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Abstract

Loss-of-function mutations in Na+/H + exchanger 6 (MVHEG6) (also termed SLCIA6) cause the
X-linked neurogenetic disorder Christianson syndrome (CS). Using peripheral blood mononuclear
cells, we developed induced pluripotent stem cell (iPSC) lines from a patient with the NHE6
nonsense mutation ¢.1569G > A (p. (W523X)) and diagnosed with CS and from a biologically-
related control. Using CRISPR/Cas9 gene editing, we generated two isogenic control lines in
which the ¢.1569G > A mutation was corrected. All lines were verified by DNA sequencing and
for NHE®6 protein expression, pluripotency, and differentiation potential. These lines will serve as
a valuable resource for both basic and translational studies in CS.

Resource Table:

Unique stem cell lines identifier EMe-NH6W523S1
EMe-NH6W523XS7
EMe-NH6W523K5
EMe-NH6W523K17

Alternative name(s) of stem cell lines Ctl-404-S1 (EMe-NH6W523S1)
CS-403-S7 (EMe-NH6W523XS7)
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Institution

Contact information of the reported cell line
distributor

Type of cell lines

Origin

Additional origin info

Cell Source

Method of reprogramming

Clonality

Evidence of the reprogramming transgene loss

Cell culture system used

Type of Genetic Modification

Associated disease

Gene/locus

Method of modification/site-specific nuclease
used

Site-specific nuclease (SSN) delivery method
All genetic material introduced into the cells
Analysis of the nuclease-targeted allele status

Method of the off-target nuclease activity
surveillance

Name of transgene

Eukaryotic selective agent resistance (including
inducible/gene expressing cell-specific)

Inducible/constitutive system details
Date archived/stock date
Cell line repository/bank

Ethical/GMO work approvals

Addgene/public access repository recombinant
DNA sources’ disclaimers (if applicable)
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403-S7-KI-5 (EMe-NH6W523K5)
403-S7-K1-17 (EMe-NH6W523K17)

Cincinnati Children’s Hospital Medical Center Pluripotent Stem
Cell Facility and Brown University

Eric M. Morrow < eric_morrow@brown.edu>

iPSC

Human

Sex: Male

Blood, PBMCs

Sendai virus (CytoTune-iPS 2.0 Sendai Reprogramming Kit)
Clonal

N/A (non-integrating virus)

mTeSR Plus media, Matrigel-coated plates under feeder-free
conditions

Disease-causing mutation present in iPSCs from patient and
correction of mutation using CRISPR/Cas9 gene editing

Christianson syndrome (OMIM 300243, phenotype; OMIM
300231, gene/locus)

NHEG (SLCIAB), Xq26.3 GRCh37/hg19 chrX:135,106,595
(modified nucleotide)

CRISPR/Cas9

RNP

Sendai viral vectors for reprogramming, gRNA, ssODN
Sequencing of the targeted allele

N/A

hOCT3/4, hSOX2, hc-MYC, hKLF4
N/A

N/A
N/A

NIMH Repository and Genomics Resource

Lifespan Healthcare - Rhode Island
Hospital IRB 2, Study No.: 640,453
N/A

Resource utility

Although Christianson syndrome (CS) is known to be caused by mutations in NHES,
the mechanisms underlying disease pathogenesis remain to be fully defined. These iPSC
lines will provide a useful resource for basic cellular and molecular studies, as well as
translational studies, in CS in a human stem cell model.
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Resource details

CS is an X-linked neurogenetic disorder with clinical features including intellectual
disability, postnatal microcephaly, ataxia, epilepsy, hyperkinesis, nonverbal status, and
cerebellar atrophy (Morrow and Pescosolido, 2018). CS is caused by pathogenic, loss-of-
function mutations in the endosomal Na+/H+ exchanger 6 (NHE6) (also termed SLCIA6).
Human induced pluripotent stem cells (iPSCs) have served as an important complement

to animal models in translational studies targeting human genetic disease, including
neurological and neuropsychiatric diseases. In order to establish a patient-derived cellular
model for the study of CS, we reprogrammed peripheral blood mononuclear cells (PBMCs)
from a male patient containing a ¢.1569G > A (p. (W523X)) mutation in NHE6 (NHE6
transcript NM_001042537.1 and NHE6 protein NP_001036002.1) (Fig. 1A & B) and a
clinical diagnosis of CS into iPSCs. We also generated iPSCs from a genetically-related
full brother who does not carry a pathogenic mutation in NHE6 (Fig. 1B). We then
generated iPSCs wherein the ¢.1569G > A (p.(W523X)) mutation was corrected back to
the reference sequence by using CRISPR/Cas9-mediated homology directed repair (HDR)
knock-in methodology (Fig. 1A & B).

