
Hepatic Gene Networks in Morbidly Obese Patients With 
Nonalcoholic Fatty Liver Disease

Samer Gawrieh,
Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of 
Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI 53212, USA

Zablocki VA Medical Center, Milwaukee, WI, USA

Tesfaye M. Baye,
Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA

Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA

Melanie Carless,
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA

James Wallace,
Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Richard Komorowski,
Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA

David E. Kleiner,
Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA

Deborah Andris,
Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA

Bassem Makladi,
Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA

Regina Cole,
Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA

Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA

Michael Charlton,
Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA

Joanne Curran,
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA

Thomas D. Dyer,
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA

Jac Charlesworth,
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA

sgawrieh@mcw.edu . 

HHS Public Access
Author manuscript
Obes Surg. Author manuscript; available in PMC 2021 August 19.

Published in final edited form as:
Obes Surg. 2010 December ; 20(12): 1698–1709. doi:10.1007/s11695-010-0171-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Russell Wilke,
Division of General Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA

Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA

John Blangero,
Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA

Ahmed H. Kissebah,
Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA

Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA

Michael Olivier
Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA

Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA

Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA

Abstract

Background—Genetic factors alter the risk for nonalcoholic fatty liver disease (NAFLD). We 

sought to identify NAFLD-associated genes and elucidate gene networks and pathways involved in 

the pathogenesis of NAFLD.

Methods—Quantitative global hepatic gene expression analysis was performed on 53 morbidly 

obese Caucasian subjects undergoing bariatric surgery (27 with NAFLD and 26 controls). After 

standardization of data, gene expression profiles were compared between patients with NAFLD 

and controls. The set of genes that significantly correlated with NAFLD was further analyzed by 

hierarchical clustering and ingenuity pathways analyses.

Results—There were 25,643 quantitative transcripts, of which 108 were significantly associated 

with NAFLD (p<0.001). Canonical pathway analysis in the NAFLD-associated gene clusters 

showed that the hepatic fibrosis signaling was the most significant pathway in the up-regulated 

NAFLD gene cluster containing three (COL1A1, IL10, IGFBP3) significantly altered genes, 

whereas the endoplasmic reticulum stress and protein ubiquitination pathways were the most 

significant pathways in the down-regulated NAFLD gene cluster, with the first pathway containing 

one (HSPA5) and the second containing two (HSPA5, USP25) significantly altered genes. The 

four primary gene networks associated with NAFLD were involved in cell death, immunological 

disease, cellular movement, and lipid metabolism with several significantly altered “hub” genes in 

these networks.

Conclusions—This study reveals the canonical pathways and gene networks associated with 

NAFLD in morbidly obese Caucasians. The application of gene network analysis highlights the 

transcriptional relationships among NAFLD-associated genes and allows identification of hub 

genes that may represent high-priority candidates for NAFLD.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the United 

States [1–3]. It has a wide spectrum of phenotypes starting with simple steatosis (SS) to 

steatosis with a variable mix of subphenotypes including ballooning, inflammation, and 

fibrosis, as diagnosed on liver biopsy [4]. Nonalcoholic steatohepatitis (NASH) represents 

an advanced phenotype where most of these subphenotypes are present [5]. Unlike SS, 

which rarely results in liver complications [6, 7], NASH can progress to cirrhosis, liver 

failure, and hepatocellular carcinoma [6, 7]. The prevalence of NAFLD and NASH will 

probably increase as part of the ongoing obesity epidemic and will likely add a huge burden 

to the healthcare system [8].

Although some of the molecular mechanisms involved in onset and progression of steatosis, 

necro-inflammation, and fibrosis in NAFLD have been well characterized [9], little is known 

about the underlying complex gene interaction networks involved in NAFLD.

Several observations point to a role for genetic factors in the pathogenesis of NAFLD. Liver 

biopsy findings in patients who share similar clinical risk factors for NAFLD (e.g., obesity, 

diabetes, hypertriglyceridemia) widely vary from normal to the entire histological spectrum 

of NAFLD [10, 11]. Family studies suggest that the risk for NAFLD is partly heritable [12–

14]. Ethnicity influences the frequency and severity of NAFLD [15, 16]. Finally, emerging 

data link gene variants with NAFLD and its histological phenotypes [17–19].

