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Abstract

High-dimensional logistic regression is widely used in analyzing data with binary outcomes. 

In this paper, global testing and large-scale multiple testing for the regression coefficients are 

considered in both single- and two-regression settings. A test statistic for testing the global null 

hypothesis is constructed using a generalized low-dimensional projection for bias correction and 

its asymptotic null distribution is derived. A lower bound for the global testing is established, 

which shows that the proposed test is asymptotically minimax optimal over some sparsity range. 

For testing the individual coefficients simultaneously, multiple testing procedures are proposed 

and shown to control the false discovery rate (FDR) and falsely discovered variables (FDV) 

asymptotically. Simulation studies are carried out to examine the numerical performance of 

the proposed tests and their superiority over existing methods. The testing procedures are also 

illustrated by analyzing a data set of a metabolomics study that investigates the association 

between fecal metabolites and pediatric Crohn’s disease and the effects of treatment on such 

associations.
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1 INTRODUCTION

Logistic regression models have been applied widely in genetics, finance, and business 

analytics. In many modern applications, the number of covariates of interest usually 
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grows with, and sometimes far exceeds, the number of observed samples. In such 

high-dimensional settings, statistical problems such as estimation, hypothesis testing, and 

construction of confidence intervals become much more challenging than those in the 

classical low-dimensional settings. The increasing technical difficulties usually emerge from 

the non-asymptotic analysis of both statistical models and the corresponding computational 

algorithms.

In this paper, we consider testing for high-dimensional logistic regression model:

log πi
1 − πi

= Xi
⊤β,    for i = 1, …, n . (1)

where β ∈ ℝp is the vector of regression coefficients. The observations are i.i.d. samples Zi = 

(yi,Xi) for i = 1,..,n, and we assume yi | Xi ~ Bernoulli(πi) independently for each i = 1, …, 

n.

1.1 Global and Simultaneous Hypothesis Testing

It is important in high-dimensional logistic regression to determine 1) whether there are any 

associations between the covariates and the outcome and, if yes, 2) which covariates are 

associated with the outcome. The first question can be formulated as testing the global null 

hypothesis H0:β = 0; and the second question can be considered as simultaneously testing 

the null hypotheses H0,i:βi = 0 for i = 1, …, p. Besides such single logistic regression 

problems, hypothesis testing involving two logistic regression models with regression 

coefficients β(1) and β2 in ℝp is also important. Specifically, one is interested in testing the 

global null hypothesis H0:β(1) = β(2), or identifying the differentially associated covariates 

through simultaneously testing the null hypotheses H0, i:βi
(1) = βi

(2) for each i = 1, …, p.

Estimation for high-dimensional logistic regression has been studied extensively. van de 

Geer (2008) considered high-dimensional generalized linear models (GLMs) with Lipschitz 

loss functions, and proved a non-asymptotic oracle inequality for the empirical risk 

minimizer with the Lasso penalty. Meier, van de Geer, and Bühlmann (2008) studied 

the group Lasso for logistic regression and proposed an efficient algorithm that leads to 

statistically consistent estimates. Negahban et al. (2010) obtained the rate of convergence 

for the l1-regularized maximum likelihood estimator under GLMs using restricted strong 

convexity property. Bach (2010) extended tools from the convex optimization literature, 

namely self-concordant functions, to provide interesting extensions of theoretical results 

for the square loss to the logistic loss. Plan and Vershynin (2013) connected sparse 

logistic regression to one-bit compressed sensing and developed a unified theory for signal 

estimation with noisy observations.

In contrast, hypothesis testing and confidence intervals for high-dimensional logistic 

regression have only been recently addressed. van de Geer et al. (2014) considered 

constructing confidence intervals and statistical tests for single or low-dimensional 

components of the regression coefficients in high-dimensional GLMs. Mukherjee, Pillai, 

and Lin (2015) studied the detection boundary for minimax hypothesis testing in high­
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dimensional sparse binary regression models when the design matrix is sparse. Belloni, 

Chernozhukov, and Wei (2016) considered estimating and constructing the confidence 

regions for a regression coefficient of primary interest in GLMs. More recently, Sur, Chen, 

and Candès (2017) and Sur and Candès (2019) considered the likelihood ratio test for 

high-dimensional logistic regression under the setting that p / n → κ for some constant κ 
< 1 / 2, and showed that the asymptotic null distribution of the log-likelihood ratio statistic 

is a rescaled χ2 distribution. Cai et al. (2017) proposed a global test and a multiple testing 

procedure for differential networks against sparse alternatives under the Markov random 

field model. Nevertheless, the problems of global testing and large-scale simultaneous 

testing for high-dimensional logistic regression models with p ≳ n remain unsolved.

In this paper, we first consider global and multiple testing for a single high-dimensional 

logistic regression model. The global test statistic is constructed as the maximum of 

squared standardized statistics for individual coefficients, which are based on a two-step 

standardization procedure. The first step is to correct the bias of the logistic Lasso estimator 

using a generalized low-dimensional projection (LDP) method, and the second step is to 

normalize the resulting nearly unbiased estimators by their estimated standard errors. We 

show that the asymptotic null distribution of the test statistic is a Gumbel distribution and 

that the resulting test is minimax optimal under the Gaussian design by establishing the 

minimax separation distance between the null space and alternative space. For large-scale 

multiple testing, data-driven testing procedures are proposed and shown to control the false 

discovery rate (FDR) and falsely discovered variables (FDV) asymptotically. The framework 

for testing for single logistic regression is then extended to the setting of testing two logistic 

regression models.

The main contributions of the present paper are threefold.

1. We propose novel procedures for both the global testing and large-scale 

simultaneous testing for high dimensional logistic regressions. The dimension 

p is allowed to be much larger than the sample size n. Specifically, we require 

logp = O nc1  for the global test and p = O nc2  for the multiple testing procedure, 

with some constant c1, c2 > 0. For the global alternatives characterized by the l∞
norm of the regression coefficients, the global test is shown to be minimax rate 

optimal with the optimal separation distance of order logp/n.

2. Following similar ideas in Ren, Zhang, and Zhou (2016) and Cai et al. (2017), 

our construction of the test statistics depends on a generalized version of the 

LDP method for bias correction. The original LDP method (Zhang and Zhang 

2014) relies on the linearity between the covariates and outcome variable. For 

logistic regression, the generalized approach first finds a linearization of the 

regression function, and the weighted LDP is then applied. Besides its usefulness 

in logistic regression, the generalized LDP method is flexible and can be applied 

to other nonlinear regression problems (see Section 7 for a detailed discussion).

3. The minimax lower bound is obtained for the global hypothesis testing under 

the Gaussian design. The lower bound depends on the calculation of the 

χ2-divergence between two logistic regression models. To the best of our 
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knowledge, this is the first lower bound result for high-dimensional logistic 

regression under the Gaussian design.

1.2 Other Related Work

We should note that a different but related problem, namely inference for high-dimensional 

linear regression, has been well studied in the literature. Zhang and Zhang (2014), van de 

Geer et al. (2014) and Javanmard and Montanari (2014a,b) considered confidence intervals 

and testing for low-dimensional parameters of the high-dimensional linear regression model 

and developed methods based on a two-stage debiased estimator that corrects the bias 

introduced at the first stage due to regularization. Cai and Guo (2017) studied minimaxity 

and adaptivity of confidence intervals for general linear functionals of the regression vector.

The problems of global testing and large-scale simultaneous testing for high-dimensional 

linear regression have been studied by Liu and Luo (2014), Ingster, Tsybakov, and Verzelen 

(2010) and more recently by Xia, Cai, and Cai (2018) and Javanmard and Javadi (2019). 

However, due to the nonlinearity and the binary outcome, the approaches used in these 

works cannot be directly applied to logistic regression problems. In the Markov random 

field setting, Ren, Zhang, and Zhou (2016) and Cai et al. (2017) constructed pivotal/test 

statistics based on the debiased LDP estimators for node-wise logistic regressions with 

binary covariates. However, the results for sparse high-dimensional logistic regression 

models with general continuous covariates remain unknown.

Other related problems include joint testing and false discovery rate control for high­

dimensional multivariate regression (Xia, Cai, and Li 2018) and testing for high-dimensional 

precision matrices and Gaussian graphical models (Liu 2013; Xia, Cai, and Cai 2015), 

where the inverse regression approach and de-biasing were carried out in the construction 

of the test statistics. Such statistics were then used for testing the global null with extreme 

value type asymptotic null distributions or to perform multiple testing that controls the false 

discovery rate.

1.3 Organization of the Paper and Notations

The rest of the paper is organized as follows. In Section 2, we propose the global test and 

establish its optimality. Some comparisons with existing works are made in detail. In Section 

3, we present the multiple testing procedures and show that they control the FDR/FDP 

or FDV/FWER asymptotically. The framework is extended to the two-sample setting in 

Section 4. In Section 5, the numerical performance of the proposed tests are evaluated 

through extensive simulations. In Section 6, the methods are illustrated by an analysis of a 

metabolomics study. Further extensions and related problems are discussed in Section 7. In 

Section 8, some of the main theorems are proved. The proofs of other theorems as well as 

technical lemmas, and some further discussions are collected in the online Supplementary 

Materials.

