermo Fisher Scientific). 
• Dulbecco’s phosphate buffered saline (DPBS) (50-003-PB, CORNING). 
• Confocal microscope (LSM 980, Zeiss). 

Immunocytochemistry 

• IgG free bovine serum albumin (BSA) (Jackson ImmunoResearch Inc.). 
• Formaldehyde 37% (CAAAAA16163, VWR). 
• Triton X-100 (9002-93-1, Bio Basic Canada Inc.) 
• Primary antibodies (Cell Signalling Technology): 

◦ p62 (5114, 1:10 0 0 dilution). 
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◦ LC3B (D11) XP® (3868, 1:100 dilution). 
• Secondary antibodies (Jackson ImmunoResearch Inc.): 

◦ Alexa Fluor® 488 AffiniPure Donkey Anti-Rabbit IgG. 

◦ Alexa Fluor® 647 AffiniPure Donkey Anti-Mouse IgG. 
• 4’,6-Diami- dino-2-Phenylindole, Dihydrochloride (DAPI) (D1306, Thermo Fisher Scientific). 
• LysoTracker Deep Red (Thermofisher Scientific, L12492) 
• LC3-GFP (gift from Dr. Gordon’s Lab) 

Method 

Fabrication of PDMS Molds 

1. Combine a 10:1 ratio of the PDMS elastomer and curing agent as per the manufacturer’s

instructions, and mix well. 

2. Degas the solution in a vacuum chamber until all bubbles are removed. 

3. Pour the solution over a glass slide to create a 1 mm thick layer. Aluminum foil or PDMS can

be used to form appropriately sized walls around the glass slide. Use the area of the glass

slide to calculate the volume of solution required to get a thickness of 1 mm. For example, a

50 × 75 mm glass slide requires 3.75 ml of liquid PDMS. 

4. Cure the elastomer mixture in an oven or over a hot-plate at 70 °C for 1,2 h. 

5. With a scalpel, carefully cut the PDMS layer into 15 mm squares. 

6. Punch a hole in the center of each PDMS square using a 5 mm biopsy punch. 

7. To sterilize the mold, autoclave them at 120 °C using a steam autoclave. 

- If an autoclave is unavailable, incubate the PDMS molds with 70% ethanol for 1 h then rinse

them with 100% ethanol and dry in an oven at 70 °C for at least 6 h. To avoid contamination,

the molds should be kept in a sealed container. 

8. Under aseptic conditions, transfer the molds to a 12-well plate. 

2D Cell Culture 

1. Working in aseptic conditions, prepare media: RPMI-1640 with 10% FBS, 1% 

penicillin/streptomycin. 

2. In T-75 flasks, culture RH30 cells in complete RPMI-1640 and C2C12 cells in complete DMEM

until they reach 80% confluency. 

3. Remove media and wash the flask with 4 mL of PBS or trypsin-EDTA. 

4. Incubate with 5 mL trypsin-EDTA for 5 min in an incubator, then pipette in the flask very gently

to detach the cells. 

5. Dilute the cell suspension with 10 mL media in a centrifuge tube. 

6. Centrifuge at 200 g for 5 min. 

7. Discard the supernatant. 

8. The cells are ready for 3D culture or can be passaged for further 2D culture. 

3D Cell Culture 

Note 1: Collagen and all solutions that will be mixed with it should be maintained at 4 °C until

crosslinking is desired. 

1. Working in aseptic conditions, resuspend RH30 and C2C12 cells in 1 ml each of their respective

media that is cooled to 4 °C. 

2. Dilute the collagen solution with the cell-suspended media and additional media as required to 

produce final concentrations of 2 × 10 6 cells/ml and 3 mg/ml collagen. 

Note 2: The initial concentration of PureCol EZ Gel is 5 mg/ml collagen, and the pH and ionic/salt

content is already adjusted to the application levels. 

Note 3: If acidic collagen solutions are to be used (e.g. FibriCol), prior to use the proper amounts

of 10X PBS, NaOH and distilled water must be added to the collagen solution to adjust the salt/ionic

concentration to the level of 1X PBS, and the pH to 7.4. 

1. Add 20 μL of the cell-laden hydrogel into each PDMS mold. 
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2. Incubate in an incubator at 37 °C and 5% CO 2 for 45 min to thermally crosslink the hydrogel. 

3. Gently add 2 ml of the appropriate media to each well and culture for 12 h or overnight. 

4. Add cytotoxic drugs or other reagents as desired. 

5. Observe results at relevant timepoints using brightfield microscopy, live/dead viability assays,

immunocytochemistry or other analysis techniques. 