Hepatic gene expression in NAFLD has been analyzed in several human studies[11, 20–23], 

with reported differential expression of genes involved in lipid metabolism, mitochondrial 

function, oxidative stress, insulin signaling, cell death, and hepatic fibrosis. There was 

however little or no concordance among these studies on the genes described to be 

associated with NAFLD, and although their functional classifications were described, the 

potential interactions among significantly altered genes were not characterized.

The aims of this study were to identify genes associated with NAFLD and elucidate 

gene networks and pathways involved in the pathogenesis of NAFLD using integrated 

bioinformatics analyses of global quantitative hepatic expression in a morbidly obese 

Caucasian cohort.

Methods

Recruitment and Phenotyping of Subjects

The study protocol has been reviewed and approved by the Medical College of Wisconsin's 

Institutional Review Board. Subjects gave written informed consent for participation in the 

study. Subjects were of northern European descent, morbidly obese (BMI≥40 kg/m2 or >35 

kg/m2 with significant comorbidities) with documented unsuccessful dietary attempts to 

lose and maintain weight, and who underwent bariatric surgery at the MCW. A protocol 

intraoperative liver biopsy was performed on all patients for histological phenotyping. 

Patients with alcohol intake >20 g/d and those with other liver diseases (hepatitis B, hepatitis 

C, autoimmune hepatitis, primary biliary cirrhosis, Wilson's disease, alpha1 antitrypsin 
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deficiency, or hemochromatosis) based on positive disease-specific serological tests and 

suggestive liver histology were excluded. Patients using drugs associated with NAFLD 

(systemic glucocorticosteroids, tamoxifen, tetracycline, amiodarone, methotrexate, valproic 

acid, anabolic steroids, estrogens at doses higher than those used for hormone replacement, 

or other known hepatotoxins) preceding the liver biopsy were also excluded. For all 

participants, clinical, and biochemical data were collected.

Collection of Biological Material

All subjects had fasting blood samples for serum extraction collected in the morning of 

planned surgery. In addition to the biopsy obtained for routine histological analysis and 

phenotyping, an additional intraoperative liver biopsy was done, and tissue was snap-frozen 

immediately in the operating room and used for RNA studies.

Histological Evaluation and Phenotypes Definitions

All liver biopsy samples were read by two expert pathologists (R.K. and D.E.K.) to 

define the NAFLD phenotype and semiquantitatively score the individual histological 

features/subphenotypes including steatosis, lobular and portal inflammation, hepatocellular 

ballooning, Mallory's hyaline, and fibrosis according to the scoring system suggested by the 

NIH NASH Clinical Research Network working group [24]. NAFLD was diagnosed when 

≥5% macrosteatosis was present. Subjects with 0 to 5% macrosteatosis were diagnosed 

as non-NAFLD controls. Both pathologists confirmed the phenotype as NAFLD or non­

NAFLD control on all included subjects. The analyses in this study focused on genes 

associated with NAFLD.

RNA Isolation from Liver Tissue

Frozen liver tissue samples were mixed with lysis buffer, homogenized and used for 

total RNA isolation following the Qiagen RNeasy Mini Kit protocol. The isolated 

RNA concentration (μg) and purity (260:280 nm) were measured using a NanoDrop 

spectrophotometer. The resulting RNA was reverse-transcribed, converted into cDNA, and 

subsequently amplified producing cRNA using the MessageAmp II RNA Amplification Kit 

(Ambion). This method has been shown to reliably amplify small amounts of messenger 

RNA (mRNA) obtained from limited tissue samples obtained by biopsy.