The ¢.1569G > A (p.(W523X)) mutation is located in exon 12 of NHE6 (Fig. 1A). CS iPSC
line 403-S7 was randomly selected as template for gene editing. A gRNA was designed

to target exon 12 of NHE6, and an ssODN with the targeted A > G mutation at the exact
center was designed for HDR. To prevent re-targeting and recutting by Cas9, the ssODN
was also designed to contain three silent mutations, each in a protospacer adjacent motif
(PAM) (PAM1, PAM2, and PAM3) (Fig. 1A). A BtsIMutl restriction site (CAGTGTG) was
introduced in PAM2 and served as a means for identification of successfully targeted clones.
Following transfection of the ribonucleoprotein (RNP)/Cas9 complex together with ssODN
and subsequent colony selection, Sanger sequencing was used to confirm correction of the
€.1569G > A (p. (W523X)) mutation back to the NHEG reference sequence (Fig. 1B). From
24 sequenced polyclonal colonies, two clones were identified showing the A > G correction,
one of which was expanded so as to generate clones derived from a single cell. Overall, 14
clonal gene-corrected CS iPSC lines derived from a single cell were generated, two of which
are characterized here (403-S7-KI-5 and 403-S7-KI-17).

Morphological analysis indicated that all four iPSC lines (biologically-related control, CS,
and gene-corrected isogenic controls) displayed classic pluripotent stem cell morphology
with a high nucleus to cytoplasm ratio and grew as high-density monolayers of tightly
packed cells (Fig. 1C). The four iPSC lines also demonstrated expression of protein markers
of pluripotency (Fig. 1D) and the ability to differentiate into the three germ layers (Fig. 1E).
Results from SNP microarray analysis indicated that the two gene-corrected control iPSC
lines contained a 1.39-Mb to 1.51-Mb copy number variant (CNV) gain at chromosome
20011.21 in comparison to the parental CS iPSC line, with other reported results being
generally comparable (Supplementary File 1). In addition to sequencing, western blot
analysis confirmed expression of NHEG6 protein (monomeric and dimeric forms) in the
biological control and gene-corrected control iPSC lines, but not in the CS iPSC line
(Supplementary Fig. 1A). No Mycoplasma was detected in cultures of the four iPSC lines
(Supplementary Fig. 1B).
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In summary, we report generation and characterization of a CS iPSC line containing a
€.1569G > A (p.(W523X)) mutation in NHES6, an associated biologically-related control
iPSC line, and two gene-corrected control iPSC lines (Table 1). These cell lines will serve as
a valuable resource for both basic and translational studies in CS.

3. Materials and methods

3.1. Generation and maintenance of iPSCs

The Institutional Review Boards at Brown University and Lifespan Healthcare approved
the human subjects research protocol. Informed consent was obtained from all participants
or guardians of participants. The protocol for generation of iPSCs from PBMCs was
adapted from Kunisato et al. (2011), with Sendai virus used for transducing vectors, via
spinoculation, allowing for expression of the reprogramming factors hOCT3/4, hSOX2, hc-
MYC, and hKLF4 (CytoTune-iPS 2.0 Sendai Reprogramming Kit, ThermoFisher Scientific
#A16568; Multiplicity of infection ratio of 5:5:3). The iPSC lines were cultured on
Matrigel-coated plates (Corning #354277) under feeder-free conditions and maintained in
mTeSR Plus media (StemCell Technologies #100-0276). Culturing medium was changed
approximately daily. Enzyme-free passaging was performed using ReLeSR (StemCell
Technologies #05872). Cell cultures were maintained at 37 oC in a humidified atmosphere
of 95% air and 5% CO,.