Throughout our paper, for a vector a = a1, …, an
⊤ ∈ ℝn, we define the lp norm 

‖a‖p = ∑i = 1
n ai

p 1/p
, and the l∞ norm ‖a‖∞ = max1 ≤ j ≤ n|ai|. a−j ∈ ℝn − 1 stands for the 

subvector of a without the j the component. We denote diag(a1, …, an) as the n × n diagonal 
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matrix whose diagonal entries are a1, …, an. For a matrix A ∈ ℝp × q, λi (A) stands for the 

i-th largest singular value of A and λmax (A) = λ1 (A), λmin (A) = λp^q (A). For a smooth 

function f(x) defined on ℝ, we denote ḟ(x) = df(x)/dx and f̈(x) = d2f(x)/dx2. Furthermore, 

for sequences {an} and {bn}, we write an = o(bn) if lim
n

an/bn = 0, and write an = O(bn), an ≲ 

bn or bn ≳ an if there exists a constant C such that an ≤ Cbn for all n. We write an ≍ bn if 

an ≲ bn and an ≳ bn. For a set A, we denote |A| as its cardinality. Lastly, C, C0, C1, … are 

constants that may vary from place to place.

2 GLOBAL HYPOTHESIS TESTING

In this section, we consider testing the global null hypotheses

H0:β = 0   vs .   H1:β ≠ 0,

under the logistic regression model with random designs. The global testing problem 

corresponds to the detection of any associations between the covariates and the outcome.

Our construction of the global testing procedure begins with a bias-corrected estimator built 

upon a regularized estimator such as the l1-regularized M-estimator. For high-dimensional 

logistic regression, the l1-regularized M-estimator is defined as

β = argmin
β

1
n ∑

i = 1

n
−yiβ⊤Xi + log 1 + eβ⊤Xi + λ‖β‖1 , (2)

which is the minimizer of a penalized log-likelihood function. Negahban et al. (2010) 

showed that, when Xi are i.i.d. sub-gaussian, under some mild regularity conditions, 

standard high-dimensional estimation error bounds for β  under the l1 or l2 norm can be 

obtained by choosing λ ≍ logp/n. Once we obtain the initial estimator β , our next step is to 

correct the bias of β .

For technical reasons, we split the samples so that the initial estimation step and the 

bias correction step are conducted on separate and independent datasets. Without loss of 

generality, we assume there are 2n samples, divided into two subsets D1 and D2, each with 

n independent samples. The initial estimator β  is obtained from D1. In the following, we 

construct a nearly unbiased estimator β based on β  and the samples from D2, using the 

generalized LDP approach. Throughout the paper, the samples Zi = (Xi, Yi), i = 1, …, n, 

are from D2, which are independent of β . We would like to emphasize that the sample 

splitting procedure is only used to simplify our theoretical analysis, which does not make 

it a restriction for practical applications. Numerically, as our simulations in Section 5 show, 

sample splitting is in fact not needed in order for our methods perform well (see further 

discussions in Section 7).
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2.1 Construction of the Test Statistic via Generalized Low-Dimensional Projection

Let X be the design matrix whose i-th row is Xi. We rewrite the logistic regression model 

defined by (1) as

yi = f β⊤Xi + ϵi (3)

where f (u) = eu / (1 + eu) and ϵi is error term. To correct the bias of the initial estimator β , 

we consider the Taylor expansion of f (ui) at ui for ui = β⊤ Xi and ui = β⊤Xi

f ui = f ui + ḟ ui ui − ui + Rei

where Rei is the reminder term. Plug this into the regression model (3), we have

yi − f ui + ḟ ui Xi
⊤β = ḟ ui Xi

⊤β + Rei + ϵi . (4)

By rewriting the logistic regression model as (4), we can treat yi − f ui + ḟ ui Xi
⊤β  on the 

left hand side as the new response variable, whereas ḟ ui Xi as the new covariates and Rei 

+ ϵi as the noise. Consequently, β can be considered as the regression coefficient of this 

approximate linear model.

The bias-corrected estimator, or, the generalized LDP estimator β is defined as

βj = β j +
∑i = 1

n vij yi − f β⊤Xi

∑i = 1
n vijḟ β⊤Xi Xij

,    j = 1, …, p, (5)

where Xij is the j-th component of Xi and vj = (v1j, v2j, …, vnj) is the score vector that will 

be determined carefully (Ren, Zhang, and Zhou 2016; Cai et al. 2017). More specifically, 

we define the weighted inner product 〈·,·〉n for any a, b ∈ ℝn as a, b n = ∑i = 1
n ḟ ui aibi, and 

denote 〈·,·〉 as the ordinary inner product defined in Euclidean space. Combining (4) and (5), 

we can write

βj − βj = vj, ϵ
vj, xj n

+ vj, Re
vj, xj n

−
vj, h−j n
vj, xj n

, (6)

where xj ∈ ℝn denote the j-th column of X, h−j = X−j β−j − β−j  where X−j ∈ ℝn × ℝp − 1

is the submatrix of X without the j-th column, and Re = (Re1, …, Ren) with 

Rei = f ui − f ui − ḟ ui ui − ui . We will construct score vector vj so that the first term 

on the right hand side of (6) is asymptotically normal, while the second and third terms, 

which together contribute to the bias of the generalized LDP estimator β j, are negligible.

To determine the score vector vj efficiently, we consider the following node-wise regression 

among the covariates
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xj = X−jγj + ηj,    j = 1, …, p, (7)

where γj = argminγ ∈ ℝp − 1E ‖xj − X−jγ‖2
2  and ηj is the error term. Intuitively, if we set 

vj = W −1ηj for W = diag ḟ u1 , …, ḟ un , then it should follow that

vj, h−j n ≤ max
k ≠ j

| vj, xk n| ⋅ ‖β − β‖1 = max
k ≠ j

| ηj, xk | ⋅ ‖β − β‖1 ≈ 0.

In practice, we use the node-wise Lasso to obtain an estimate of ηj. For X from D2 and β
obtained from D1, the score vj is obtained by calibrating the Lasso-generated residue ηj, i.e.

vj(λ) = W −1ηj(λ),    ηj(λ) = xj − X−jγ j(λ),

γ j(λ) = argmin
b

‖xj − X−jb‖2
2

2n + λ‖b‖1 .
(8)

Clearly, vj (λ) depends on the tuning parameter λ. Define the following quantities

ζj(λ) = max
k ≠ j

| vj(λ), xk n|
‖vj(λ)‖n

,    τj(λ) = ‖vj(λ)‖n
| vj(λ), xj n| . (9)

The tuning parameter λ can be determined through ζj (λ) and τj (λ) by the algorithm in 

Table 1, which is adapted from the algorithm in Zhang and Zhang (2014).

Once βj and τj are obtained, we define the standardized statistics

Mj = βj/τj,

for j = 1, …, p. The global test statistic is then defined as

Mn = max
1 ≤ j ≤ p

Mj
2 . (10)

2.2 Asymptotic Null Distribution

We now turn to the analysis of the properties of the global test statistic Mn defined in (10). 

For the random covariates, we consider both the Gaussian design and the bounded design. 

Under the Gaussian design, the covariates are generated from a multivariate Gaussian 

distribution with an unknown covariance matrix Σ ∈ ℝp × p. In this case, we assume

(A1). Xi ~ N(0, Σ) independently for each i = 1, …, n.

In the case of bounded design, we assume instead
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(A2). Xi for i = 1, …, n are i.i.d. random vectors satisfying EXi = 0 and max1≤i≤n ‖ Xi‖∞ ≤ T 

for some constant T > 0.

Define the l1 ball

ℬ1(k) = Ω = ωij ∈ ℝp × p: max
1 ≤ i ≤ p

∑
j = 1

p
min |ωij| n

logp , 1 ≤ k .

In general, ℬ1(k) includes any matrix Ω whose rows ωi are l0 sparse with ‖ωi‖0≤ k or l1
sparse with ‖ωi‖1 ≤ k logp/n for all i = 1, …, p. The parameter space of the covariance 

matrix Σ and the regression vector β are defined as following.

(A3). The parameter space Θ(k) of θ = (β, Σ) ∈ ℝp × ℝp × p satisfies

Θ(k) = (β, Σ):    ‖β‖0 ≤ k, M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ M, Σ−1 ∈ ℬ1(k) ,

for some constant M ≥ 1. For convenience, we denote Θ1(k) = β ∈ ℝp:‖β‖0 ≤ k  and 

Θ2(k) = Σ ∈ ℝp × p:M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ M, Σ−1 ∈ ℬ1(k) , so that Θ(k) = Θ1(k) × 

Θ2(k).