Transcriptional Profiling

We used commercially available Illumina HumanWG-6 Expression BeadChips for whole 

genome expression analysis. The BeadChips contain six arrays, each with approximately 

48,000 probes derived from human genes in the National Center for Bioinformatic 

Information Reference Sequence (RefSeq) and UniGene databases. This system uses a 

“direct hybridization” assay, whereby gene-specific probes are used to detect labeled RNAs. 

Each bead in the array contains a 50-mer, sequence-specific oligo probe synthesized using 

Illumina's Oligator™ in-house technology. More than 1.6 million beads are available to 

quantitate RNA levels for each sample. The HumanWG-6 Expression BeadChips were 

scanned on an Illumina BeadArray™ reader. The BeadStudio software package included 

with the Illumina® BeadStation 500GX system extracted gene expression data from 
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images collected from the Illumina BeadArray Reader. The application reports experiment 

performance based on built-in controls that accompany each experiment.

Identification of Detectable Transcripts

For each sample, approximately 48,000 transcripts were quantified using the BeadChip 

supplied by Illumina. A χ2 “tail” test was used to assess whether there is a significant excess 

of samples with transcript-specific expression values above the 95th percentile of the null 

distribution. We used this test because it allows “detection" of even those RNA molecules 

that are clearly present above baseline levels in only a subset of individuals. Using a false 

discovery rate of 5% [25], we identified expression phenotypes that exhibited significant 

expression by this criterion.

Standardization of Expression Values

For the analysis of transcriptional variation, we focused on those detectable transcripts that 

passed a tail test that determined if there is sufficient quantitative signal over that expected 

by chance. To minimize the influence of overall signal levels, which may reflect RNA 

quantity and quality rather than a true biological difference between individuals, abundance 

values of all retained transcripts were standardized by z-scoring within individuals (using 

decile percentage bins of transcripts, grouped by average log-transformed raw signals 

across individuals), followed by linear regression against individual-specific average log­

transformed raw signal and its squared value. For each transcript, we directly normalized 

these residual expression scores by employing an inverse Gaussian transformation across 

individuals to ensure that the assumptions underlying variance components-based analyses 

were not violated. The normalized phenotypes were comparable between individuals 

and across transcripts. Current micro-arrays allow accurate detection of gene transcripts 

that correlate well with real-time PCR as shown in many studies [11, 20, 21, 26, 27]. 

Furthermore, the high heritability of housekeeping gene transcripts traditionally used in 

RT-PCR validation (e.g., heritability for B-actin expression is 0.373, p1:0 × 10−9, and for 

cyclophilin-D is 0.559, p1:0 × 10−9) [28] make them less than ideal as references for internal 

standardization. Lastly, the limited availability of tissue for mRNA extraction restricted our 

ability to run RT-PCR analysis.

Detection of NAFLD-Associated Gene Transcripts

The t test statistic was used to measure the difference between the sample means in units of 

the standard deviation for which the difference can be tested using certain p value. We used a 

significance cut-point of p<0.001.

Hierarchical Clustering

This was performed with two groups of samples (NAFLD vs. controls) using Genesis 

software [29]. Cluster analysis was performed to divide genes or samples into groups on 

the basis of similarities among their gene expression profiles, which is often indicative of 

similarity with respect to function.
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Gene Network and Pathway Analyses

To describe the interactions between the altered gene expression levels in NAFLD, 

the Ingenuity Pathways Analysis (IPA) software program (Ingenuity Systems, version 

6.1) was used. This software application allows identification of biological and network/

pathway interactions between genes. After uploading a list of genes that are significantly 

differentially expressed in our samples, the program was used to uncover any interactions 

between the genes. IPA identifies the biological functions and pathways that are most 

relevant to the experimental datasets. The altered genes identified by expression profiling 

analysis were mapped to genetic networks available in the IPA database, ranked by score, 

and presented as a graph indicating the molecular relationships between genes.

