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SUMMARY

Brain Machine Interfaces (BMIs) hold promise to restore impaired motor function and serve as 

powerful tools to study learned motor skill. While limb-based motor prosthetic systems have 

leveraged nonhuman primates as an important animal model,1–4 speech prostheses lack a similar 

animal model and are more limited in terms of neural interface technology, brain coverage, and 

behavioral study design.5–7 Songbirds are an attractive model for learned complex vocal behavior. 

Birdsong shares a number of unique similarities with human speech,8–10 and its study has yielded 

general insight into multiple mechanisms and circuits behind learning, execution, and maintenance 

of vocal motor skill.11–18 In addition, the biomechanics of song production bear similarity to 

those of humans and some nonhuman primates.19–23 Here, we demonstrate a vocal synthesizer 
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for birdsong, realized by mapping neural population activity recorded from electrode arrays 

implanted in the premotor nucleus HVC onto low-dimensional compressed representations of 

song, using simple computational methods that are implementable in real time. Using a generative 

biomechanical model of the vocal organ (syrinx) as the low-dimensional target for these mappings 

allows for the synthesis of vocalizations that match the bird’s own song. These results provide 

proof of concept that high-dimensional, complex natural behaviors can be directly synthesized 

from ongoing neural activity. This may inspire similar approaches to prosthetics in other species 

by exploiting knowledge of the peripheral systems and the temporal structure of their output.

In brief

Songbirds, like humans, need to control a sophisticated vocal organ to produce rich vocal 

sequences. Arneodo et. al. use knowledge of the biomechanics of the vocal organ and the structure 

of the vocal sequence to synthesize birdsong from recorded premotor neural activity.

Graphical Abstract

RESULTS AND DISCUSSION

We describe two methods for synthesizing realistic vocal signals from neural activity 

recorded in a premotor nucleus of zebra finches (Taeniopygia guttata). Each method 

exploits a different trait of the vocal-motor process. First, we leverage understanding of 

the biomechanics of birdsong production. We employ a biomechanical model of the vocal 
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organ that captures much of the spectro-temporal complexity of song in a low-dimensional 

parameter space.24 This dimensionality reduction, compared to the full time-frequency 

representation of song, enables training of a shallow feedforward neural network (FFNN) 

that maps neural activity onto the model parameters. As a second synthesis method, we 

capitalize on predictive components in the temporal covariance between neural activity 

and song, which can be learned by a recurrent, long-short-term memory neural network 

(LSTM)25 trained directly on frequency domain representations (spectrograms) of the vocal 

output.

Neuronal input for each synthesis comes from the sensorymotor nucleus HVC, where 

neurons generate high-level commands that drive the production of learned song. Adult 

male zebra finches (Taeniopygia guttata) sing individually stereotyped motifs comprising 

a sequence of 3–10 syllables. Activity in multiple HVC neuronal subtypes is modulated 

during singing: projection neurons targeting area X and RA (HVCx/RA) evince short, 

precise, sparse activity bursts during the motif,15,17,26–30 while inhibitory interneurons 

(HVCI) display more tonic activity during singing.14,29,31,32 To obtain ensemble HVC 

activity and vocal output, we implanted 16- or 32-channel Si probes in male, adult 

(>120-day-old) zebra finches and recorded extracellular voltages simultaneously while each 

bird sang (n = 4 birds, 70–120 vocal motifs per session). Neural recordings were sorted 

automatically using Kilosort and manually curated to exclude noise.33 Non-noise clusters 

were classified as single- or multi-unit activity (SUA or MUA) based on the number 

of refractory period violations and putatively as projection or interneurons based on the 

sparseness of the activity during singing. The recordings were dominated by MUA clusters 

(n = 88) and HVC interneurons (HVCI; n = 29), with relatively few putative projection 

neurons (HVCx/RA; n = 15). Example song-aligned neural activity histograms are shown in 

Figure 1A. Example rasters with the numbers of clusters per bird are shown in Figure S1.

Biomechanically meaningful compression enhances neurally driven synthesis

Synthesizing a complex motor sequence from neural activity requires mapping between 

two high-dimensional representations. To reduce the dimensionality of the problem, we 

leveraged a biomechanical model of the avian vocal organ that transforms neural activity 

to vocal output. The model accounts for the syrinx and the vocal tract.24,27,38 The syrinx 

contains labial folds that oscillate when induced by the sub-syringeal air sac pressure and 

modulate the airflow to produce sound (Figure 1B).35 The dynamics of the labia can be 

modeled after the motion equations of a nonlinear oscillator, in which the features of 

the sounds produced are determined by two time-varying parameters,23,24,36 representing 

physiological motor instructions (the sub-syringeal pressure and the activity of the muscles 

that tense the labia).24 In its simplest form, the syrinx model is computable in real time to 

produce synthetic vocalizations.38 We model the vocal tract (the trachea, the oropharyngeal­

esophageal cavity, and the beak) as a passive acoustic filter that determines species-specific 

spectral traits, such as the timbre.24,27,39

To synthesize song from neural activity via the biomechanical model, we first fit the 

parameters of the model to produce a synthetic version of each vocalization.24,27,38 We 

searched for the parameters that produce, upon integration of the equations of the model, 
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the closest match in pitch, spectral richness, and amplitude of the target vocalization. This 

effectively compresses each segment of a bird’s own song (BOS) into a time series in a 3D 

parameter space, which generates a corresponding segment of synthetic song (SYN) (Figure 

1C).36,38 For each session, we randomly select 60% of the motifs for training, split each 

motif into 5-ms bins, and train a one-hidden-layer FFNN to predict the biomechanical model 

parameters corresponding to each bin independently from the neural activity in a 50-ms, 

immediately preceding time window. The neural activity was represented by the average 

firing rate of each cluster, split into 1-ms bins. To avoid introducing temporal correlations, 

we randomized the order in which each pair of neural activity window and target model 

parameters was presented to the network. After training, we predict the values of the 

biomechanical model parameters corresponding to a test set of neural activity and integrate 

the differential equations of the model to produce each bin of neurally driven synthetic song. 