The following theorem states that the asymptotic null distribution of Mn under either the 

Gaussian or bounded design is a Gumbel distribution.

Theorem 1. Let Mn be the test statistic defined in (10), D be the diagonal of Σ−1 and (ζij) = 

D−1/2Σ−1D−1/2. Suppose max1≤i<j≤p |ζij|≤ c0 for some constant 0 < c0 < 1, log p = O(nr) for 
some 0 < r < 1/5, and

1. under the Gaussian design, we assume (A1) (A3) andk = o n/log3p ; or

2. under the bounded design, we assume (A2) (A3) andk = o n/log5/2p .

Then under H0, for any givenx ∈ ℝ,

Pθ Mn − 2logp + loglogp ≤ x exp 1
πexp( − x/2) ,     as (n, p) ∞ .

The condition that log p = o(nr) for some 0 < r < 1/5 is consistent with those required 

for testing the global hypothesis in high-dimensional linear regression (Xia, Cai, and Cai 

2018) and for testing two-sample covariance matrices (Cai, Liu, and Xia 2013). It allows the 

dimension p to be exponentially large comparing to the sample size n, which is much more 

flexible than the likelihood ratio test considered in Sur, Chen, and Candès (2017) and Sur 

and Candès (2019), where the dimension can only scale as p < n. Under the Gaussian design, 
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it is required that the sparsity k is o n/log3p  whereas for the bounded design, it suffices that 

the sparsity k to be o n/log5/2p .

Remark 1. The analysis can be extended to testing H0:βG = 0 versus H1:βG ≠ 0 for a 

given index set G. Specifically, we can construct the test statistic as MG, n = maxi ∈ GMj
2 and 

obtain a similar Gumbel limiting distribution by replacing p by | G |, as (n,|G|) → ∞. The 

sparsity condition thus should be forwarded to the set G.

Based on the limiting null distribution, the asymptotically α level test can be defined as

Φα Mn = I Mn ≥ 2logp − loglogp + qα ,

where qα is the 1 − α quantile of the Gumbel distribution with the cumulative distribution 

function exp − 1
π exp( − x/2) , i.e.

qα = − log(π) − 2loglog(1 − α)−1 .

The null hypothesis H0 is rejected if and only if Φα(Mn) = 1.

2.3 Minimax Separation Distance and Optimality

In this subsection, we answer the question: “What is the essential difficulty for testing the 

global hypothesis in logistic regression.” To fix ideas, we begin with defining the minimax 

separation distance that measures such an essential difficulty for testing the global null 

hypothesis at a given level and type II error. In particular, we consider the alternative

H1:β ∈ β ∈ ℝp:‖β‖∞ ≥ ρ, ‖β‖0 ≤ k

for some ρ > 0. This alternative concerns the detection of any discernible signals among 

the regression coefficients where the signals can be extremely sparse, which has interesting 

applications (see Xia, Cai, and Cai (2015)). Similar alternatives are also considered by Cai, 

Liu, and Xia (2013) and Cai, Liu, and Xia (2014).

By fixing a level α > 0 and a type II error probability δ > 0, we can define the δ-separation 

distance of a level α test procedure Φα for given design covariance Σ as

ρ Φα, δ, Σ = inf ρ > 0: inf
β ∈ Θ1(k)‖β‖∞ ≥ ρ

Pθ(Φα = 1) ≥ 1 − δ

= inf ρ > 0: sup
β ∈ Θ1(k)‖β‖∞ ≥ ρ

Pθ(Φα = 0) ≤ δ .
(11)

The δ-separation distance ρ(Φα, δ,Θ(k)) over Θ(k) can thus be defined by taking the 

supremum over all the covariance matrices Σ ∈Θ2(k), so that
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ρ Φα, δ, Θ(k) = sup
Σ ∈ Θ2(k)

ρ Φα, δ, Σ ,

which corresponds to the minimal l∞ distance such that the null hypothesis H0 is well 

separated from the alternative H1 by the test Φα. In general, δ-separation distance is an 

analogue of the statistical risk in estimation problems. It characterizes the performance of a 

specific α-level test with a guaranteed type II error δ. Consequently, we can define the (α, 

δ)-minimax separation distance over Θ(k) and all the α-level tests as

ρ*(α, δ, Θ(k)) = inf
Φα

ρ Φα, δ, Θ(k) .

The definition of (α, δ)-minimax separation distance generalizes the ideas of Ingster (1993), 

Baraud (2002) and Verzelen (2012). The following theorem establishes the minimax lower 

bound of the (α, δ)-separation distance under the Gaussian design for testing the global null 

hypothesis over the parameter space Θ′(k) ⊂ Θ(k) defined as

Θ′(k) = Θ1(k) ∩ β ∈ ℝp:‖β‖2 ≲ n1/4logp −1 × Θ2(k) .

Theorem 2. Assume that α + δ ≤ 1. Under the Gaussian design, if (A1) and (A3) hold, (β, Σ) 

∈ Θ′(k) and k ≲ min pγ, n/log3p  for some 0 < γ <1 / 2 , then the (α, δ)-minimax separation 

distance over Θ′(k) has the lower bound

ρ* α, δ, Θ′(k) ≥ c logp
n (12)

for some constant c > 0.

In order to show the above lower bound is asymptotically sharp, we prove that it is actually 

attainable under certain circumstances, by our proposed global test Φα. In particular, for the 

bounded design, we make the following additional assumption.

(A4). It holds that Pθ(max1≤i≤n |β⊤Xi|≥ C) = O(p−c) for some constant C, c > 0.

Theorem 3. Suppose that log p = O(nr) for some 0 < r < 1. Under the alternative 
H1:‖β‖∞ ≥ c2 logp/n for some c2 > 0, and

(i) under the Gaussian design, assume that (A1) and (A3) hold, ‖β‖2 ≤ C(loglogp)/ logn for 

C ≤ min 2/λmax(Σ), (2r 2λmax(Σ))−1 , log p ≳ log1+δ n for some δ > 0 and k = o n/log3p ; 

or

(ii) under the bounded design, assume that (A2), (A3), and (A4) hold, andk = o n/log5/2p .

Then we have Pθ(Φα(Mn) = 1) → 1 as (n, p) → ∞.
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In Theorem 3, (A4) is assumed for the bounded case and ‖β‖2 = O(loglogp/ logn) is required 

for the Gaussian case. In particular, since log p = O(nr) for some 0 < r < 1, the upper bound 

loglogp/ logn for ‖β‖2 can be as large as logn. In Theorem 2, the minimax lower bound is 

established over (β, Σ) ∈Θ′(k), so that the same lower bound holds over a larger set

(β, Σ) ∈ Θ1(k) ∩ β ∈ ℝp:‖β‖2 ≤ loglogp/ logn × Θ2(k), (13)

since loglogp/ logn ≳ n1/4logp −1. On the other hand, Theorem 3 (i) indicates an upper 

bound ρ* ≲ logp/n attained by our proposed test under the Gaussian design over the set 

(13). These two results imply the minimax rate ρ* ≍ logp/n and the minimax optimality of 

our proposed test over the set (13).

2.4 Comparison with Existing Works

In this section, we make detailed comparisons and connections with some existing works 

concerning global hypothesis testing in the high-dimensional regression literature.

Ingster, Tsybakov, and Verzelen (2010) addressed the detection boundary for high­

dimensional sparse linear regression models, and more recently Mukherjee, Pillai, and Lin 

(2015) studied the detection boundary for hypothesis testing in high-dimensional sparse 

binary regression models. However, although both works obtained the sharp detection 

boundary for the global testing problem H0:β = 0, their alternative hypotheses are different 

from ours. Specifically, Mukherjee, Pillai, and Lin (2015) considered the alternative 

hypothesis H1:β ∈ β ∈ ℝp:‖β‖0 ≥ k, min |βj|: βk ≠ 0 ≥ A , which implies that β has at least 

k nonzero coefficients exceeding A in absolute values. Ingster, Tsybakov, and Verzelen 

(2010) considered the alternative hypothesis H1:β ∈ β ∈ ℝp:‖β‖0 ≤ k, ‖β‖2 ≥ ρ , which 

concerns k sparse β with l2 norm at least ρ. In fact, the proof of our Theorem 2 can be 

directly extended to such an alternative concerning the l2 norm, which amounts to obtaining 

a lower bound of order klogp
n  for high dimensional logistic regression. However, developing 

a minimax optimal test for such alternative is beyond the scope of the current paper.