Ingenuity Pathway Analysis Procedures

From the llumina HumanWG-6 data, we uploaded the ProbeID and the associated 

expression value to upload into IPA. Each ProbeID was mapped to its corresponding gene 

object in the Ingenuity Pathways Knowledge Base. These genes, called focus genes, were 

overlaid onto a global molecular network developed from information contained in the 

database. Networks of these focus genes were then algorithmically generated based on their 

types of interactions (direct and/or indirect). Scores were generated (based on Fisher's test) 

to rank networks according to how relevant they are to the genes in the input dataset. The 

score takes into account the number of focus genes (genes in our lists) in the network and 

the size of the network to approximate how relevant this network is to the original list of 

focus genes. The network is then presented as a graph indicating the molecular relationships 

between genes/gene products. Genes or gene products are represented as nodes, and the 

biological relationship between two nodes is represented as an edge (line). The connectivity 

of genes (nodes) is based on data in the IPA knowledge base, which is a large repository 

of gene-phenotype associations, molecular interactions, chemical knowledge, and regulatory 

events, pulled from the full text of scientific publications by Ph.D.-level scientists. The 

node color indicates the degree of up-regulation (red) or downregulation (green). Nodes are 

displayed using various shapes that represent the functional class of the gene product. A 

functional analysis of a network then identified the biological functions and/or diseases that 

were most significant to the genes in the network.

Results

Characteristics of Study Subjects

Fifty-three Caucasian subjects whose histological phenotype was confirmed by the two 

study pathologists were included in this analysis: 27 with NAFLD and 26 controls. The 

clinical and laboratory characteristics of these subjects are summarized in Table 1. As 

anticipated, subjects with NAFLD had higher mean fasting glucose, insulin, triglycerides, 

and ALT levels. The total cholesterol, HDL, LDL, and alkaline phosphatase levels were 

similar between the groups. There were no significant differences in age, BMI, percentage of 

females, or fractions of subjects with diabetes or hypertension between the two groups.
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Hepatic Transcriptional Profile in NAFLD

A total of 25,643 quantitative transcripts were identified in liver using the proposed 

transcriptional profiling. Of these, 108 were significantly associated with NAFLD 

(p<0.001). The strongest 10 up- or down-regulated NAFLD-associated genes are shown 

in Table 2.

Cluster-Based Canonical Pathway Analysis

To gain further insights into the pathogenesis of NAFLD, we analyzed the NAFLD­

correlated genes to elucidate dominant canonical pathways. Hierarchical clustering analysis 

was first performed to organize the 108 NAFLD-correlated transcripts based on similarity 

of function within the up- or down-regulated clusters (Fig. 1). These two clusters were 

then subjected to canonical pathway analysis, which showed that hepatic fibrosis signaling 

was the most significant pathway in the up-regulated NAFLD gene cluster containing 

three (COL1A1, IL10, IGFBP3) significantly altered genes. Endoplasmic reticulum (ER) 

stress and protein ubiquitination pathways were the most significant pathways in the down­

regulated NAFLD gene cluster, with the first pathway containing one (HSPA5) and the 

second containing two (HSPA5, USP25) significantly altered genes. Remaining relevant 

pathways not reaching significance at p <0.05 in each cluster are shown in Fig. 2.

Hepatic Gene Networks Analysis

To determine significant biological functions and to reveal transcriptional correlations 

among genes associated with NAFLD, the 108 significant genes were subjected to gene 

network analysis.

The most significant cellular and molecular biological functions associated with NAFLD­

correlated genes were cell death, cellular movement, antigen presentation, cell morphology, 

and cellular development. Genes in each of these functional categories are listed in Table 3.

Of the 108 NAFLD-associated genes, 63 had connectivity data in IPA knowledge base and 

were eligible for network analysis. Four significant hepatic gene networks were noted in 

NAFLD (Table 4). Prominent gene functions within these networks included cell death, 

immunological disease, cancer, cellular growth and proliferation, cellular movement, lipid 

metabolism, molecular transport, and small molecule biochemistry.

To demonstrate the biological interactions of these genes within a network and highlight 

“hub” genes that interact with other NAFLD-correlated genes, gene networks involved in 

cell death, lipid metabolism, and molecular transport are shown in Fig. 3.