This yields synthetic vocalizations that sound similar to the bird’s own. An example motif 

from each bird is illustrated in Figure 2 (and Audio S1, S2, S3, and S4).

In contrast, implementing a FFNN to directly predict the spectro-temporal features of a 

song results in a low-quality synthesis. We trained a similar network as before but with the 

spectral components of the song, as represented by the power across 64 frequency bands, as 

the targets. Examples of songs synthesized in this way for each bird (Figure 3; Audio S1, 

S2, S3, and S4) show how the FFNN fails to produce well-defined harmonic stacks that are 

typical of the zebra finch song and to faithfully reproduce vocal onsets and offsets.

The differing capacities for the FFNN to predict model parameters compared to spectro­

temporal coefficients (Figures 2, 3, and 4) suggest that reducing the dimensionality of the 

behavior enhances prediction. To confirm, we trained the FFNN to reproduce a different 

“compression” of the behavior, namely the first 3 principal components (PCs) of the 

spectrogram. The performance at predicting the values of the 3 PCs from the neural activity 

is similar to that at predicting the biomechanical model parameters (Figure S4A). The 

advantage of the latter is in their generative capacity to produce songs more similar to the 

BOS.

The biophysical model can be integrated in real time to produce synthetic vocalizations 

online.38 This motivated us to skip the spike-sorting step and use a representation of 

the neural activity that requires cheaper computation and no manual curation. Instead of 

representing the neural activity with clustered spikes, we trained the FFNN to predict the 

biomechanical model parameters directly from supra-threshold events in each electrode 

signal.1,3,40–42 The results (Figures 4, S2, and S3) suggest that it is plausible to replace 

the spike sorting by a computationally cheaper representation of the neural activity without 

significant deterioration of the synthesis.

Exploiting temporal structure

The failure of the FFNN to accurately predict the spectral coefficients of a bird’s motif 

may reflect the inability of this model to capture more complex temporal dynamics across 

response clusters that precede specific vocalizations. To capture these dynamics, we trained 

an LSTM25 to predict the spectral components of the song (64 frequency bands) directly 

from the preceding 50 ms of neural activity, using the same input and output data as 

Arneodo et al. Page 4

Curr Biol. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



described in the previous section. Unlike the FFNN, the LSTM yields a neurally driven song 

synthesis that sounds similar to the intended bird’s own song (Figure 3; Audio S1, S2, S3, 

and S4).

Because zebra finch songs are highly stereotyped across renditions from the same singer, 

we wondered whether the LSTM might be capturing a trivial correspondence between two 

synchronized signals (the neuronal activity and the song). To rule out this possibility, we 

independently shuffled the spectral coefficients in each time slice of the spectrograms. 

This created a novel stereotyped “song,” in which the explicit relationship between neural 

activity and any given acoustic feature varied across time, but the temporal correlation 

between the average neural activity and the waveform envelope was unchanged. After 

normalizing the durations of all instances of the motif in a bird’s own song through 

dynamic time warping,43 we permuted the coefficients within each spectral time slice 

using the same pseudo-random mask for each motif. The quality of the LSTM synthesis 

dropped significantly for the pseudo-random stereotyped songs (Figure S4C), indicating a 

non-trivial relationship between temporal dynamics of HVC population responses and the 

spectro-temporal characteristics of natural song.

To assess the relative similarity of all our syntheses to BOS quantitatively, we compared 

the spectrograms of each synthesized and target motif pair using two different metrics. We 

computed the mean distance between spectrograms as the earth mover’s distance (dEMD)44 

between each pair of corresponding spectral slices, averaged across time. Intuitively, dEMD 

measures the work required to transform one distribution of spectral power onto another 

and is sensitive to differences in spectral richness (harmonic stacks versus pure tones or 

broadband energy distribution) and vocalization onset or offset timing. Figure 4A displays 

a summary of pairwise mean distances < dEMD > aggregated for all birds (Figure S3 

shows data grouped by bird). We show the distance between each motif of BOS and the 

corresponding synthesis achieved with each different strategy. For reference, we compute the 

distance between all pairs of motifs of BOS (bosi – bosj) and the distances between pairs 

of BOS and conspecific birds’ motifs (bosi – conj). We also computed the mean spectral 

correlation < ρ > between each synthetic motif and its target across the span of each motif. 

Results are presented in the same manner in Figures 4B and S3. Consistent with the intuition 

from Figures 2 and 3, both measures show that an FFNN trained to directly predict the 

spectrogram yields poorer song synthesis compared to the LSTM and the biomechanical 

model-aided network, even when trained with supra-threshold neural events.

We show that it is possible to synthesize a rich vocal behavior from neural ensemble activity 

recorded in singing songbirds, a well-established animal model for vocal communication. 

Similarity of the synthesis with respect to the bird’s intended vocalization is significantly 

enhanced by either compressing behavior into a low-dimensional parameter space or by 

exploiting the spectro-temporal correlation structure of song by the synthesis algorithm. 

Our results provide insight into how BMIs for complex behavior may be enhanced through 

detailed understanding of the underlying biomechanics of motor control and the statistical 

structure of the target behavior.
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Introducing a biomechanical model of the vocal organ enables dimensionality reduction 

and generativity. Compressing the behavior into a few dimensions enables the use of cheap 

computations that can be implemented in real time38 with relatively small training sets. 