Additionally, in contrast to the minimax separation distance considered in this paper, the 

papers by Ingster, Tsybakov, and Verzelen (2010) and Mukherjee, Pillai, and Lin (2015) 

considered the minimax risk (or the minimax total error probability) given by

inf
Φ

sup
Σ ∈ Θ2(k)

Risk(Φ, Σ) = inf
Φ

sup
Σ ∈ Θ2(k)

max
β ∈ H0

Pθ(Φ = 1) + max
β ∈ Θ1(k)‖β‖∞ ≥ ρ

Pθ

(Φ = 0) ,
(14)

where the infimum is taken over all tests Φ. This minimax risk can be also written as

inf
Φ

sup
Σ ∈ Θ2(k)

Risk(Φ, Σ) = inf
α ∈ (0, 1)

α + inf
Φα

sup
Σ ∈ Θ2(k)

sup
β ∈ Θ1(k)‖β‖∞ ≥ ρ

Pθ Φα = 0 . (15)
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A comparison of (11) and (15) yields the slight difference between the two criteria, as one 

depends on a given Type I error α and the other doesn’t.

Moreover, these two papers considered different design scenarios from ours. In Ingster, 

Tsybakov, and Verzelen (2010), only the isotropic Gaussian design was considered. As a 

result, the optimal tests proposed therein rely highly on the independence assumption. In 

Mukherjee, Pillai, and Lin (2015), the general binary regression was studied under fixed 

sparse design matrices. In particular, the minimax lower and upper bounds were only derived 

in the special case of design matrices with binary entries and certain sparsity structures.

In comparison with the recent works of Sur, Chen, and Candès (2017), Candès and Sur 

(2018) and Sur and Candès (2019), besides the aforementioned difference in the asymptotics 

of (p, n), these two papers only considered the random Gaussian design, whereas our work 

also considered random bounded design as in van de Geer et al. (2014). In addition, Sur, 

Chen, and Candès (2017) and Sur and Candès (2019) developed the Likelihood Ratio (LLR) 

Test for testing the hypothesis H0:βj1 = βj2 = … = βjk = 0 for any finite k. Intuitively, a valid 

test for the global null and p / n → κ ∈(0, 1 / 2) can be adapted from the individual LLR 

tests using the Bonferroni procedure. However, as our simulations show (Section 5), such a 

test is less powerful compared to our proposed test.

Lastly, our minimax results focus on the highly sparse regime k ≲ pγ where γ ∈(0, 1 / 

2). As shown by Ingster, Tsybakov, and Verzelen (2010) and Mukherjee, Pillai, and Lin 

(2015), the problem under the dense regime where γ ∈(1 / 2,1) can be very different from 

the sparse regime. Mostly likely, the fundamental difficulty of the testing problem changes 

in this situation so that different methods need to be carefully developed. We leave these 

interesting questions for future investigations.

3 LARGE-SCALE MULTIPLE TESTING

Denote by β the true coefficient vector in the model and denote 

ℋ0 = j:βj = 0, j = 1,⋯, p ,ℋ1 = j:βj ≠ 0, j = 1,⋯, p . In order to identify the indices in 

ℋ1, we consider simultaneous testing of the following null hypotheses

H0, j:βj = 0      vs .      H1, j:βj ≠ 0,    1 ≤ j ≤ p .

Apart from identifying as many nonzero βj as possible, to obtain results of practical interest, 

we would like to control the false discovery rate (FDR) as well as the false discovery 

proportion (FDP), or the number of falsely discovered variables (FDV).

3.1 Construction of Multiple Testing Procedures

Recall that in Section 2, we define the standardized statistics Mj = βj/τj, for j = 1, …, p. 

For a given threshold level t > 0, each individual hypothesis H0,j:βj = 0 is rejected if |Mj|≥ t. 
Therefore for each t, we can define
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FDPθ(t) =
∑j ∈ ℋ0I |Mj| ≥ t

max ∑j = 1
p I |Mj| ≥ t , 1

,    FDRθ(t) = Eθ[FDP(t)],

and the expected number of falsely discovered variables FDVθ(t) = Eθ ∑j ∈ ℋ0I |Mj| ≥ t

Procedure Controlling FDR/FDP.—In order to control the FDR/FDP at a pre-specified 

level 0 < α < 1, we can set the threshold level as

t1 = inf 0 ≤ t ≤ bp:
∑j ∈ ℋ0I |Mj| ≥ t

max ∑j = 1
p I |Mj| ≥ t , 1

≤ α , (16)

for some bp to be determined later.

In general, the ideal choice t1 is unknown and needs to be estimated because it depends 

on the knowledge of the true null ℋ0. Let G0(t) be the proportion of the nulls falsely 

rejected by the procedure among all the true nulls at the threshold level t, namely, 

G0(t) = 1
p0

∑j ∈ ℋ0I |Mj ≥ t , where p0 = |ℋ0|. In practice, it is reasonable to assume that 

the true alternatives are sparse. If the sample size is large, we can use the tails of normal 

distribution G(t) = 2 − 2Φ(t) to approximate G0(t). In fact, it will be shown that, for 

bp = 2logp − 2loglogp in probability as (n, p) → ∞. To summarize, we have the following 

logistic multiple testing (LMT) procedure controlling the FDR and the FDP.

Procedure 1 (LMT). Let 0 < α < 1, bp = 2logp − 2loglogp and define

t = inf 0 ≤ t ≤ bp: pG(t)
max ∑j = 1

p I |Mj| ≥ t , 1
≤ α . (17)

Ift in (17) does not exist, then let t = 2logp. We reject H0,j Whenever |Mj| ≥ t .

Procedure Controlling FDV.—For large-scale inference, it is sometimes of interest 

to directly control the number of falsely discovered variables (FDV) instead of the less 

stringent FDR/FDP, especially when the sample size is small (Liu and Luo 2014). By 

definition, the FDV control, or equivalently, the per-family error rate control, provides an 

intuitive description of the Type I error (false positives) in variable selection. Moreover, 

controlling FDV = r for some 0 < r < 1 is related to the family-wise error rate (FWER) 

control, which is the probability of at least one false positive. In fact, FDV control can 

be achieved by a suitable modification of the FDP controlling procedure introduced above. 

Specifically, we propose the following FDV (or FWER) controlling logistic multiple testing 

(LMTV) procedure.
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Procedure 2 (LMTV). For a given tolerable number of falsely discovered variables r < p 

(or a desired level of FWER 0 < r < 1), let t FDV = G−1(r/p). H0,j is rejected whenever 

|Mj| ≥ t FDV .

3.2 Theoretical Properties for Multiple Testing Procedures

In this section we show that our proposed multiple testing procedures control the theoretical 

FDR/FDP or FDV asymptotically. For simplicity, our theoretical results are obtained under 

the bounded design scenario. For FDR/FDP control, we need an additional assumption on 

the interplay between the dimension p and the parameter space Θ(k).

Recall that ηj = (ηj1, …, ηjn) for j = 1, …, p defined in (7). We define Fjk = Eθ ηijηik/ḟ ui
for 1 ≤ j, k ≤ p, and ρjk = Fjk/ FijFkk. Denote ℬ(δ) = (j, k): |ρjk| ≥ δ, i ≠ j  and 

A(ϵ) = ℬ (logp)−2 − ϵ .

(A5). Suppose that for some ϵ > 0 and q > 0, 

∑(j, k) ∈ A(ϵ): j, k ∈ ℋ0 p
2|ρjk|

1 + |ρjk| + q = O p2/(logp)2 .

The following proposition shows that Mj is asymptotically normal distributed and G0(t) is 

well approximated by G(t).

Proposition 1. Under (A2) (A3) and (A4), suppose p = O(nc) for some constant c > 0, 

k = o n/log5/2p , then as (n, p) → ∞,

sup
j ∈ ℋ0

sup
0 ≤ t ≤ 2logp

|Pθ |Mj| ≥ t
2 − 2Φ(t) − 1| 0. (18)

If in addition we assume (A5), then

sup
0 ≤ t ≤ bp

|G0(t)
G(t) − 1| 0 (19)

in probability, where Φ is the cumulative distribution function of the standard normal 

distribution and bp = 2logp − 2loglogp.

The following theorem provides the asymptotic FDR and FDP control of our procedure.

Theorem 4. Under the conditions of Proposition 1, for t  defined in our LMT procedure, we 
have

lim
(n, p) ∞

FDRθ(t )
αp0/p ≤ 1,     lim

(n, p) ∞
Pθ

FDPθ(t )
αp0/p ≤ 1 + ϵ = 1 (20)

for any ϵ > 0.
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For the FDV/FWER controlling procedure, we have the following theorem.

Theorem 5. Under (A2) (A3) and (A4), assume p = O(nc) for some c > 0 and 

k = o n/log5/2p .

Let r < p be the desired level of FDV. Fort FDV defined in our LMTVprocedure, we have

lim
(n, p) ∞

FDVθ t FDV
rp0/p ≤ 1. In addition, if 0 < r < 1, we have lim

(n, p) ∞

FWERθ t FDV
rp0/p ≤ 1.

The above theoretical results are obtained under the dimensionality condition p = O(nc), 

which is stronger than that of the global test. Essentially, the condition is needed to obtain 

the uniform convergence (18), whose form (as ratio) is stronger than the convergence in 

distribution in the ordinary sense (as direct difference).