Discussion

Several human studies have analyzed hepatic gene expression in NAFLD [11, 20–23]. These 

studies reported differential expression of genes involved in lipid metabolism, mitochondrial 

function, oxidative stress, insulin signaling, cell death, and hepatic fibrosis. There was 

however little or no concordance among these studies on the genes described to be 

associated with NAFLD. This may be due to small sample size, study of ethnically mixed 

cohorts or cohorts of different ethnicities, or use of different gene expression platforms 
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with varying numbers of interrogated transcripts. Despite these limitations, these studies 

provided insights into the pathogenesis of NAFLD and highlighted a large number of 

NAFLD-correlated genes. They also demonstrated the need for additional bioinformatics 

analytical methods that can both provide a systematic approach to connect the data to 

biology and aid in prioritizing the often large number of NAFLD-associated genes.

In this study, we analyzed global hepatic gene expression in a clinically well characterized 

and ethnically homogeneous cohort. Using gene networks and pathways analyses, we 

confirmed a significant role of several previously described biological processes in the 

pathogenesis of NAFLD.

There were several interesting genes in our study that showed strong evidence of up­

regulation including FABP4, PPFIBP1, ZAK, RGN, SMUG1, DCN, CYP4F22, and CSN2.

The FABP4 gene has been also reported to be up-regulated in a prior hepatic expression 

study in NAFLD [23]. It encodes for fatty acid binding protein 4, adipocyte, a member of 

the fatty acid-binding proteins. FABPs are lipid chaperones with high affinity to binding 

long chain fatty acids and are important mediators of inflammation and insulin signaling 

in glucophages and adipocytes [30, 31]. Genetic variation in FABP4 has been shown 

to influence triglycerides levels and the risk for diabetes in humans [32]. Indeed, mice 

deficient in FABP4 and another FABP (mal1) are protected from diet-induced obesity, 

insulin resistance, diabetes, and fatty liver [33]. Therefore, FABP4 represents a logical 

NAFLD candidate gene.

The protein encoded by liprin beta 1 (PPFIBP1) is a member of the LAR protein-tyrosine 

phosphatase-interacting protein (liprin) family. Tyrosine phosphorylation of proteins is 

important in coordinating cellular responses to extracellular stimuli. This protein was found 

to play a role in altering tumor invasiveness and metastasis [34, 35].

The ZAK gene encodes a cytoplasmic protein, which is a member of the MAPKKK family 

of signal transduction molecules. The protein has proapoptotic activity, plays a role in cell 

cycle checkpoint regulation, and mediates the effects of tumor growth factor-β (TGF-β) in 

inducing myocardial fibrosis [36–38]. Although TGF-β is a potent inducer of hepatic stellate 

cells production of collagen [39], the effects of its interaction with ZAK on hepatic fibrosis 

are currently unknown.

The gene encoding regucalcin (RGN) was also among the strongest up-regulated in our 

study. Regucalcin is a calcium-binding protein, which regulates the calcium effects on liver 

cell functions, modulates lipid metabolism in the adipose and liver tissues in aging rats by 

interacting with leptin or adiponectin, and suppresses apoptotic cell death [40–42].

The SMUG1 (single-strand-selective monofunctional uracil-DNA glycosylase 1) gene 

encodes a glycosylase that removes uracil from single- and double-stranded DNA in 

nuclear chromatin, thus contributing to base excision repair [43, 44]. DNA damage is a 

well-described phenomenon in NAFLD [45].
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The DCN gene encodes for decorin, an extracellular matrix proteoglycan that binds to type 

I collagen fibrils and exerts several important biological effects. Decorin suppresses TGF-β 
activation of hepatic stellate cells and thus influences matrix assembly and remodulation, 

and suppresses different cancer cell lines by inducing apoptosis [46–49].

The CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) gene encodes a 

member enzyme of the cytochrome P450 superfamily that are involved in drug metabolism 

and synthesis of cholesterol, steroids, and other lipids.