As a compressive model, the “latent” space provided by the time-varying parameters of 

the biomechanical model is attractive in that it is a proxy for muscular and respiratory 

activities.24 In principle, however, other low-dimensional representations of behavior should 

also be reconstructable from neural activity. Indeed, the 3 strongest PCs of the spectrogram 

can be predicted by a simple feedforward network almost as well as the parameters of the 

biomechanical model (Figures S4A and S4B), although these PCs yield poorer synthetic 

song (Figure S4A) compared to the biomechanical model (Figures 4A and S4B). As a 

generative model, song synthesized by the biomechanical model is similar to the BOS 

(Figure 2) and can evoke responses in neural circuits that are highly selective to the 

BOS.27,45–47 It remains to be tested whether the biomechanical model-generated song 

will be sufficient for sensory feedback in closed-loop experiments where neurally driven 

synthesis replaces BOS38 and whether the synthetic vocalizations can drive naturalistic 

responses in females, given the species’ ability to differentiate songs based on fine 

differences in spectro-temporal structure.39,48,49 Perhaps more detailed models are necessary 

to fulfill certain functions (BOS replacement and successful courtship). It is also likely 

that a similar approach can be translated to other species and motor behaviors that admit a 

low-dimensional, generative representation. This could be the case when the biomechanics 

are sufficiently understood6,22,41,50–56 or when there are enough examples of the behavior to 

enable data-driven dimensionality reductions.6,7,57

The limited repertoire of male zebra finches might suggest that a direct synthesis could be 

achieved by relatively simple means. Yet the FFNN trained to predict spectral coefficients, 

which, because of its loss function, is close to a regularized nonlinear regression, yielded 

poor-quality songs compared to all other methods (Figures 4 and S3). The reason for this 

is not entirely clear, but it may reflect the neuronal subtype compositions of our datasets. 

Unfortunately, the relatively low yield of well-isolated single units in our recordings (Figure 

S1) prevents us from examining the contributions of HVC interneurons and projection 

neurons directly. Most clusters in our datasets were MUA, which are likely dominated by 

interneuron activity.29 Although the precise function of HVC interneuron activity is not 

fully understood, it plays a prominent role in multiple models of HVC29,31,32 sequence 

generation, and fluctuations in the average firing rates of interneurons are closely timed 

to bursting in projection neurons.15 While one should not interpret our results to support 

the presence of an explicit “motor code” in HVC ensemble activity, employing a recurrent 

network that captures the temporal structure of our neural population activity, rather than 

a FFNN, nonetheless yields synthetic songs that are much closer matches to the birds own 

song.

We have demonstrated a BMI for a complex communication signal, using computation 

blocks that are implementable in real time in an established animal model for production 

and learning of complex vocal behavior. The strength of our approach lies in the ability to 

find a low-dimensional parameterization of the behavior in a manner that it can be driven 

with the activities recorded from relatively small samples (by tens) of neurons. Doing so 

with recordings from the superficially located nucleus HVC enables accessibility by less 
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invasive micro-electrode arrays, capable of resolving not only LFP, which has been shown 

suitable for BMI,41 but also SUA and MUA.1,3,40–42,58,59 This provides a novel tool for 

probing the neural circuits underlying the production, acquisition, and maintenance of vocal 

communication signals and unlocks access to new models and experiments directed at 

understanding how neuronal activity is transformed into natural action and how peripheral 

effectors shape the neural basis of action.22,54 Our approach also provides a proving ground 

for vocal prosthetic strategies. While birdsong differs in important ways from human 

speech, the two vocal systems have many similarities, including features of the sequential 

organization and strategies for their acquisition,60,61 analogies in neuronal organization 

and function,10,12 genetic bases,9 and physical mechanisms of sound production.19,23 The 

experimental accessibility, relatively advanced understanding of the neural and peripheral 

systems, and status as a well-developed model for vocal production and learning make 

songbirds an attractive animal model to advance speech BMI, much like the nonhuman 

primate model for motor BMI.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed and will 

be fulfilled by the lead contact, Timothy Q. Gentner (tgentner@ucsd.edu).

Materials availability—Printable hardware and electronic designs developed for this work 

are available in the following github repository: https://github.com/singingfinch/bernardo.

Data and code availability—Data generated in this study have been deposited to https://

doi.org/10.6084/m9.figshare.14502198.

Code for data acquisition, processing pipeline and analysis developed for this work is 

available in the following github repositories: https://github.com/zekearneodo/swissknife; 

https://github.com/kaichensh/curr_bio_2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects—Electrophysiology data was collected from n = 4 adult (> 120 dph) male zebra 

finches.62 Birds were individually housed for the entire duration of the experiment and kept 

on a 14:10h light:dark cycle. The birds were not used in any other experiments.

Ethical note—All procedures were approved by the Institutional Animal Care and Use 

Committee of the University of California (protocol number S15027).

METHOD DETAILS

Neural and audio recordings—We used 4-shank, 16/32 site Si-Probes (Neuronexus 

A4×2-tet-5mm-150–200-121 -PEDOT coated, bird z007-; Buzsaki32 -pedot coated, bird 

z028-; A4×1-tet-3mm-150–121 -birds z017 & z020-). We mounted the probes on an in­

house designed, printable microdrive and implanted them targeting nucleus HVC. Audio 

was registered with a microphone (Earthworks M30) connected to a preamplifier (ART Tube 
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MP). Extracellular voltages and pre-amplified audio were amplified and digitized at 30kHz 

using an Intan RHD2000 acquisition system, Open ephys and custom software. Ref and gnd 

were shorted together via a 0 Ohm resistor on the headstage (Intan RHD2132/RHD2116).