4 TESTING FOR TWO LOGISTIC REGRESSION MODELS

In some applications, it is also interesting to consider hypothesis testing that involves 

two separate logistic regression models of the same dimension. Specifically, for l = 1, 2
and i = 1, …, nl, where n1 ≍ n2, yi

(l) = f β(l) ⊤ Xi
(l) + ϵi

(l), where f (u) = eu / (1 + eu), and 

ϵi
(l) is a binary random variable such that yi

(l) |Xi
(l) Bernoulli f β(l) ⊤ Xi

(l) . The global 

null hypothesis H0:β(1) = β(2) implies that there is overall no difference in association 

between covariates and the response. If this null hypothesis is rejected, we are interested in 

simultaneously testing the hypotheses H0, j:βj
(1) = βj

(2) for each j = 1, …, p.

To test the global null H0:β(1) = β(2) against H1:β(1) ≠ β(2), we can first obtain βj
(l)

and τj
(l) for each model, and then calculate the coordinate-wise standardized statistics 

Tj =
βj

(1)

2τj
(1) −

βj
(2)

2τj
(2) , for j = 1, …, p. Define the global test statistic as Tn = max1 ≤ j ≤ pTj

2, it 

can be shown that the limiting null distribution is also a Gumbel distribution. The α level 

global test is thus defined as Φα(Tn) = I{Tn ≥ 2log p−loglog p + qα}, where qα = −log(π) − 

2loglog(1 − α)−1. For multiple hypotheses testing of two regression vectors H0, j:βj
(1) = βj

(2), 

we consider the test statistics Tj defined above. The two-sample multiple testing procedure 

controlling FDR/FDP is given as follows.

Procedure 3. Let 0 < α < 1 and define t = inf 0 ≤ t ≤ bp: pG(t)
max ∑j = 1

p I |Tj| ≥ t , 1
≤ α . If the 

above t  does not exist, let t = 2logp. We reject H0,j whenever |Tj| ≥ t .

5 SIMULATION STUDIES

In this section we examine the numerical performance of the proposed tests. Due to the 

space limit, for both global and multiple testing problems, we only focus on the single 
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regression setting, and report the results on two logistic regressions in the Supplementary 

Materials. Throughout our numerical studies, sample splitting was not used.

5.1 Global Hypothesis Testing

In the following simulations, we consider a variety of dimensions, sample sizes, and sparsity 

of the models. For alternative hypotheses, the dimension of the covariates p ranges from 100, 

200, 300 to 400, and the sparsity k is set as 2 or 4. The sample sizes n are determined by 

the ratio r = p / n that takes values of 0.2, 0.4 and 1.2. To generate the design matrix X, we 

consider the Gaussian design with the blockwise-correlated covariates so that Σ = ΣB, where 

ΣB is a p × p blockwise diagonal matrix including 10 equal-sized blocks, whose diagonal 

elements are 1’s and off-diagonal elements are set as 0.7. Under the alternative, suppose S is 

the support of the regression coefficients β and |S| = k, we set |βj| = ρ1 j ∈ S  for j = 1, …, p 

and ρ = 0.75 with equal proportions of ρ and −ρ. We set κ0 = 0 and κ1 = 0.5.

To assess the empirical performance of our proposed test (“Proposed”), we compare our test 

with (i) a Bonferroni procedure applied to the p-values from univariate screening using MLE 

statistic (“U-S”), and (ii) to the method of Sur, Chen, and Candès (2017); Sur and Candès 

(2019) (“LLR”) in the setting where r = 0.2 and 0.4.

Table 2 shows the empirical type I errors of these tests at level α = 0.05 based on 1000 

simulations. Figure 1 shows the corresponding empirical powers under various settings. As 

we expected, our proposed method outperforms the other two alternatives in all the cases 

(including the moderate dimensional cases where r = 0.2 and 0.4), and the power increases 

as n or p grows. In the rather lower dimensional setting where r = 0.2, the LLR performs 

almost as well as our proposed method.

5.2 Multiple Hypotheses Testing

FDR Control.—In this case, we set p = 800 and let n vary from 600, 800, 1000, 1200 to 

1400, so that all the cases are high-dimensional in the sense that p > n / 2. The sparsity 

level k varies from 40, 50 to 60. For the true positives, given the support S such that |S| = k, 

we set |βj| = ρ1 j ∈ S  for j = 1, …, p with equal proportions of ρ and −ρ. The design 

covariates Xi’s are generated from a |Xi
⊤β| < 3 -truncated multivariate Gaussian distribution 

with covariance matrix Σ = 0.01ΣM, where ΣM is a p × p blockwise diagonal matrix of 10 

identical unit diagonal Toeplitz matrices whose off-diagonal entries descend from 0.1 to 0 

(see Supplementary Material for the explicit form). The choice of κ0 and κ1 are the same as 

the global testing. Throughout, we set the desired FDR level as α = 0.2.

We compare our proposed procedure (denoted as “LMT”) with following methods: (i) the 

basic LMT procedure with bp in (17) replaced by ∞ (“LMT0”), which is equivalent to 

applying the BH procedure (Benjamini and Hochberg 1995) to our debiased statistics Mj, (ii) 

the BY procedure (Benjamini and Yekutieli 2001) using our debiased statistics Mj (“BY”), 

implemented using the R function p.adjust(…,method=“BY”), (iii) a BH procedure applied 

to the p-values from univariate screening using the MLE statistics (“U-S”), and (iv) the 

knockoff method of Candès et al. (2018) (“Knockoff”). Figure 2 shows boxplots of the 

pooled empirical FDRs (see Supplementary Material for the case-by-case FDRs) and Figure 
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3 shows the empirical powers of these methods based on 1000 replications. Here the power 

is defined as the number of correctly discovered variables divided by the number of truly 

associated variables. As a result, we find that LMT and LMT0 correctly control FDRs and 

have the greatest power among all the cases. In particular, the power of LMT and LMT0 

are almost the same, which increases as the sparsity decreases, the signal magnitude ρ 
increases, or the sample size n increases, while LMT0 has slightly inflated FDRs. The U-S 

method, although correctly controls the FDRs, has poor power, which is largely due to the 

dependence among the covariates.

FDV Control.—For our proposed test that controls FDV (denoted as LMTV), by setting 

desired FDV level r = 10, we apply our method to various settings. Specifically, we set ρ = 

3, p ∈{800,1000,1200}, set k ∈{40,50,60}, and let n vary from 400, 600, 800 to 1000. The 

design covariates are generated similarly as the previous part. The resulting empirical FDV 

and powers are summarized in Table 3. Our proposed LMTV has the correct control of FDV 

in all the settings and the power increases as n grows, k decreases, or p decreases.

6 REAL DATA ANALYSIS

We illustrate our proposed methods by analyzing a dataset from the Pediatric Longitudinal 

Study of Elemental Diet and Stool Microbiome Composition (PLEASE) study, a prospective 

cohort study to investigate the effects of inflammation, antibiotics, and diet as environmental 

stressors on the gut microbiome in pediatric Crohn’s disease (Lewis et al. 2015; Lee et 

al. 2015; Ni et al. 2017). The study considered the association between pediatric Crohn’s 

disease and fecal metabolomics by collecting fecal samples of 90 pediatric patients with 

Crohn’s disease at baseline, 1 week, and 8 weeks after initiation of either anti-tumor 

necrosis factor (TNF) or enteral diet therapy, as well as those from 25 healthy control 

children (Lewis et al. 2015). In details, an untargeted fecal metabolomic analysis was 

performed on these samples using liquid chromatography-mass spectrometry (LC-MS). 

Metabolites with more than 80% missing values across all samples were removed from 

the analysis. For each metabolite, samples with the missing values were imputed with its 

minimum abundance across samples. To avoid potential large outliers, for each sample, the 

metabolite abundances were further normalized by dividing 90% cumulative sum of the 

abundances of all metabolites. The normalized abundances were then log transformed and 

used in all analyses. The metabololomics annotation was obtained from Human Metabolome 

Database (Lee et al. 2015). In total, for each sample, abundances of 335 known metabolites 

were obtained and used in our analysis.

6.1 Association Between Metabolites and Crohn’s Disease Before and After Treatment

We first test the overall association between 335 characterized metabolites and Crohn’s 

disease by fitting a logistic regression using the data of 25 healthy controls and 90 Crohn’s 

disease patients at the baseline. We obtain a global test statistic of 433.88 with a p-value 

< 0.001, indicating a strong association between Crohn’s disease and fecal metabolites. 

