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Abstract
The value of in silico methods in drug development and evaluation has been dem-
onstrated repeatedly and convincingly. While their benefits are now unanimously 
recognized, international standards for their evaluation, accepted by all stakeholders 
involved, are still to be established. In this white paper, we propose a risk-informed 
evaluation framework for mechanistic model credibility evaluation. To properly 
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INTRODUCTION

In healthcare-related academic and industrial research and 
development, modelling and simulation (M&S) (in silico) 
approaches are combined with other advanced scientific tools 
to support innovation for better understanding physiology, 
pathophysiology, complex diseases and effects of medical 
interventions. The value of in silico methods in drug devel-
opment and evaluation has been demonstrated repeatedly and 
convincingly.1,2 Computational models have evolved from 
being a possible alternative to other data sources (e.g. clin-
ical trials), to being an unmissable must for development of 
new medicines, drug maintenance on the market and exten-
sion of indications for existing drugs (i.e. their repurposing in 
completely new indications). From additional or descriptive 
evidence used in some sparse cases, digital evidence (as gen-
erated by in silico models) is now included in almost all regu-
latory submissions. In many cases in silico models constitute 
the key source of evidence in drug development programs 
and related regulatory submissions (e.g. in case of extension 
of indications to children based on extrapolation). The term 
model-informed drug development (MIDD) is often used to 
describe the approach of using models to inform drug devel-
opment (see e.g. 3-7 ).

Modelling and simulation is a rapidly evolving area in 
terms of both technologies and application field. The latter are 
expanding beyond the description of drug exposure, towards 
the dynamic description of complex drug effects and disease 
subtypes and progressions. With the combination of increased 
uptake and expanding technologies, it is essential to have 
clarity and consensus in the in silico community on the most 

appropriate tools for in silico model evaluation. Therefore, the 
aim of this white paper is to present a high-level framework 
that can guide the process of the evaluation of models and 
simulations in a holistic and comprehensive manner. The sug-
gested framework can be seen as a generic umbrella that can 
be used irrespective of model and simulation technology, by 
guiding the process of their evaluation rather than providing 
the technical content and requirements. In making the process 
of their assessment explicit, it facilitates better informed di-
alogue between stakeholders, which currently is a challenge 
as modelers often may overwhelm other domain experts with 
technical details.8,9

Ideally, in silico tools should be endorsed by all the rele-
vant stakeholders, including academia and industry research-
ers, regulators, payers (HTA), healthcare professionals and 
patients.10 An important aspect of this approach is that, prin-
cipally, the quality standards for establishing model credibil-
ity should be driven by the scientific question to be addressed 
by the modelling and simulation exercise, the context of use 
and the risk involved rather than by the type of sponsor (aca-
demia, industry, health care etc.), or whether the use is early 
experimental development versus regulatory use. Of note, 
The EU HMA/EMA strongly encourages academic consortia 
to engage actively in the process of drug development and 
regulatory science and several schemes are put in place at 
EMA level to facilitate this process.

A common language and approach can give us an environ-
ment that could permit establishing the credibility of in silico 
models and their adequate use in an objective and consistent 
manner across the various modelling and simulation technol-
ogies and applications. In the context of drug development, 
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frame the proposed verification and validation activities, concepts such as context 
of use, regulatory impact and risk-based analysis are discussed. To ensure common 
understanding between all stakeholders, an overview is provided of relevant in silico 
terminology used throughout this paper. To illustrate the feasibility of the proposed 
approach, we have applied it to three real case examples in the context of drug devel-
opment, using a credibility matrix currently being tested as a quick-start tool by regu-
lators. Altogether, this white paper provides a practical approach to model evaluation, 
applicable in both scientific and regulatory evaluation contexts.



806  |      MUSUAMBA et al.

the credibility framework can be seen as complementing the 
stepwise model building and validation that today is standard 
for drug development. One could say that MIDD is this step 
wise building and consolidation of the in silico backbone of 
knowledge on the medicinal product coupled with an open 
dialogue between developers and regulators on finding po-
tential applications for modelling and simulation to inform 
the development and approval.3-7

State-of-the-art papers, tutorials and regulatory guide-
line documents exist for methodological validation and 
reporting of Quantitative Structure-Activity Relationship 
(QSAR) methods 11,12 as well as some pharmacometric ap-
proaches, such as population-pharmacokinetics (popPK), 
pharmacokinetics/pharmacodynamics (PK/PD), and dose/
exposure-response (DER) models.13-15 In contrast, regula-
tory guidance on mechanistic models (models developed 
starting from mechanisms, see Table in Section 2 for a full 
definition) is scarce. The EMA and FDA physiology-based 
guidelines on pharmacokinetics (PBPK) models can be 
cited as pioneers in this domain.16,17 With the aforemen-
tioned increase in model technologies used in drug develop-
ment, there is an unmet need to provide an environment that 
would permit establishing the credibility of mechanistic in 
silico models and their adequate (regulatory) evaluation in 
a consistent manner.