Electrode implant—Animals were anesthetized with a gaseous mixture of Isoflurane/

oxygen (1%–2.5%, 0.7 lpm) and placed in a stereotaxic frame. Analgesia was provided by 

means of a 2mg/kg dose of carprofen (Rimadyl) administered I.M. The scalp was partially 

removed and the upper layer of the skull over the y-sinus was uncovered. The probe was 

attached to the shaft of a microdrive of our design (https://github.com/singingfinch/bernardo/

tree/master/hardware/printable_microdrive) which was printed in-house using a B9 Creator 

printer and the BR-9 resin. A craniotomy site was open 2400 μm lateral to the y-sinus (right/

left hemispheres). The dura was removed, and the electrode array was lowered to a 300–500 

μm depth. The opening was then covered with artificial dura (DOWSIL 3–4680 Silicone Gel 

Kit) and the microdrive was cemented to the skull using dental cement (C&B Metabond). A 

reference wire was made with a 0.5 mm segment of platinum-iridium wire (0.002”) soldered 

to a silver wire lead and inserted between the dura and the skull in through a craniotomy 

roughly 3mm medial (contralateral to the hemisphere where the electrode was inserted) 

and 1.5 mm anterior to the y-sinus. The reference electrode was cemented to the skull and 

the silver lead was soldered to the ref and gnd leads of the Neuronexus probe. Most of 

the open area, including the electrode and the microdrive, was covered with a chamber 

designed and 3D printed in house, which was cemented to the skull. The skin incision was 

sutured and glued to the chamber with superglue. The mass of the probe, microdrive and 

protective chamber was 1.2–1.4g. Upon returning to a single-housing cage, a weight reliever 

mechanism was set up: an end of a segment of thin nylon wire (fishing line) was attached to 

an ad hoc pin in the chamber; the other end routed through a set of pulleys and attached to a 

counterweight mass of ~1g.63

Dataset preparation

Song detection: A template matching filter written in python was used to find putative 

instances of the motif, and then curated manually to rule out false positives.

Spike sorting: Spikes were detected and sorted using Kilosort; details of the procedure can 

be found in Pachitariu et al.33 The number of clusters was initialized to 32/64 (twice the 

number of channels of the probe) and the algorithm was allowed to automatically merge 

similar clusters. In post hoc curation, we removed the clusters that were visibly noise (as per 

the waveform) and labeled units as putatively SUA/MUA depending on whether the fraction 

of refractory period (2ms) violations was below/above 3% respectively.

Single Unit type classification: SUA clusters were classified as putatively representing 

sparse firing projection neurons or tonically firing interneurons, based on their base firing 

rate and their bursting behavior. We labeled a SUA cluster a putative projection neuron if 

its mean, spontaneous firing rate was below 5Hz and it produced at most 4 bursts with a 

frequency of 100 Hz or higher during the motif.32
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Supra-threshold event detection: We wrote scripts in Python to detect spiking events in 

each channel. First, the RMS of each channel was estimated using a running window, over 

a period of time that ranged from minutes to an hour. Then, events that deviated in absolute 

value more than a number of RMS (2.5–5.5) were detected using the package peakutils 
(min_distance = 0.5ms).

Neural activity features: With all clusters spike-sorted or supra-threshold events, we 

extracted spike counts within each motif and collapsed them into 1ms (30 samples at 30,000 

samples/second) time bins.

Spectral features: When training the networks with spectral features, the target at each time 

step was a vector containing a spectrogram slice (in log power scale). We generated the 

spectral slices using the spectrogram function of the signal module in the scipy package.64 

We used 5ms windows (150 samples) and kept the 64 first bands above 300 Hz.

Biomechanical model of the vocal organ

Model: A model of the zebra finch vocal organ has been previously introduced and it is 

explained in detail in Perl et al.36 and Arneodo et al.38 This model considers mainly a sound 

source and a vocal tract that further shapes the acoustics of the vocalizations.

The source (syrinx) comprises two sets of tissues or labia that can oscillate induced by 

the sub-syringeal pressure and modulate the airflow to produce sound.35 The motion of 

the labia is represented as a surface wave propagating in the direction of the airflow, that 

can be described in terms of the lateral displacement of the midpoint of the tissue.23 Its 

mathematical form is the motion equation of a nonlinear oscillator in which two parameters 

that determine the acoustic features of the solutions are controlled by the bird: the sub­

syringeal air sac pressure and the stiffness of the restitution (through the activity of syringeal 

muscles). In order to integrate the model in real time, a set of equations was found that 

is computationally less expensive yet capable of displaying topologically equivalent sets of 

solutions as the parameters are varied:65

dx
dt = y

dy
dt = γ2α + γ2βx + γ2x2 − γ2x3 − γxy − γx2y

where x represents the departure of the midpoint position of the oscillating labia, γ is a 

time scaling factor, and the parameters α and β are functions of the air sac pressure and the 

activity of the ventral syringeal muscle, respectively.

The upper vocal tract further shapes the sound produced by the source, determining 

spectral properties such as the timbre. We used a model for the vocal that includes a 

tube, accounting for the trachea, followed by a Helmholtz resonator, accounting for the 

oropharyngeal-esophageal cavity (OEC)66,67 (see Figure 1A in Arneodo et al.38). The 

pressure at the input of the tube that represents the trachea is Pi(t) = ax(t) – r x(t – τ), 

where ax(t) is the contribution to the fluctuations by the modulated airflow, r is the reflection 
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coefficient at the opposing end of the tube of length L and τ = 2L/c, with c the sound 

velocity. The pressure fluctuations at the output of the trachea force the air at the glottis, 

approximated by the neck of the Helmholtz resonator that represents the OEC. The mass of 

air at the glottis, forced into the cavity, is subject to a restitution force exerted by the larger 

mass of air in it.

In acoustics, it is common to write an analog electric computational model to describe a 

system of filters. The acoustic pressure is represented by an electric potential and the volume 

flow by the electric current.68 In this framework, short constrictions are inductors, and 

cavities (smaller than the wavelengths) are well represented by capacitors. The equations for 

the equivalent circuit of the post-tracheal part of the vocal tract, (see Figure 1B in Arneodo 

et al.38) read:

di
dt = Ω1,

dΩ1
dt = − 1

LgCℎ
i1 − Rℎ

1
Lb

+ 1
Lg

Ω1 +

+i3
1

LgCℎ
−

RbRℎ
LbLg

+ 1
Lg

dV ext 
dt +

Rℎ
LgLb

V ext,

di3
dt = −

Lg
Lb

Ω1 −
Rb
Lb

i3 + 1
Lb

V ext,

where the electric components relate to geometric parameters of acoustic elements, and 

are described in detail in Perl et al.36 and Arneodo et al.38 The pressure fluctuations at 

the glottal end of the trachea relate linearly to the electric tension Vext driving the circuit. 