Live/Dead Viability Assay for 3D Culture 

1. As per the manufacturer’s instructions, prepare a solution of 2 μM calcein AM and 4 μM

ethidium homodimer-1 (EthD-1) in DPBS. To produce 10 ml of staining solution, use 5 μl

calcein AM and 20 μl Ethd-1. 

2. Remove media from the wells and add the live/dead solution. 

3. Incubate for 1,2 h in the dark at room temperature (RT). 

4. Remove the live/dead solution and wash three times with DPBS for 5 min each. 

5. Immediately image using a confocal microscope. 

Immunocytochemistry 

1. Remove media and fix cells with 3.7% formaldehyde in DPBS at RT for 40 min. 

2. Remove formaldehyde solution and wash 3 times with DPBS for 5 min each. 

3. Incubate with the blocking solution of 5% BSA and 0.3% Triton-X for 2 h at RT. 

4. Dilute the primary antibody(s) as per the manufacturer’s recommendation (1:300) in a DPBS

solution containing 1% BSA and 0.3% Triton-X. 

Note: Primary antibodies for p62 and LC3 should be combined in the same solution for co-staining

hile the PARP primary antibody should be diluted separately. 

1. Incubate the samples overnight in their respective primary antibody solutions. 

2. Remove the solution and wash 3 times with DPBS for 5 min each. 

3. Dilute the secondary antibodies separately as per the manufacturer’s recommendation (1:300)

in a DPBS solution containing 1% BSA and 0.3% Triton-X. 

4. Incubate the samples for 2–4 h in their respective secondary antibody solutions in the dark at

RT. 

5. Remove the secondary antibody solution and incubate with a DAPI solution for 1,2 h in the dark

at RT. 

6. Remove the DAPI solution and wash 3 times with DPBS for 5 min each. 

7. Immediately image using a confocal microscope. 

Note: The fixed cell-laden collagen disks can be cryo-sectioned after fixation for higher resolution

maging. 

We then demonstrated that alveolar RMS cells (RH30) in the developed 3D EM behaved

ifferentially as in 2D cell culture in response to chemotherapy agent (TMZ) [19] ( Fig. 2 A). Our

esults showed that TMZ induced significantly higher cell death in 2D culture that 3D EM (p , 0.001).

s the 3D EM closer mimics physiological conditions, it is expected that its results will be more

epresentative of in vivo behavior. Firstly, we evaluated the effects of TMZ on RH30 2D and these

esults were compared with parallel experiments conducted in the 3D EM [19] . As explained in further

etails in the method above, to fabricate the 3D culture model RH30 cells were suspended in separate

ollagen-I hydrogels. The cell-laden hydrogels were deposited in polydimethylsiloxane (PDMS) molds

nd thermally cross-linked to form 3D constructs 5 mm in diameter and 1 mm in height. These

onstructs were submerged in cell media in a 12-well plate for culture and later evaluations of drug

oxicity. Live/dead viability assays were used to quantify cell viability within the 2D and 3D culture

nvironments respectively ( Fig. 2 A). When grown in 2D conditions, RH30 cells showed a significant

ecrease in viability upon exposure to TMZ while 3D culture showed significantly lower toxicity to

MZ treatment ( p > 0.001) ( Fig. 2 A). 

As the response of the cells is affected by macroautophagy (hereafter autophagy), we also

valuated autophagy in both 2D and 3D culture. Our results showed that TMZ induced autophagy

n both 2D ( Fig. 2 B, induction of LC3 puncta and co-localization with lysotracker red) and 3D ( Fig. 2 C,
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Fig. 2. The effect of TMZ exposure on RH30 cell viability and autophagy in 2D and 3D culture . (A) RH30 viability in 2D and 3D culture after 96 h of exposure to TMZ concentrations (100, 

250, 500 μM) was measured using live/dead assay. TMZ induced significant less cell death in 3D culture model ( ∗∗∗ p < 0.0 0 01). All experiments have been done in three independent 

biological replicates We used Two Way ANOVA test to compare viability between 2D and 3D culture model. (B, C) TMZ induced autophagy in both 2D (B) and 3D (C) RH30 cultures. RH30 

cells were treated with TMZ (100 μM, 72 h) in 2D and 3D culture. We used immunocytochemistry and detected LC3 puncta and changes in lysosomal activity and intensity (LysoTracker 

red staining), co-localization of LC3 puncta and LysoTracker, and co-localization of LC3 and p62. These evidences showed that TMZ induced autophagy in 2D and 3D RH30 culture (19). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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C3 puncta and co-localization with p62). We later counted the number of LC3 puncta in 10 different

elds in both 2D and 3D conditions to compare autophagy between 2D and 3D culture. Interestingly,

here was not any significant difference between 2D and 3D culture ( p > 0.05) [19] . Therefore, the

ifference between the response to TMZ in 2D and 3D culture was not depended on the autophagy. 