At the FDR < 5%, our multiple testing procedure selects four metabolites, including 

C14:0.sphingomyelin, C24:1.Ceramide.(d18:1) and 3-methyladipate/pimelate (see Table 

4). Recent studies have demonstrated that sphingolipid metabolites, particularly ceramide 

Ma et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and sphingosine-1-phosphate, are signaling molecules that regulate a diverse range of 

cellular processes that are important in immunity, inflammation and inflammatory disorders 

(Maceyka and Spiegel 2014). In fact, ceramide acts to reduce tumor necrosis factor (TNF) 

release (Rozenova et al. 2010) and has important roles in the control of autophagy, a process 

strongly implicated in the pathogenesis of Crohn’s disease (Barrett et al. 2008; Sewell et al. 

2012).

We next investigate whether treatment of Crohn’s disease alters the association between 

metabolites and Crohn’s disease by fitting two separate logistic regressions using the 

metabolites measured one week or 8 weeks after the treatment. At each time point, a 

significant association is detected based on our global test (p-value < 0.001). One week after 

the treatment, we observe six metabolites associated with Crohn’s disease, including all four 

identified at the baseline and two additional metabolites, beta-alanine and adipate (see Table 

4). The beta-alanine and adipate associations are likely due to that beta-alanine and adipate 

are important ingredients of the enteral nutrition treatment of Crohn’s disease. However, 

it is interesting that at 8 weeks after the treatment, valine, C16.carnitine and C18.carnitine 

are identified to be associated with Crohn’s disease together with 3-methyladipate/pimelate 

and beta-alanine. It is known that carnitine plays an important role in Crohn’s disease, 

which might be a consequence of the underlying functional association between Crohn’s 

disease and mutations in the carnitine transporter genes (Peltekova et al. 2004; Fortin 2011). 

Deficiency of carnitine can lead to severe gut atrophy, ulceration and inflammation in animal 

models of carnitine deficiency (Shekhawat et al. 2013). Our results may suggest that the 

treatment increases carnitine, leading to reduction of inflammation.

6.2 Comparison of Metabolite Associations Between Responders and Non-Responders

To compare the metabolic association with Crohn’s disease for responders (n = 47) and 

non-responders (n = 34) eight weeks after treatment, we fit two logistic regression models, 

responder versus normal control and non-responder versus normal control. Our global test 

shows that there is an overall difference in regression coefficients for responders and for 

non-responders when compared to the normal controls (p-value < 0.001). We next apply our 

proposed multiple testing procedure to identify the metabolites that have different regression 

coefficients in these two different logistic regression models. At the FDR < 0.05, our 

procedure identifies 9 metabolites with different regression coefficients (see Table 5). It is 

interesting that all these 9 metabolites have the same signs of the refitted coefficients, while 

the actual magnitudes of the associations between responders and non-responders when 

compared to the normal controls are different. Besides C24:4.cholesteryl ester, beta-alanine, 

valine, C18.carnitine and 3-methyladipate/pimelate that we observe in previous analyses, 

metabolites 5-hydroxytryptopha, nicotinate, and succinate also have differential associations 

between responders and non-responders when compared to the controls.

7 DISCUSSION

In this paper, for both global and multiple testing, the precision matrix Ω = Σ−1 of the 

covariates is assumed to be sparse and unknown. Node-wise regression among the covariates 

is used to learn the covariance structure in constructing the debiased estimator. However, 
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if the prior knowledge of Ω = I is available, the algorithm can be simplified greatly. 

Specifically, instead of incorporating the Lasso estimators as in (8), we let vj = W −1xj and τj 

= ‖vj‖n/〈vj, xj〉 for each j = 1, …, p. The theoretical properties of the resulting global testing 

and multiple testing procedures still hold, while the computational efficiency is improved 

dramatically. However, from our theoretical analysis, even with the knowledge of Ω = I, 

the theoretical requirement for the model sparsity (k = o n/log3p  in the Gaussian case and 

k = o n/log5/2p  in the bounded case) cannot be relaxed due to the nonlinearity of the 

problem.

Sample splitting was used in this paper for theoretical purpose. This is different from other 

works on inference in high-dimensional linear/logistic regression models, including Ingster, 

Tsybakov, and Verzelen (2010), van de Geer et al. (2014), Mukherjee, Pillai, and Lin (2015) 

and Javanmard and Javadi (2019), where sample splitting is not needed. However, as we 

discussed throughout the paper, the assumptions and the alternatives that we considered are 

different from those previous papers. In the case of high-dimensional logistic regression 

model, a sample splitting procedure seems unavoidable under the current framework of 

our technical analysis without making additional strong structural assumptions such as the 

sparse inverse Hessian matrices used in van de Geer et al. (2014) or the weakly correlated 

design matrices used in Mukherjee, Pillai, and Lin (2015). Our simulations showed that the 

sample splitting is actually not needed in order for our proposed methods to perform well. 

It is of interest to develop technical tools that can eliminate sample splitting in inference for 

high dimensional logistic regression models.

As mentioned in the introduction, the logistic regression model can be viewed as a special 

case of the single index model y = f (β⊤x) + ϵ where f is a known transformation function 

(Yang et al. 2015). Based on our analysis, it is clear that the theoretical results are not 

limited to the sigmoid transfer function. In fact, the proposed methods can be applied to 

a wide range of transformation functions satisfying the following conditions: (C1) f is 

continuous and for any u ∈ ℝ, 0 < f (u) < 1; (C2) for any u1, u2 ∈ ℝ, there exists a constant 

L > 0 such that |ḟ u1 − ḟ u2 | ≤ L|u1 − u2|; and (C3) for any constant C > 0, there exists δ > 

0 such that for any |u| ≤ C, ḟ(u) ≥ δ. Examples include but are not limited to the following 

function classes

• Cumulative density functions: f (x) = P(X ≤ x) for some continuous random 

variable X supported on ℝ. In particular, when X ~ N(0, 1), the resulting model 

becomes the probit regression.

• Affine hyperbolic tangent functions: f(x) = 1
2 tanh(ax + b) + 1 for some parameter 

a, b ∈ ℝ. In particular, (a, b) = (1, 0) corresponds to f (x) = ex / (1 + ex).

• Generalized logistic functions: f (x) = (1 + e−x)−α for some α > 0.

Besides the problems we considered in this paper, it is also of interest to construct 

confidence intervals for functionals of the regression coefficients, such as ‖β‖1,‖β‖2, or θ⊤β 
for some given loading vector θ. In modern statistical machine learning, logistic regression 

is considered as an efficient classification method (Abramovich and Grinshtein 2018). In 
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practice, a predicted label with an uncertainty assessment is usually preferred. Therefore, 

another important problem is the construction of predictive intervals of the conditional 

probability π* associated with a given predictor X*. These problems are related to the 

current work and are left for future investigations.

8 PROOFS OF THE MAIN THEOREMS

In this section, we prove Theorems 1, Theorem 2 and Theorem 4 in the paper. The proofs of 

other results, including Theorems 3 and 5, Proposition 1 and the technical lemmas, are given 

in our Supplementary Materials.

Proof of Theorem 1

Define Fij = E ηij2 /ḟ ui . Under H0, Fij = 4E ηij2 = 4/ωjj, and by (A3), c < Fjj < C for j = 1, 

…, p and some constant C ≥ c > 0. Define statistics

Mj =
vj, ϵ

‖vj‖n
,     and    Mj =

∑i = 1
n ηijϵi/ḟ ui

nFjj
,    j = 1, …, p .

and Mn = maxjMj
2, Mn = maxjMj

2. The following lemma shows that Mn and therefore Mn
are good approximations of Mn.

Lemma 1. Under the condition of Theorem 1, the following events

B1 = |Mn − Mn| = o(1) ,    B2 = |Mn − Mn| = o 1
logp ,

hold with probability at least 1 − O(p−c) for some constant c > 0.

It follows that under the event B1 ∩ B2, let yp = 2log p − loglog p + x and ϵn = o(1), we have

Pθ Mn ≤ yp − ϵn ≤ Pθ Mn ≤ yp ≤ Pθ Mn ≤ yp + ϵn

Therefore it suffices to prove that for any t ∈ ℝ, as (n, p) → ∞,

Pθ Mn ≤ yp exp − 1
τ exp( − x/2) . (21)

Now define Mj =
∑i = 1

n Zij
nFij

, j = 1, …, p . where Zij = vij
0 ϵi1 |vij

0 ϵi| ≤ τn − E vij
0 ϵi1 |vij

0 ϵi| ≤ τn

for τn = log(p + n), vij
0 = ηij/ḟ ui  and Mn = maxjMj

2. The following lemma states that Mn is 

close to Mn.

Lemma 2. Under the condition of Theorem 1, |Mn − Mn| = o(1) with probability at least 1 − 

O(p−c) for some constant c > 0.
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By Lemma 2, it suffices to prove that for any t ∈ ℝ, as (n, p) → ∞,

Pθ Mn ≤ yp exp − 1
πexp( − x/2) . (22)

To prove this, we need the classical Bonferroni inequality.