Following the same scheme, the electrical potential at the resistor standing for the beak Vb 

= i3Rb is the analog of the pressure fluctuations at the output of the beak. In our model, this 

quantity is the sound radiated by the vocal organ.

Parameter fitting: In order to fit the parameter series that will lead to reconstruction of the 

song, we perform a procedure similar to that previously described.27,36 Timescale parameter 

is set to a value of 23,500; α is set to −0.15 during vocalization and 0.15 otherwise, and 

β is set in order to minimize the distance in the (pitch, spectral content) space between 

the synthesized and the recorded song segments;36 the envelope (e(t) in the main text) is 

obtained by rectifying and smoothing the recorded waveform; the parameters of the vocal 

tract were fixed, in the same values as in Perl et al.36 In order to extract the pitch of the song, 

we follow a modification of the automatic procedure presented in Boari et al.,69 and we add 

a layer of manual curation. When integrating the model, we apply the extracted envelope 

(e(t)) as an extra multiplicative factor when computing ax(t), since it recovers the amplitude 

fluctuations that were discarded when reducing the model to its normal form and driving it 

with the bi-valued parameter α. The parameters accounting for the geometry of the vocal 

tract are constants and are set to the same values as in Perl et al.24

Neural network training: Neural network -based decoders were implemented in python 

3.6, using Tensorflow 2.0 and Keras. They were run on Ubuntu 16.04 and 18.04 PCs 
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equipped with NVidia GPUs (Tesla k40c, Titan Xp, and Titan X Pascal). CUDA version was 

10.2.

LSTM network architecture: The network has 2 layers of LSTM cells, with Nx5 cells in 

the first layer and N in the second, where N is the number of clusters in the neural data. The 

output layer has as many relu units as the target space (64 for the spectrogram bands). The 

input of the network is a Nx50 array that contains the spike count of each cluster, in each of 

50, 1ms bins preceding the output bin. The output of the network is a 1×64 array containing 

the spectral bands corresponding to a 5ms bin. Both LSTM layers utilized 20% dropout and 

0.001 L2 regularization during training to prevent overfitting.70

Feed-forward Network architecture: The network has 1 dense hidden layer of Nx25 relu 

units, where N is the number of clusters in the neural data. The output layer has as many 

relu units as the target space (p = 64 for the spectrogram bands, p = 3 for the biomechanical 

model parameters). The input of the network is a Nx50 vector that contains the spike count 

of each cluster, in each of 50, 1ms bins preceding the output bin. The output of the network 

is a 1xP array containing the spectral bands (p = 64) or the biomechanical model parameters 

(p = 3) corresponding to a 5ms bin. The hidden layer utilized 20% dropout and 0.001 L2 

regularization during training

Training procedure: We utilized a gradient-based optimizer (Adam/rmsprop71) and mean 

square error (MSE) as a loss function for LSTM/FFNN. We used 40% of all the motifs for 

testing and the rest motifs for training. We made 3 passes using non-overlapping motifs as 

a testing set, in order to have as many decoded examples as the number of motifs in the 

session. In each pass, all of the neural-activity/decoder-target pairs (one per bin) were fed 

in random order to the network, both when training and decoding. We reserved 10% of the 

training set as a validation subset for early stopping, where the training session would be 

stopped if validation loss failed to decrease within 5/10 training epochs. Figure 4 shows 

the results of this motif -based training averaged across all birds. As an alternative training 

method, we masked a fraction of each motif (roughly 3.3%), trained on the complement, 

then generated the song corresponding to the masked fraction. We repeated this piece-wise 

procedure tiling the whole motif, and generated entire motifs using segments of data that 

were novel to the decoder. Figure S3 shows the results of both the motif-wise and piece-wise 

training for individual birds.

Song waveform generation

Spectrogram inversion: We used LSEE-STFTM algorithm to invert spectrograms back to 

audio waves,72 as implemented in the librosa python package.73 The algorithm iteratively 

estimates a signal from the short-time Fourier transform magnitude (STFTM), through 

minimizing the mean square error between the short-time Fourier transform (STFT) and the 

estimated STFT, and subsequently performs STFT on the estimated signal, the magnitude of 

which will be passed on to the next iteration.

Within each iteration, a signal was approximated using the equation below:
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x(n) =
∑m = − ∞

∞ w(mS − n)yw(mS, n)

∑m = − ∞
∞ w

2
(mS − n)

where x(n) denotes the estimated signal; w(n) denotes the analysis window used in STFT. 

The variable S is a positive integer, representing the sampling rate of the STFT. Here, 

yw(mS, n) is the target signal corresponding to Yw(mS, n), which denotes the target 

STFTM, in our case spectrogram powers. To calculate in each iteration, we used a sinusoidal 

window:72

ws(n) =
2wr(n)

4a2 + 2b2 a + bcos 2πn
L + ϕ

where L represents the length of the window. Here, wr(n) is a rectangular window with 

an amplitude of S/L within 0≤ n < L and zero anywhere outside. A modified Hamming 

window can be obtained by setting a = .54, b = − .46, ϕ = π
L . After obtaining an x(n) value 

within each iteration, the STFT of x(n) was calculated, which was used in place of Yw(mS, 

n) in the next iteration. The squared error between the target STFTM and the estimated 

STFTM is proven to decrease in each iteration of the algorithm.

Biomechanical model integration: Once the model parameters are predicted by the 

decoder, they are re-sampled and fed to an ordinary differential equation integrator. 

Resampling to 30 Khz is performed (with cubic interpolation). A fourth order runge-kutta 

ODE integrator (custom coded) integrates then the equations of the model with a time step 

of (900 KHz)−1.