The protein encoded by CSN2, casein beta, has a role in regulating protein stability and 

degradation via the ubiquitin–proteasome system and is involved in cell transformation, 

tumorigenesis, and hepatic regeneration [50–52].

Less is known about the strongest down-regulated genes discovered in this study. The 

CHERP (calcium homeostasis ER protein) gene encodes a protein that modulate calcium 

homoeostasis, cell growth and proliferation [53], and the DYNC1I1 (dynein, cytoplasmic 1, 

intermediate chain 1) gene encodes for a molecular motor protein that is important for cell 

division and transport of intracellular organelles and cell migration [54, 55].

Beyond the identification of individual genes, our analysis focused on the identification 

and characterization of overarching biological functions associated with these genes. The 

most significant biological functions involving genes with significantly altered expression 

included cell death, cellular movement, antigen presentation, cell morphology, and cellular 

development. These data are consistent with findings of other studies revealing the 

biological significance of cell death [56, 57] and altered immunological function [58, 59] in 

NAFLD.

Canonical pathways analysis revealed that the hepatic fibrosis pathway was the only 

significant up-regulated pathway in NAFLD, with COL1A1, IL10, and IGFBP3 being 

the most significantly altered in this cohort. Increased collagen 1 deposition results in 

progressive hepatic fibrosis, which may ultimately lead to cirrhosis. The type I procollagen, 

alpha 1 (COL 1A1) gene is up-regulated in subjects with NAFLD. Whether variants in 

this gene are associated with altered risk for increased fibrosis with NAFLD needs to be 

explored. Interleukin 10 (IL10) is a cytokine with pleiotropic effects on immunoregulation 

and inflammation. It has been shown to improve insulin resistance and reduce hepatic 

steatosis [60]. The insulin-like growth factor binding protein 3 (IGFBP3) is one of six 

high-affinity binding proteins for IGFs that reduce the levels of free IGF and antagonize 

their insulin-like activity. It interferes with adipocyte differentiation [61] and also interferes 

with insulin and glucose homeostasis resulting in impaired glucose tolerance and insulin 

resistance [62, 63]. IGFBP3 has IGF-independent cellular activities such control of cell 

growth and apoptosis [64, 65]. It therefore represents another attractive NAFLD candidate 

gene.

The finding that the two significantly down-regulated canonical pathways in NAFLD were 

the ER stress and protein ubiquitination pathways is interesting. This finding highlights the 

importance of ER in the pathogenesis of NAFLD, whether it is with the unfolded protein 

response to accumulating misfolded/unfolded proteins (ER stress) or the ubiquitination of 
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these misfolded proteins as a quality-control response [66, 67]. These data are in line with 

earlier studies demonstrating a role for ER stress in inducing apoptosis in hepatocytes after 

accumulation of fatty acids [68] and with human data showing ER stress and suboptimal 

unfolded protein response in NAFLD [69]. There were two genes in these pathways that 

were significantly expressed in the dataset: HSPA5 and USP25. The heat shock 70-kDa 

protein 5 (HSPA5 also known as BIP or GRP78) is a member of the glucose-regulated 

proteins (GRPs). It acts as an ER chaperone and sensor of ER stress [70]. Although a recent 

human study of ethnically mixed cohort did not show a significant difference in HSPA5 

(BIP) between controls and subjects with NAFLD [69], HPSA5 has been shown to influence 

insulin biosynthesis [71] and its overexpression in mice reduced ER stress and SREBP-1c 

cleavage and resulted in improvement in insulin sensitivity and hepatic triglycerides [72]. 

Based on these data, HS represents a logical NAFLD candidate gene. The ubiquitin-specific 

peptidase 25 (USP25) is protease involved in the release of ubiquitin from degraded proteins 

by disassembly of the polyubiquitin chains [73, 74]. However, its biological functions are 

largely unknown.

About 55% of our subjects with NAFLD had portal or lobular inflammation on liver biopsy. 