3.2. CRISPR/Cas9-mediated gene editing

CRISPR/Cas9-based technology was used to revert CS iPSC line 403-S7 back to the
reference sequence. The guide RNA (gRNA), chosen from three candidate gRNAS, was
designed according to the CRISPOR web tool (http://crispor.tefor.net/) and was synthesized
by Integrated DNA Technologies. A single-stranded oligodeoxyribonucleotide (ssODN)
consisting of a 121-nucleotide ultramer (Integrated DNA Technologies) was used as
template to repair the double-stranded break. The ssODN was designed to contain the
desired reference NHEG6 sequence, flanked with homology arms to the targeted genomic
region. The ssODN was also designed to contain three silent mutations, each in a PAM
(PAM1, PAM2, and PAM3), to prevent re-targeting and recutting by Cas9. Introduction of a
BtsIMutl restriction site (CAGTGTG) in introducing one of the silent mutations served as a
means for identification of successfully targeted clones.

For gene editing, ~4 x 10° CS iPSCs containing a ¢.1569G > A (p. (W523X)) mutation
were treated with Accutase (working dilution 1:3 in PBS; StemCell Technologies #07922).
Cells were dissociated to generate a suspension of single cells, which were resuspended

in mTeSR Plus media with 10 uM Rho-associated protein kinase inhibitor (ROCKi, Tocris
Bioscience #Y-27632) for 24 h. Cells were then pelleted, resuspended in RNP/CRISPRMAX
Cas9 Transfection Reagent (ThermoFisher Scientific #CMAX00003), and incubated for 5
min at room temperature before plating. For the RNP complex, 30 pmol gRNA and 15 pmol
TrueCut Cas9 Protein (ThermoFisher Scientific #A36498) were combined for a ratio of 2:1,
and 50% of the RNP complex solution was mixed with a minimum of 40 pmol ssODN for
transfection.
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To generate colonies derived from a single cell, the CS iPSCs transfected with the RNP/
CRISPRMAX mix were diluted at ratios of 1:3,000 and 1:10,000, and plated on 10-cm
dishes. Cells were grown on dishes, with medium of mTeSR Plus + ROCKi changed
daily until colonies were visible. Pooled colonies were isolated and transferred to 96-well
Matrigel-coated plates (Corning #354277) for culturing and subsequent DNA extraction
and Sanger sequencing. Pooled colonies for which sequencing chromatograms showed a
high peak demonstrating correction of the ¢.1569G > A (p.(W523X)) mutation were then
dissociated and sorted so as to have a single cell per well of a 96-well plate. Colonies
derived from a single cell were then further cultured, and correction of the ¢.1569G > A
(p.(W523X)) mutation was confirmed by Sanger sequencing.

3.3. Genomic DNA extraction and Sanger sequencing

Genomic DNA was extracted from iPSC lines using Epicentre QuickExtract DNA
Extraction Solution (Lucigen #QE09050), amplified by PCR using an Eppendorf
Vapo.Protect Mastercycler Pro thermal cycler (Eppendorf), and sequenced using Sanger
sequencing methods. Primers for PCR amplification of exon 12 of NHEG are shown in Table
2.

3.4. Single nucleotide polymorphism (SNP) microarray analysis

Genomic DNA was extracted from iPSCs using the QlAamp DNA Mini Kit (Qiagen
#51304) and analyzed using the lllumina CytoSNP-850K v1.2 BeadChip platform with
BlueFuse Multi 4.5 Software (WiCell). Array design, genomic position, and chromosome
banding are based on genome build GRCh37/hg19.

3.5. Immunoprecipitation and western blotting

IPSCs were harvested and then lysed in lysis buffer (50 mM Tris-HCI, pH 7.8, 137 mM
NaCl, 1 mM NaF, 1 mM NaVO3, 1% Triton X-100, 0.2% Sarkosyl, 1 mM dithiothreitol,
and 10% glycerol) supplemented with protease inhibitor cocktail and phosphatase inhibitor
for 30 min on ice. Cell lysates were separated by centrifugation at 13,200 rpm for 15