Synthesis through principal components: PC decomposition was made using the PCA 

module in the scikit-learn package.74 We obtained the principal component decomposition 

of all the spectrograms of all the motifs sung by each bird during the length of the 

experiment. 512 frequency bins were used for the spectrograms, which were concatenated 

and projected onto the N principal components TN = SWN, where S is the 512-dimension 

spectrum time series and WN the transformation matrix (the matrix of the L eigenvectors 

of SST with the largest eigenvalues) via the pca.fit and pca.fit_transform methods. For 

reconstruction from principal components, the inverse transformation was applied by means 

of the pca.inverse_transform method.

Spectrum shuffle mask

Time warping: We adopted a simplified version of Dynamic Time Warping (DTW75) 

specific to zebra finch songs. Instead of segmenting the song into different syllables and 

matching each syllable to different syllable templates, we took advantage of the stereotypical 

nature of zebra finch songs and directly computed minimal distance matrices (D) between 

each song-level spectrogram and a spectrogram template. Starting at the first slice of each 

spectrogram,
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D(i, j) = d(i, j) + min D(i − 1, j) iff wj(l − 1) ≠ wj(l − 2), D(i − 1, j − 1), D(i − 1, j − 2)

Where i indexes the time frames of the input pattern, j indexes the time frames of a single 

template, l indexes the ordered steps along a specific path. d(i, j) is the local distance 

between slice i and slice j. wj(l) denotes the specific step at l in the space of j. Once a 

distance matrix D was calculated, we determined an optimal path with the lowest cumulative 

distance between the input and the template, and proceeded to stretch, delete or keep each 

input slice, depending on the path.

Masking: We applied a random yet consistent shuffling mask, P, to our entire warped 

spectrogram repertoire so that spectral consistency across time is disrupted while the 

temporal pattern within each motif remains. For the i-th spectrogram slice in each warped 

song, we shuffled all 64 spectral elements using the same shuffling pattern Pi. Treating all 

spectrograms with the same shuffling mask P enabled us to determine whether our model is 

decoding the spectral information within birdsongs or recreating the same pattern regardless 

of spectral consistency across time. In our shuffling training session, we used the shuffled 

spectrograms as output.

Reordering mask: After training, we tested our model on novel neural data, the 

target of which were also shuffled spectrograms. In order to visually compare our 

model’s performance with and without shuffling, we reordered the reconstructed shuffled 

spectrograms. We achieved this by applying a reordering mask, R, that traces and reverses 

all the shuffling done through the aforementioned shuffling mask P. For any spectrogram S, 

R(P(S)) = S.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance Evaluation

Root Mean Square Error (RMSE): We used RMSE between each pair of original and 

predicted spectrogram magnitude as a metric to evaluate the performance of our models.

Spectral correlation: To obtain the spectral correlation across time for a pair of 

spectrograms, we first computed the pearson correlation coefficient between each 

corresponding pair of spectral slices that conform the two spectrograms (via the function 

pearsonr from the stats module of the scipy python package64). Then, we obtained the 

time-averaged value across the span of the motif.

Earth mover’s distance: To obtain the distance across time for a pair of spectrograms, 

we computed the earth mover’s distance (dEMD) or Wasserstein metric between each pair 

of spectral slices that conform the two spectrograms (via the function wasserstein_distance 

from the stats module of the scipy python package64). Prior comparison, each spectral slice 

was normalized such that the total area under the slice be 1; for silences, a value of 1 was 

assigned to the first bin of the spectrogram. Then, we obtained the time-averaged value 

across the span of the motif.
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Spectrogram Normalization: In order to account for variations among motifs from 

different birds, we normalized spectrograms for each bird so that the collection of original 

spectrograms for each bird had a maximum power of 1 and minimum power of 0:

pi =
pi − pmax

pmax − pmin

Where pi is the power of a point on either an original spectrogram or a predicted 

spectrogram before normalization, while pι is the normalized power of the corresponding 

point. pmax denotes the maximum power of the entire set of original spectrograms, while 

pmin represents the minimum power of the entire set of original spectrograms. With such 

normalization, we were able to account for variations among motifs from different birds 

while keeping the variations within motifs from the same bird.

Pairwise performance comparisons: We performed comparisons among and between 

different sets of songbirds (displayed in Figure 4 boxplots for instance). BOS-BOS: 
comparisons provide a baseline of the variability of the bird’s own motifs during the session: 

comparison across each pair of motifs. neur-bos: comparison across each pair of natural 

motifs and it’s corresponding one decoded from neural activity.

In order to provide an extra control reference, we also computed spectrogram comparisons 

against a set of 47 motifs from conspecific birds (other zebra finches; about half of 

them from our colony and half from other colonies). This produced the sets: BOS-CON: 
comparisons across each BOS motif and all of the conspecific (CON) motifs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Songbirds sing rich, complex, learned songs

• A model of their vocal organ can synthesize song with few control parameters

• This allows neurally driven song synthesis via a simple neural network

• Brain machine interfaces can be enhanced by understanding the biomechanics

Arneodo et al. Page 19

Curr Biol. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. A neural-network-based decoder to synthesize birdsong from premotor neural activity
(A) Neural activity is collected from awake-singing animals. Sorted, extracellularly recorded 

single- and multi-units show different degrees of singing-related sparseness, robustness, 

and spiking precision (4 example clusters; top traces: normalized mean firing rate over 70 

repetitions of the bird’s motif; below: spectrogram of the motif; see also Figure S1).

(B) Downstream of HVC, the posterior motor pathway leads into nuclei that control the 

muscles driving the sound production (nXII and RAm/PAm).34 Syringeal and respiratory 

muscles act coordinately to modulate the flow of air through sets of labia and produce 

sound.35 The complex labial motion is captured by the equations of a nonlinear oscillator;23 

parameters that define acoustic properties of the sounds are surrogates of the activities of 

syringeal and respiratory muscles.36

(C) To reproduce a particular vocalization (top) from the biomechanical model, we fit the 

parameters (middle {α(t), β(t), e(t)}) such that, upon integration, the synthetic song (bottom) 

matches the pitch and spectral richness.