Lemma 3. (Bonferroni inequality) Let B = ∪
t = 1

p
Bt. For any integer k < p / 2, we have

∑
t = 1

2k
( − 1)t − 1At ≤ P(B) ≤ ∑

t = 1

2k − 1
( − 1)t − 1At, (23)

where At = ∑1 ≤ i1 < … < it ≤ pP Bi1 ∩ … ∩ Bit .

By Lemma 3, for any integer 0 < q < p / 2,

∑
d = 1

2q
( − 1)d − 1 ∑

1 ≤ j1 ≤ … ≤ jd ≤ p
Pθ ∩

k = 1

d
Ajk ≤ Pθ max

1 ≤ j ≤ p
Mj

2 ≥ yp

≤ ∑
d = 1

2p − 1
( − 1)d − 1 ∑

1 ≤ j1 < … < jd ≤ p
Pθ ∩

k = 1

d
Ajk ,

(24)

where Ajk = Mjk
2 ≥ yp . Now let wij = Zij/ Fjj for j = 1, …, p, and Wi = wi, j1, …, wi, jd

⊤

for 1 ≤ i ≤ n. Define ‖a‖min = min1≤i≤d | ai| for any vector a ∈ ℝd. Then we have

Pθ ∩
k = 1

d
Ajk = P((n−1/2 ∑

i = 1

n
Wi(min ≥ yp1/2) .

Then it follows from Theorem 1.1 in Zaitsev (1987) that

Pθ( n−1/2 ∑
i = 1

n
Wi(min ≥ yp1/2 ≤ Pθ ‖Nd‖min ≥ yp1/2 − ϵn(logp)−1/2

+ c1d5/2exp − n1/2ϵn
c2d3τn(logp)1/2 ,

(25)

where c1 > 0 and c2 > 0 are constants, ϵn → 0 which will be specified later, and 

Nd = Nm1, …, Nmd  is a normal random vector with E Nd = 0 and cov(Nd) = cov(W1). Here 

d is a fixed integer that does not depend on n, p. Because log p = o(n1/5), we can let ϵn → 0 

sufficiently slow, say, ϵn = log5p/n, so that for any large c > 0,

c1d5/2exp − n1/2ϵn
c2d3τn(logp)1/2 = O p−c . (26)
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Combining (24), (25) and (26), we have

Pθ max
1 ≤ j ≤ p

Mj
2 ≥ yp ≤ ∑

d = 1

2p − 1
( − 1)d − 1 ∑

1 ≤ j1 < … < jd ≤ p
Pθ

‖Nd‖min ≥ yp1/2 − ϵn(logp)−1/2 + o(1) .
(27)

Similarly, one can derive

Pθ max
1 ≤ j ≤ p

Mj
2 ≥ yp ≥ ∑

d = 1

2p
( − 1)d − 1 ∑

1 ≤ j1 < … < jd ≤ p
Pθ

‖Nd‖min ≥ yp1/2 + ϵn(logp)−1/2 + o(1) .
(28)

Now we use the following lemma from Xia, Cai, and Cai (2018).

Lemma 4. For any fixed integer d ≥ 1 and real number t ∈ ℝ,

∑
1 ≤ j1 < … < jd ≤ p

Pθ ‖Nd‖min ≥ yp1/2 ± ϵn(logp)−1/2 = 1
d!

1
πexp( − t/2)

d
(1 + o(1)) .

It then follows from the above lemma, (27) and (28) that

limsup
n, p ∞

Pθ max
1 ≤ j ≤ p

Mj
2 ≥ yp ≤ ∑

d = 1

2p
( − 1)d − 1 1

d!
1
πexp( − t/2)

d
,

liminf
n, p ∞

Pθ max
1 ≤ j ≤ p

Mj
2 ≥ yp ≥ ∑

d = 1

2p − 1
( − 1)d − 1 1

d!
1
πexp( − t/2)

d
,

for any positive integer p. By letting p → ∞, we obtain (22) and the proof is complete. □

Proof of Theorem 2.

The proof essentially follows from the general Le Cam’s method described in Section 7.1 of 

Baraud (2002). The key elements can be summarized as the following lemma that reduces 

the lower bound problem to calculation of the total variation distance between two posterior 

distributions.

Lemma 5. Let ℋ1 be some subset in an l2 bounded Hilbert space and ρ some positive 

number. Let μρ be some probability measure on ℋ1 = θ ∈ Θ, ‖θ‖ = ρ . Set Pμρ = ∫ Pθdμρ(θ), 

P0 as the (posterior) distribution at the null, and denote by Φα the level-α tests, we have

inf
Φα

sup
θ ∈ ℋ1

Pθ Φα = 0 ≥ inf
Φα

Pμρ Φα = 0 ≥ 1 − α − TV Pμρ, P0 ,
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where TV Pμρ, P0  denotes the total variation distance between Pμρ and P0.

Now since by definition ρ*(Φα, δ, Θ(k)) ≥ ρ*(Φα, δ, Σ) for any Σ ∈Θ2(k), by Lemma 5, it 

suffices to construct the corresponding ℋ1 for β ∈Θβ(k) and find a lower bound ρ1 = ρ(η) 

such that

∀ρ ≤ ρ1   inf
Φα

Pμρ Φα = 0 ≥ 1 − α − η = δ .
(29)

for fixed covariance Σ = I. In this case, an upper bound for the χ2-divergence between Pμρ

and P0, defined as χ2 Pμρ, P0 = ∫
dPμρ

2

dP0
− 1, can be obtained by carefully constructing the 

alternative space ℋ1. Since TV (f, g) ≤ χ2(f, g) (see p.90 of Tsybakov (2009)), it follows 

that inf
Φα

Pμρ Φα = 0 ≥ 1 − α − χ2 Pμρ, P0 . By choosing ρ1 = ρ(η) such that for any ρ ≤ ρ1, 

χ2 Pμρ, P0 ≤ η2 = (1 − α − δ)2, we have (29) holds. In the following, we will construct the 

alternative space ℋ1 and derive an upper bound of χ2 Pμρ, P0  where P0 corresponds to 

the null space ℋ0 defined at a single point β = 0. We divide the proofs into two parts. 

Throughout, the design covariance matrix is chosen as Σ = I.

Step 1: Construction of ℋ1.—Firstly, for a set M, we define l(M, n) as the 

set of all the n-element subsets of M. Let [1: p] ≡ {1, …, p}, so l([1: p], k)
contains all the k-element subsets of [1: p]. We define the alternative parameter space 

ℋ1 = β ∈ ℝp:βj = ρ1 j ∈ I  for I ∈ l([1: p], k) . In other words, ℋ1 contains all the k-sparse 

vectors β(I) whose nonzero components ρ are indexed by I. Apparently, for any β ∈ ℋ1, it 

follows ‖β‖∞ = ρ and ℋ1 ⊆ Θ1(k).

Step 2: Control of χ2 Pπℋ1, P0 .—Let π denote the uniform prior of the random index set 

I over l([1: p], k). This prior induces a prior distribution πℋ1 over the parameter space ℋ1. 

For 0p = ℋ0, the corresponding joint distribution of the data Xi, yi i = 1
n  is

f = ∏
i = 1

n
p Xi, yi = 1

(2π)np/2 ∏i = 1

n 1
2e−‖Xi‖2

2/2 .

Similarly, the posterior distribution of the samples over the prior πℋ1 is denoted as

g = ∏
i = 1

n ∫
ℋi

p Xi, yj; β πℋi = 1
p
k

∑
β ∈ ℋ1

∏
i = 1

n
p Xi, yi; β .
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As a result, we have the following lemma controlling χ2 Pπℋ1, P0 = χ2(g, f).

Lemma 6. Let ρ2 = 1
n log 1 + p

ℎ(η)k2  where h(η) = [log(η2 + 1)]−1 and η = 1 − α − δ, then we 

have χ2(g, f) ≤ (1 − α − δ)2.

Combining Lemma 5 and Lemma 6, we know that for α, δ > 0 and α + δ < 1, if 

ρ = 1
n log 1 + p

ℎ(η)k2 , then ∀ρ′ ≤ ρ, inf
Φα

sup
β ∈ Θ(k):‖β‖∞ ≥ ρ′

Pθ Φα = 0 ≥ δ. Therefore, it follows 

that

ρ*(α, δ, Θ(k)) ≥ ρ*(α, δ, I) ≳ 1
nlog 1 + p

k2 . (30)

Lastly, note that for the above chosen ρ, ℋ1 ⊂ Θ1(k) ∩ β ∈ ℝp:‖β‖2 ≲ n1/4logp −1  when 

k ≲ min pγ, n/log3p  for some 0 < γ < 1 / 2. This completes the proof. □

Proof of Theorem 4.