The proposed 3D EM has a relatively simple fabrication method in comparison with existing

D culture models, which require delicately arranging cell sheets [20] , extrusion bioprinting [21] ,

r decellularizing tissues [22] . Furthermore, the proposed EM’s uniform geometry allows for even

utrient and media penetration and simplifies imaging in comparison to non-uniform constructs

ormed by pipetting hydrogels directly into well-plates [18] . The fabrication process of the proposed

M is highly reproducible which allows for direct comparisons if used in different studies. Despite the

ase of fabrication, the collagen-I hydrogel still mimics the tumor ECM to a similar degree as existing

tudies which have used alginate/gelatin/fibrinogen composite hydrogels [21] or murine basement

embrane extract [18] . 

xisting methods for studying RMS and other cancers 

Poor outcomes for high-risk RMS patients have motivated researchers into finding potential

reatments that are superior to the existing chemotherapy regimens. Two-dimensional (2D) cell

ulture of either immortalized RMS cell lines or patient-derived RMS tumors cells has been the

ost common strategy for investigating the efficacy of potential RMS treatments in vitro [23–29] .

enerally, the workflow of these studies begins by identifying a suitable pathway to target based on

ts importance in other cancers or through the genetic analysis of RMS patient tumors. This is followed

y selecting or developing a chemical agent that targets this pathway and observing its effect on

he survival and phenotype of RMS cells in 2D cell culture. This framework was followed in a study

f murine double minute 2 (MDM2) inhibitors that first identified a common genetic mutation in

MS patients whose gene product interacts with MDM2 [23] . An MDM2 inhibitor was added to 2D

ultures of various immortalized RMS cell lines which was shown to cause a significant decrease in

ell proliferation. Another study hypothesized that histone deacetylase inhibitors, which are efficacious

t treating other adult solid tumors, may also be a useful for treatment of RMS [26] . 2D culture of

mmortalized RMS cell lines was used to evaluate the effects of a histone deacetylase inhibitor in

itro . The results showed that this inhibitor induced cell death and reduced growth. 

To more convincingly demonstrate the effects of potential RMS therapies, there has been

ubstantial use of animal models, primarily immunodeficient mice, to show how RMS tumors grow

nd respond to treatments in vivo . Animal models of RMS have many advantages over 2D cell culture

s they allow cancerous cells to grow in a three-dimensional (3D) tumor environment and mimic the

eterogenous cell population at the tumor site. One such in vivo study first investigated in 2D culture

ow RMS cells derived from 20 patients responded to a database of over 200 drugs [27] . 

Despite the advantages of using animal models over 2D cell culture, biological distinctions between

umans and animals limit the usefulness of results from in vivo studies. The ethical considerations

f using numerous animals for research further diminishes the feasibility of continuing to use these

odels in the future to gain insights about RMS treatment in humans. 3D tissue engineered models

EMs) have the potential to address both of these issues as they can encapsulate solely human cells

nd largely avoid concerns of animal welfare. Beyond this, 3D EMs are more reproducible that animal

odels and offer flexibility in the cell types, biomaterials, and geometries used. Cancer associated cells

uch as fibroblasts and macrophages have prominent roles in the in vivo tumor microenvironment

 30 , 31 ] and can be incorporated in 3D EMs alongside a combination of cancerous or healthy human

ells. Existing biomaterial technologies allow 3D scaffolds to be fabricated from natural, synthetic, or

omposite polymers that can provide a wide range of mechanical or electrical properties, desirable

iological interactions, and have the potential for chemical modification [32] . The use of molds or 3D

ioprinting enables cell-laden biomaterials to be arranged and cross-linked in complex 3D geometries

hat can be designed with computer modeling software. These advantages have not gone unnoticed,

articularly in the field of oncology research where many in vitro 3D EMs laden with cancer cells have

een reported [ 18 , 21 , 33 , 34 ]. The few existing 3D models of RMS other than our previously described
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3D model [ 19 , 35 ] will be discussed in detail, followed by a discussion of a few of the many 3D cell

culture models that have been used to study glioma. 