(D) The input of the neural network is an array with the values of a set of neural features 

(spike counts of sorted units/multi-units) over a window of M previous time steps.

(E) The hidden layer(s) of the network are composed either by a densely connected layer 

(FFNN) or two layers of LSTM cells.

(F) When training or reconstructing directly the spectral features of the song, the output of 

the network is a vector of powers across a range of frequency bands at a given time; the 

generated spectral slices are then inverted to produce synthetic song (top). When training 

or reconstructing via the biomechanical model, the output of the network at a given time is 

a 3-dimensional vector of parameters (as illustrated in C); the equations of the model are 

then integrated with these values to produce synthetic song (bottom). Illustrations were taken 

from Arneodo.37

Arneodo et al. Page 20

Curr Biol. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Song synthesized from premotor neural activity via a biomechanical model of the vocal 
organ is similar to the recorded bird’s own song
Spectrogram of one or two instances of a bird’s motif (BOS; upper) and corresponding 

song generated by inferring the biomechanical model parameters from neural activity using 

a shallow FFNN and integrating the model, for four different birds (z007, z017, z020, and 

z028, respectively; see also Audio S1, S2, S3, and S4, respectively, and Figures S2 and S4).
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Figure 3. Direct spectrogram synthesis from neural activity
Spectrogram of a bird’s motif (BOS; upper), song generated by inferring the spectrogram 

directly from neural activity, after training an LSTM (middle), and song generated by 

feeding neural activity and spectrograms to a FFNN of similar architecture to the one used 

for Figure 2 (bird z007, z017, z020, and z028, respectively, for each panel. See also Audio 

S1, S2, S3, and S4, respectively, and Figure S4).
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Figure 4. Performance comparisons aggregated for all birds
(A) Boxplots showing time-averaged earth mover’s distance (< dEMD >; lower = better). 

Neur-bos, distance between each pair of synthesized or target spectrograms in the test set. 

Ffnn and lstm indicate training directly with spectrogram via a FFNN and LSTM using 

sorted spikes, model indicates training or synthesis via the biomechanical model of the vocal 

organ using sorted spikes, and threshold indicates the same training or testing as in model, 

albeit using supra-threshold activity instead of sorted spikes. Syn-neur indicates the distance 

between the synthetic instance of each motif in the testing set (the one produced when fitting 

the parameters of the biomechanical model for a given motif) and the one synthesized from 

neural activity. Bosi-bosj indicates distance between each pair of motifs of BOS. Bosi-conj 

indicates distance between pairs of bos and songs from a pool of conspecific birds.

(B) Boxplots showing time-averaged spectral correlation (< ρ >; higher = better); same 

pairs as in (A) (***p < 0.001; ****p < 0.0001; Mann-Whitney U test, one sided against 

bosi-conj). Performance for each bird is shown in Figure S3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and virus strains

Biological samples

Chemicals, peptides, and recombinant proteins

Critical commercial assays

Deposited data

Original data This paper, Figshare https://doi.org/10.6084/
m9.figshare.14502198

Experimental models: Cell lines

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA

Software and algorithms

Code for acquisition, pipeline, analysis 
written in C/Python.

This paper https://github.com/zekearneodo/swissknife
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REAGENT or RESOURCE SOURCE IDENTIFIER

Code for analysis written in Python. This paper https://github.com/kaichensh/
curr_bio_2021

Other

Printable Microdrive and signal 
conditioning hardware designs.

This paper https://github.com/singingfinch/bernardo

LIFE SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-Snail Cell Signaling Technology Cat#3879S; RRID: AB_2255011

Mouse monoclonal anti-Tubulin (clone 
DM1A)

Sigma-Aldrich Cat#T9026; RRID: AB_477593

Rabbit polyclonal anti-BMAL1 This paper N/A

Bacterial and virus strains

pAAV-hSyn-DIO-hM3D(Gq)-mCherry Krashes et al., 2011 Addgene AAV5; 44361-AAV5

AAV5-EF1a-DIO-hChR2(H134R)-EYFP Hope Center Viral Vectors Core N/A

Cowpox virus Brighton Red BEI Resources NR-88

Zika-SMGC-1, GENBANK: KX266255 Isolated from patient (Wang et al., 2016) N/A

Staphylococcus aureus ATCC ATCC 29213

Streptococcus pyogenes: M1 serotype 
strain: strain SF370; M1 GAS

ATCC ATCC 700294

Biological samples

Healthy adult BA9 brain tissue University of Maryland Brain & Tissue Bank; 
http://medschool.umaryland.edu/btbank/

Cat#UMB1455

Human hippocampal brain blocks New York Brain Bank http://nybb.hs.columbia.edu/

Patient-derived xenografts (PDX) Children's Oncology Group Cell Culture and 
Xenograft Repository

http://cogcell.org/

Chemicals, peptides, and recombinant proteins

MK-2206 AKT inhibitor Selleck Chemicals S1078; CAS: 1032350–13–2

SB-505124 Sigma-Aldrich S4696; CAS: 694433–59–5 (free base)

Picrotoxin Sigma-Aldrich P1675; CAS: 124–87–8

Human TGF-β R&D 240-B; GenPept: P01137

Activated S6K1 Millipore Cat#14–486

GST-BMAL1 Novus Cat#H00000406-P01

Critical commercial assays

EasyTag EXPRESS 35S Protein Labeling 
Kit

PerkinElmer NEG772014MC

CaspaseGlo 3/7 Promega G8090

TruSeq ChIP Sample Prep Kit Illumina IP-202–1012

Deposited data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Raw and analyzed data This paper GEO: GSE63473

B-RAF RBD (apo) structure This paper PDB: 5J17

Human reference genome NCBI build 37, 
GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/human/

Nanog STILT inference This paper; Mendeley Data http://dx.doi.org/10.17632/wx6s4mj7s8.2