min at 4 °C, and the remaining supernatants were removed for further processing. Protein
concentration was measured by BCA assay using the Pierce BCA Kit (ThermoFisher
Scientific #23225). For immunoprecipitation, aliquots of a custom-made rabbit anti-NHE6
antibody (Ouyang et al., 2013) were conjugated to Dynabeads Protein G (ThermoFisher
Scientific #10004D) at room temperature for 2 h. Cell lysates were then incubated with
anti-NHES6 antibody-conjugated beads overnight at 4 °C. The following day, the beads were
gently pelleted, cell lysates were removed, and the beads were washed three times with PBS
with 0.02% TWEEN 20 wash buffer. Pelleted beads were then boiled in sample buffer at 95
°C for 5 min before loading onto 4-12% SDS-PAGE gels (Novex #NP0321Box). Following
separation of proteins by electrophoresis, gels were transferred to nitrocellulose membranes
(Novex #L.C2000). Western blots were performed using standard procedures (Lizarraga et
al., 2021) and were analyzed with the Li-CoR Odyssey Imaging System. See Table 2 for
antibodies and dilutions used.
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3.6. Multilineage differentiation

IPSC lines were assayed for the ability to differentiate into the three germ layers
(endoderm, mesoderm, and ectoderm) using the STEMDIff Trilineage Differentiation Kit
(StemCell Technologies #05230). Differentiation into a specific germ layer was assessed by
microscopy following processing of cells for immunofluorescence.

3.7. Immunofluorescent staining

For detection of NANOG, OCT3/4, SOX17, and BRACHYURY, iPSCs were fixed with

4% paraformaldehyde for 20 min at room temperature, washed with 1% BSA in PBS for

5 min, and permeabilized and blocked for 45 min at room temperature in PBS containing
0.3% Triton X-100, 1% BSA, and 10% normal donkey serum (Jackson ImmunoResearch
#017-000-121). Cells were then incubated overnight at 4 °C with primary antibody diluted
in blocking buffer, washed 3 x 5 min with 1% BSA in PBS, and incubated for 1 h at room
temperature with secondary antibody diluted in 1% BSA in PBS. Nuclei were counterstained
with Hoechst (1:1600 working dilution of 10 mg/mL stock; Invitrogen #33342). Cells were
then washed 3 times with 1% BSA in PBS and mounted on slides with Fluoromount-G
(SouthernBiotech #0100-01).

For detection of SOX2 and NEUN, iPSCs were fixed with 4% paraformaldehyde for 10
min at room temperature and permeabilized for 10 min in PBS containing 0.25% Triton
X-100. Non-specific binding was blocked by incubation with 10% normal goat serum
(Jackson ImmunoResearch #005-000-121) in PBS containing 0.1% TWEEN 20 (PBST)
for 45 min. Cells were then incubated overnight at 4 °C with primary antibody diluted in
PBST containing 2% normal donkey serum, washed 3 x 5 min with PBST, and incubated
for 1 h at room temperature with secondary antibody diluted as for primary antibody.
Nuclei were counterstained with Hoechst (1:1600 working dilution of 10 mg/mL stock;
Invitrogen #33342). Cells were then washed 3 times with PBST and mounted on slides
with Fluoromount-G (SouthernBiotech #0100-01). For detection of pluripotency marker
expression, iPSCs were analyzed at the following passage numbers: 13 (Ctl-404-S1), 14
(CS-403-S7), and 34 (403-S7-KI-5, 403-S7-KI-17); for detection of germ layer marker
expression, cells were analyzed at the following passage numbers: 12 (Ctl-404-S1), 13
(CS-403-S7), and 33 (403-S7-KI-5, 403-S7-KI-17). See Table 2 for antibodies and dilutions
used.

3.8. Imaging of iPSCs
Brightfield microscopy images were captured using a Nikon Eclipse TS100 microscope
equipped with a Q Imaging QIClick 1.4-MP CCD monochrome microscope camera.
Fluorescence microscopy images were captured using an Olympus FVV3000 confocal
microscope.

3.9. Mycoplasma detection

Testing of iPSC culture supernatant for Mycoplasma was performed using the LookOut
Mycoplasma PCR Detection Kit (Sigma #MP0035). Cultures were analyzed at the following
passage numbers: 13 (Ctl-404-S1), 14 (CS-403-S7), and 34 (403-S7-KI-5, 403-S7-KI-17).
PCR products were subjected to electrophoresis using a 1.2% agarose gel.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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