All 3D cell culture models have the common advantage over 2D culture of allowing cells to attach

to the substrate, migrate, and proliferate in a three-dimensional manner. Notable differences between 

models arise when considering the range of biomaterials used and their respective properties. Natural 

hydrogels can mimic the biochemical properties of the native ECM and some provide integrin binding

to RGD peptides in vitro [ 17 , 36 ]. A biomaterial with a small pore size will limit the diffusion of

oxygen and nutrients through the construct, a phenomenon seen in vivo within RMS tumors by

the presence of hypoxic regions [37] . The fabrication complexity of a 3D EM is also an important

factor that can determine the feasibility of use. A time-consuming or expensive biofabrication process 

such as growing tumor xenografts in vivo [22] or manually layering cell-sheets [20] will discourage

their widespread use. A biofabrication procedure such as extrusion 3D bioprinting that requires 

technical expertise, specialized equipment, and extensive optimization will likewise have a slow rate 

of adoption. Simpler biofabrication techniques that allow for high-throughput analysis of RMS cells 

in 3D are more appropriate. Additionally, less complicated biofabrication techniques often produce 

results that are more consistent and reproducible. 

Conclusion and future directions 

The protocol presented above produces a 3D EM suitable for culturing ARMS or healthy cells in

3D and studying their response to potential ARMS treatments. In contrast to existing models, our 3D

EM has a comparatively simple fabrication method, is reproducible, and has a uniform 3D structure.

Our previous studies have verified that ARMS or healthy cells can be encapsulated within this 3D

EM and that live/dead viability assays or ICC can be used to observe the magnitude and mechanism

of cell death upon exposure to cytotoxic drugs. Although this protocol was optimized for the use of

RH30 and C2C12 cells, future adaptations could include other ARMS cell lines, patient-derived ARMS 

tumor cells, or healthy human myoblast cells grown in the 3D EM. The use of human myoblasts

would permit meaningful co-cultures with ARMS cells to investigate the interactions between healthy 

and cancerous cells in a realistic tumor microenvironment. Another incremental improvement to the 

3D EM described in this work could include increasing the stiffness of the hydrogel to closer mimic

that of the in vivo tumor ECM by adding hyaluronic acid, a naturally occurring glycosaminoglycan, or

transglutaminase, an enzyme which can crosslink collagen fibers. 

While our 3D EM has the potential to provide preliminary results about the efficacy of a potential

ARMS treatment, a more complex model that better mimics the in vivo tumor environment may be

better suited to justify a treatment’s progression to clinical trials. For instance, 3D bioprinting can

deposit cells throughout EMs in a predefined pattern with high spatial resolution. A 3D bioprinted

construct can also include relevant geometries such as vasculature, which would allow for the delivery

of drugs via perfusion, analogous to the systemic delivery method of most chemotherapy drugs. 

Although the fabrication complexity of 3D bioprinted models is substantial, such efforts may be 

necessary to further investigate treatment efficacies in vitro following the discovery of new promising

treatments. Similarly, microfluidic systems offer the ability to perform high-throughput tests as well 

as targeted studies of invasion, migration, compartmentalized co-culture, and gradient delivered 

cytokines. In comparison with our EM, these benefits come with an increased fabrication complexity; 

however, if the study can provide meaningful results and a potentially positive impact on patient

prognosis, then the additional effort in fabrication would be well justified. 

Investigation of specific signaling pathways in human disease and modulation of the genes 

involved in regulation of specific pathways to improve the effects of chemotherapy agents are one

of the major aims in biomedical sciences [38–40] . Recent investigations have used modified primary

and cell lines in 3D culture model of different diseases for example kidney diseases and breast cancer

[ 41 , 42 ]. They have used gene editing technologies including clustered regularly interspaced short

palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9) and siRNA to silence different genes. 

Therefore, ARMS 3D culture will be a good model to investigate the genetic role of specific genes

involved in this cancer after preparation of single clones of specific genes involved in this disease
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over expression/knock out) in 2D cultures and then use these modified cells in a 3D ARMS cell

ulture model. 

It has been reported that epigenetics is very important in different types of RMS (including ARMS)

43] . For example, in a recent investigation it has been shown that an unfolded protein response

s endogenously upregulated in ARMS [44] . Therefore, using different inhibitors which targets this

athway including MKC886 and GSP-PERK inhibitor in 3D culture of ARMS could be a very strong

pplication of our model in developing future therapeutic opportunities for this lethal incurable

ediatric cancer. 
∗∗ Images reproduced from: 

Moghadam, A.R., et al., Autophagy modulates temozolomide-induced cell death in alveolar

habdomyosarcoma cells. Cell Death Discov, 2018. 4 : p . 52. 
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