Affinity-based mass spectrometry 
performed with 57 genes

This paper; Mendeley Data Table S8; http://dx.doi.org/
10.17632/5hvpvspw82.1

Experimental models: Cell lines

Hamster: CHO cells ATCC CRL-11268

D. melanogaster: Cell line S2: S2-DRSC Laboratory of Norbert Perrimon FlyBase: FBtc0000181

Human: Passage 40 H9 ES cells MSKCC stem cell core facility N/A

Human: HUES 8 hESC line (NIH approval 
number NIHhESC-09–0021)

HSCI iPS Core hES Cell Line: HUES-8

Experimental models: Organisms/strains

C. elegans: Strain BC4011: srl-1(s2500) II; 
dpy-18(e364) III; unc-46(e177)rol-3(s1040) 
V.

Caenorhabditis Genetics Center WB Strain: BC4011; WormBase: 
WBVar00241916

D. melanogaster: RNAi of Sxl: y[1] sc[*] 
v[1]; P{TRiP.HMS00609}attP2

Bloomington Drosophila Stock Center BDSC:34393; FlyBase: FBtp0064874

S. cerevisiae: Strain background: W303 ATCC ATTC: 208353

Mouse: R6/2: B6CBA­
Tg(HDexon1)62Gpb/3J

The Jackson Laboratory JAX: 006494

Mouse: OXTRfl/fl: B6.129(SJL)­
Oxtrtm1.1Wsy/J

The Jackson Laboratory RRID: IMSR_JAX:008471

Zebrafish: Tg(Shha:GFP)t10: t10Tg Neumann and Nuesslein-Volhard, 2000 ZFIN: ZDB-GENO-060207–1

Arabidopsis: 35S::PIF4-YFP, BZR1-CFP Wang et al., 2012 N/A

Arabidopsis: JYB1021.2: 
pS24(AT5G58010)::cS24:GFP(-G):NOS #1

NASC NASC ID: N70450

Oligonucleotides

siRNA targeting sequence: PIP5K I alpha 
#1: ACACAGUACUCAGUUGAUA

This paper N/A

Primers for XX, see Table SX This paper N/A

Primer: GFP/YFP/CFP Forward: 
GCACGACTTCTTCAAGTCCGCCATGC
C

This paper N/A

Morpholino: MO-pax2a 
GGTCTGCTTTGCAGTGAATATCCAT

Gene Tools ZFIN: ZDB-MRPHLNO-061106–5

ACTB (hs01060665_g1) Life Technologies Cat#4331182

RNA sequence: hnRNPA1_ligand: 
UAGGGACUUAGGGUUCUCUCUAGGG
ACUUAGGGUUCUCUCUAGGGA

This paper N/A

Recombinant DNA

pLVX-Tight-Puro (TetOn) Clonetech Cat#632162

Plasmid: GFP-Nito This paper N/A

cDNA GH111110 Drosophila Genomics Resource Center DGRC:5666; FlyBase:FBcl0130415

AAV2/1-hsyn-GCaMP6- WPRE Chen et al., 2013 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse raptor: pLKO mouse shRNA 1 
raptor

Thoreen et al., 2009 Addgene Plasmid #21339

Software and algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

Samtools Li et al., 2009 http://samtools.sourceforge.net/

Weighted Maximal Information Component 
Analysis v0.9

Rau et al., 2013 https://github.com/ChristophRau/wMICA

ICS algorithm This paper; Mendeley Data http://dx.doi.org/10.17632/5hvpvspw82.1

Other

Sequence data, analyses, and resources 
related to the ultra-deep sequencing of 
the AML31 tumor, relapse, and matched 
normal

This paper http://aml31.genome.wustl.edu

Resource website for the AML31 
publication

This paper https://github.com/chrisamiller/
aml31SuppSite

PHYSICAL SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

QD605 streptavidin conjugated quantum 
dot

Thermo Fisher Scientific Cat#Q10101MP

Platinum black Sigma-Aldrich Cat#205915

Sodium formate BioUltra, ≥99.0% (NT) Sigma-Aldrich Cat#71359

Chloramphenicol Sigma-Aldrich Cat#C0378

Carbon dioxide (13C, 99%) (<2% 18O) Cambridge Isotope Laboratories CLM-185–5

Poly(vinylidene fluoride-co­
hexafluoropropylene)

Sigma-Aldrich 427179

PTFE Hydrophilic Membrane Filters, 0.22 
μm, 90 mm

Scientificfilters.com/Tisch Scientific SF13842

Critical commercial assays

Folic Acid (FA) ELISA kit Alpha Diagnostic International Cat# 0365–0B9

TMT10plex Isobaric Label Reagent Set Thermo Fisher A37725

Surface Plasmon Resonance CM5 kit GE Healthcare Cat#29104988

NanoBRET Target Engagement K-5 kit Promega Cat#N2500

Deposited data

B-RAF RBD (apo) structure This paper PDB: 5J17

Structure of compound 5 This paper; Cambridge Crystallographic Data 
Center

CCDC: 2016466

Code for constraints-based modeling and 
analysis of autotrophic E. coli

This paper https://gitlab.com/elad.noor/sloppy/tree/
master/rubisco

Software and algorithms

Gaussian09 Frish et al., 2013 https://gaussian.com

Python version 2.7 Python Software Foundation https://www.python.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

ChemDraw Professional 18.0 PerkinElmer https://www.perkinelmer.com/category/
chemdraw

Weighted Maximal Information Component 
Analysis v0.9

Rau et al., 2013 https://github.com/ChristophRau/wMICA

Other

DASGIP MX4/4 Gas Mixing Module for 4 
Vessels with a Mass Flow Controller

Eppendorf Cat#76DGMX44

Agilent 1200 series HPLC Agilent Technologies https://www.agilent.com/en/products/
liquid-chromatography

PHI Quantera II XPS ULVAC-PHI, Inc. https://www.ulvac-phi.com/en/
products/xps/phi-quantera-ii/
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