The proof follows similar arguments of the proof of Theorem 3.1 in Javanmard and Javadi 

(2019). We first consider the case when t , given by (17), does not exist. In this case, 

t = 2logp and we consider the event Ω0 = ∑j ∈ ℋ0I |Mj| ≥ 2logp ≥ 1  that there are at 

least one false positive. In order to show the FDR/FDP can be controlled in this case, we 

show that

Pθ Ω0 0,     as (n, p) ∞ . (31)

Note that for j ∈ ℋ0, we have Mj =
βj
τj

=
vj, ϵ

‖vj‖n
+

vj, Re
‖vj‖n

−
vj, h−j n

‖vj‖n
 Then

Pθ Ω0 ≤ Pθ ∑
j ∈ ℋ0

I vj, ϵ
‖vj‖n

+ vj, Re
‖vj‖n

−
vj, h−j n
‖vj‖n

≥ 2logp ≥ 1

+ Pθ ∑
j ∈ ℋ0

I vj, ϵ
‖vj‖n

+ vj, Re
‖vj‖n

−
vj, h−j n
‖vj‖π

≤ 2logp ≥ 1 .
(32)

For any ϵ > 0, we can bound the first term by
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Pθ ∑
j ∈ ℋ0

I
vj, ϵ

‖vj‖k
+

vfRe
‖vj‖v

−
vj, h−j n

‖vj‖n
≥ 2logp ≥ 1

= Pθ ∑
j ∈ ℋ0

I Mj ≥ 2logp +
vj, h−j n

‖vj‖n
−

vj, Re
‖vj‖n

≥ 1

≤ Pθ ∑
j ∈ ℋ0

I Mj ≥ 2logp − ϵ ≥ 1 + Pθ max
j ∈ ℋ0

|
vj, h−j n

‖vj‖n
−

vj, Re
‖vj‖n

| ≥ ϵ

≤ p max
j ∈ ℋ0

Pθ Mj ≥ 2logp − ϵ + Pθ max
j ∈ ℋ0

|
vj, h−j n

‖vj‖n
−

vj, Re
‖vj‖n

| ≥ ϵ

By the proof of Lemma 1, we know that Pθ maxj ∈ ℋ0|
vj, h−j n

‖vj‖n
−

vj, Re
‖vj‖n

| ≥ ϵ 0. In 

addition, for j ∈ ℋ0, Pθ Mj ≥ 2logp − ϵ ≤ Pθ Mj ≥ 2logp − 2ϵ + Pθ |Mj − Mj| ≥ ϵ , where 

maxj ∈ ℋ0Pθ |Mj − Mj| ≥ ϵ = O p−c  for some sufficiently large c > 0. Now since 

Mj =
∑i = 1

n ηijϵi/ḟ ui
nFjj

 where E
ηijϵi/ḟ ui

Fjj
= 0 and Var

ηijϵi/ḟ ui
Fjj

= 1, by Lemma 6.1 of Liu 

(2013), we have sup
0 ≤ t ≤ 4 logp

|
Pθ |Mj| ≥ t

G(t) − 1| ≤ C(logp)−1. Now let t = 2logp − 2ϵ, we have 

Pθ Mj ≥ 2logp − 2ϵ ≤ G( 2logp − 2ϵ) + C G( 2logp − 2ϵ)
logp .

Hence pmaxj ∈ ℋ0Pθ Mj ≥ 2logp − ϵ ≤ CpG( 2logp − 2ϵ) + O p−c , which goes to zero as 

(n, p) → ∞. By symmetry, we know that the second term in (32) also goes to 0. Therefore 

we have proved (31).

Now consider the case when 0 ≤ t ≤ bp holds. We have

FDPθ(t ) =
∑j ∈ ℋ0I |Mj| ≥ t

max ∑j = 1
p I |Mj| ≥ t , 1

≤
p0G(t )

max ∑j = 1
p I|Mj| ≥ t , 1

1 + Ap ,

where Ap = sup
0 ≤ t ≤ bp

|
∑j ∈ ℋ0I |Mj| ≥ t

p0G(t) − 1| Note that by definition 

p0G(t )

max ∑j = 1
p I |Mj| ≥ t , 1

≤
p0α
p . The proof is complete if Ap → 0 in probability, which has 

been shown by Proposition 1. □

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Empirical power with α = 0.05 for the proposed method (Proposed), the Bonferroni 

corrected univariate screening method (U-S) and the Bonferroni corrected likelihood ratio 

based method of Sur and Candès (2019) (LLR). Top panel: k = 2; bottom panel: k = 4.
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Fig. 2. 
Boxplots of the empirical FDRs across all the settings for α = 0.2.
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Fig. 3. 
Empirical power under FDR α = 0.2 for ρ = 3 (top) and ρ = 4 (bottom).
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Table 1

Computation of vj from the Lasso (8)

Input: An upper bound ζj* for ζj with default value ζ* = 2logp,

tuning parameters κ0 ∈[0,1] and κ1 ∈(0,1];

Step 1:
If ζj(λ) > ζj* for all λ = 0, set ζj* = 1 + κ1 inf

λ > 0
ζj(λ);

λ max λ:ζj(λ) ≤ ζj* , ζj* ζj(λ), τj* τj(λ);

Step 2: λj min λ:τj(λ) ≤ 1 + κ0 τj* ;

vi ← vj(λj), τj ← τj(λj), ζj ← ζj(λj)

Input: An upper bound ζj* for ζj with default value ζ* = 2logp,

Output: λj, vj, τj, ζj
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Table 2

Type I error with α = 0.05 for the proposed method (Proposed), the Bonferroni corrected univariate screening 

method (U-S) and the Bonferroni corrected likelihood ratio based method of Sur and Candès (2019) (LLR), 

for different n, p and k.

p / n k = 2 k = 4

p = 100 200 300 400 p = 400 600 800 1000

Proposed

0.2 0.052 0.066 0.042 0.054 0.058 0.050 0.046 0.070

0.4 0.038 0.054 0.062 0.054 0.046 0.050 0.060 0.074

1.2 0.026 0.044 0.042 0.045 0.014 0.044 0.054 0.054

U-S

0.2 0.040 0.032 0.024 0.018 0.018 0.022 0.028 0.034

0.4 0.050 0.032 0.024 0.020 0.028 0.028 0.032 0.046

1.2 0.028 0.038 0.024 0.020 0.032 0.018 0.034 0.014

LLR

0.2 0.050 0.050 0.068 0.040 0.058 0.044 0.046 0.034

0.4 0.084 0.070 0.048 0.056 0.062 0.042 0.058 0.064
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Table 3

Empirical performance of LMTV with FDV level r = 10.

ρ p k Empirical FDV Empirical Power

n = 400 600 800 1000 400 600 800 1000

40 4.07 5.45 6.44 7.11 0.08 0.23 0.40 0.59

800 50 4.30 6.29 7.27 8.26 0.06 0.16 0.32 0.49

60 4.33 6.63 7.48 8.42 0.05 0.12 0.25 0.42

40 3.30 4.59 5.79 6.82 0.06 0.18 0.35 0.52

3 1000 50 3.49 5.42 6.43 7.03 0.05 0.13 0.26 0.43

60 3.68 5.47 7.29 7.97 0.03 0.09 0.20 0.34

40 2.69 4.36 5.00 5.68 0.05 0.15 0.31 0.46

1200 50 2.97 4.22 5.73 6.43 0.03 0.11 0.21 0.36

60 2.78 4.91 5.91 7.25 0.02 0.07 0.16 0.27
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Table 4

Significant metabolites associated with Crohn’s disease (coded as 1 in logistic regression) at the baseline, one 

week and 8 weeks after treatment with FDR < 5%. The refitted regression coefficients show the direction of 

the association.

Disease Stage HMDB ID Synonyms Refitted Coefficient

Baseline 00885 C16:0.cholesteryl ester 4.45

12097 C14:0.sphingomyelin 1.74

04953 C24:1.Ceramide.(d18:1) 4.25

00555 3-methyladipate/pimelate −12.82

Week 1 06726 C20:4.cholesteryl ester 2.17

12097 C14:0.sphingomyelin 2.06

04949 C16:0.Ceramide.(d18:1) 0.87

00555 3-methyladipate/pimelate −6.10

00056 beta-alanine 2.95

00448 adipate −4.50

Week 8 00883 valine 1.40

00222 C16.carnitine 0.58

00848 C18.carnitine 0.39

00555 3-methyladipate/pimelate −5.95

00056 beta-alanine 0.63
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Table 5

Significant metabolites identified via logistic regression of responder vs normal control and non-responder vs 

normal control for FDR ≤ 5%.

HMDB ID Synonyms Refitted Coefficients

Responder vs. Non-Responder vs.

Normal Normal

06726 C20:4.cholesteryl ester 0.139 1.854

01043 Linoleic.acid −0.686 −0.388

00472 5-hydroxytryptophan 1.000 1.034

00056 beta-alanine 0.503 2.298

00883 valine 0.628 0.530

00848 C18.carnitine 1.100 0.457

01488 nicotinate −1.936 −4.312

00254 succinate 0.750 1.508

00555 3-methyladipate/pimelate −1.989 −4.209
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