Of the differentially expressed genes in NAFLD, FABP4 and IL10 have important roles 

in mediating inflammation and thus may contribute to the inflammatory findings in these 

patients.

Although statistical significance of expression level changes may be one way to select 

a candidate gene for a given disease, gene network analysis offers the advantage of 

understanding the interaction of significant genes associated with a disease and the ability to 

find hub genes within a network that interact with several other genes up- and downstream 

of them. The high interconnectivity of hub genes with other correlated genes within a 

biological network may imply functional and biological importance of these genes [75]. This 

approach to identifying hub genes via gene network analysis has been applied to expression 

analysis of different tissues in other rodent and human disease models, where hub genes 

were proposed as potential biomarkers for the disease or targets for drug therapy [76–78]. 

Thus, these hub genes may be viewed as high-priority disease candidates for further study. 

In this dataset, four significant gene networks were associated with NAFLD (Table 4), and 

the IL10 and COL1A1 are examples of significantly expressed hub genes in network A.

The described functions of these top networks fit well with the known major physiological 

events in NAFLD, such as lipid metabolism, organismal functions, and cell death. Similar to 

our findings in human NAFLD, network analysis of hepatic gene expression in a rat model 

of NAFLD showed importance of genes involved in cell death, immune function, and lipid 

metabolism [79].

Several points need to be noted: (1) the subjects characterized within this study were 

morbidly obese and undergoing bariatric surgery. Therefore, findings of this study may 

not be applicable to other patients with NAFLD and lesser degrees of obesity. (2) Most 

of the subjects were females, and thus, there may be male-specific changes in hepatic 

gene expression that our analysis would not have uncovered. (3) Although correlation of 

significantly expressed genes levels with laboratory variables such as insulin and ALT levels 
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are of significant clinical interest, the limited size of the current study cohort does not allow 

for these analyses with sufficient statistical power. (4) It is not possible from the current data 

to decipher which altered gene transcripts are primary or secondary changes in relation to 

NAFLD pathogenesis. Ultimately, combining genomics, proteomics, and transcriptomics 

methods may help in dissecting these changes. This study, nonetheless, combined the 

strengths of recruitment of an ethnically homogeneous cohort with detailed clinical 

phenotypic characterization, use of whole-genome quantitative transcriptional profiling, 

and application of integrated bioinformatics analyses to allow immediate connection of 

transcriptional data to NAFLD biology.

In summary, this study reveals the gene biological functions and canonical pathways 

associated with NAFLD. The application of gene networks analysis highlights the 

transcriptional relationships among NAFLD-associated genes and allows identification of 

hub genes that may represent high priority candidates for NAFLD.
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Fig. 1. 
Hierarchal clustering of 108 NAFLD-correlated genes
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Fig. 2. 
The canonical pathways detected in each NAFLD-associated gene cluster. a Up-regulated 

pathways and b Down-regulated pathways
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Fig. 3. 
Significant hepatic gene networks in NAFLD. a This gene network is involved in cell 

death. Several significantly expressed hub genes such as COL1A1, IL10, and DCN can be 

identified. b This gene network is involved in lipid metabolism, molecular transport, and 

small molecules biochemistry. Red: up-regulated in NAFLD compared to control; green: 

down-regulated in NAFLD compared to control
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Table 2

Strongest NAFLD-associated genes

Molecules Exp. Value Exp. Chart

Log ratio up-regulated

 PPFIBP1 0.583

 ZAK 0.527

 WNK4 0.526

 RGN 0.524

 SMUG1 0.521

 MLLT10 0.505

 DCN 0.497

 CYP4F22 0.497

 CSN2 0.495

 FABP4 0.491

Log ratio down-regulated

 GABRB2 −0.638

 CHERP −0.600

 EBNA1BP2 −0.579

 DYNC1I1 −0.570

 RAB3IP −0.562

 KLHL8 −0.546

 TUBD1 −0.507

 HEATR3 −0.491

 OCM2 −0.480

 MKX −0.476
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