This white paper aims to provide input on rigorous sci-
entific and regulatory evaluation strategy for the expanding 
range of in silico technologies currently used in drug devel-
opment. We will present a high-level framework, inspired by 
the ASME V&V40 for medical devices,18 that could guide 
the evaluation process of models and associated simulations 
in a holistic and comprehensive manner without necessary 
focusing on very technical and specific aspects related to 
different applications or types of models (these topics will 
be covered in future communications). To properly frame 
the required credibility building activities, concepts such 
as context of use, regulatory impact and risk-based analysis 
will also be discussed. An overview of the relevant in silico 
terminology used throughout this paper will be provided. 
The steps of the risk informed credibility assessment will 
be presented, framing the required verification and valida-
tion activities, and concepts such as context of use, regula-
tory impact and risk-based analysis will be introduced and 
discussed in the paper. During model building and valida-
tion activities, data from different sources are often used. 
Therefore, considerations of model predictions relative to 
data from other sources, and adequate uncertainty quantifi-
cation and mitigation are some of the key and challenging 
steps. To illustrate the feasibility of the proposed approach, 
we have applied it to three real use cases use cases in the 
context of drug development, showing the variety of tech-
nologies and applications that are covered by the framework 
proposed in this white paper.

TERMINOLOGY

One main challenge in the communication between relevant 
stakeholders is the terminology associated with the in silico 
methodology. A uniform and widely adopted consensus 
terminology is lacking amongst all in silico developers, as-
sessors and users. Scientists reporting their results to their 
community or sponsors presenting their submissions to the 
regulators often use terms with a different understanding than 
the one expected by their audience (be it reviewers, readers, 
regulatory assessors or others). The need for at least a mutual 
understanding of the in silico terminology used by each party 
is thus of utmost importance as it directly affects the com-
munication efficiency between stakeholders.

For example, the term qualification is more commonly 
used in the EU drug regulatory space (EMA) 19 to design 
requirements for a model to be considered fit-for-purpose 
whereas terms verification and validation will rather be en-
countered in the medical device developers’ space to discuss 
model adequacy requirements.18 This can be explained in 
part by the fact that drug regulators are used to risk-based 
decision making in a multifactorial context and will aim to 
qualify models for a particular context of use given the es-
tablished regulatory impact (with as bottom line: the perfect 
model does not exist). In contrast, for medical device, the 
mechanisms (i.e. physical laws) are better defined: develop-
ers can define tools to assess the adequacy of their model 
predictions. Another example pertains to the terminology 
used to indicate a specific type of model. Clinical pharma-
cologists will mostly use the term pharmacometric modelling 
and simulation while engineers will use the term in silico 
models to indicate almost exactly the same concept: a set of 
mathematical equations and/or computer algorithms that can 
be used to predict drug effects and/or health outcomes in dif-
ferent scenarios.

In our opinion, even if very convenient, the use of the same 
terminology becomes less critical when there is a common 
understanding of what is meant by specific terms used by 
each party. Given the continuous expansion of the modelling 
application domain, harmonization of language should not be 
the first target. The first target should rather be the under-
standing of nuances, similarities and differences in the terms 
used for different applications and by different stakeholders. 
It is important to understand which terms are interchange-
able or overlapping, and which ones have different meanings 
when used in different settings. When different stakeholders 
communicate (e.g. scientists publishing a paper, sponsors 
meeting regulators), it is paramount that the most important 
terms are clearly defined at the onset, so misunderstandings 
are avoided. This effort may be supported by leveraging exist-
ing organized ontologies relative to modelling of biological 
processes (e.g., Mathematical Modelling Ontology, Systems 
Biology Ontology).20,21 Consistency across requirements for 
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model acceptability by assessors/reviewers will strongly de-
pend on the appropriate use of terms by developers/reporters 
and their adequate understanding by users/ readers/reviewers/
assessors. This is particularly important for in silico models 
requiring multidisciplinary expertise at the intercept of sev-
eral scientific fields. To set the example, we start this white 
paper with a glossary (Table 1), clarifying our understanding 
of the most commonly used in silico-related terminology in 
the field of drug development and evaluation. Ideally, this 
list should be expanding and regularly updated based on new 
application domains of modelling and simulation.

CURRENT REGULATORY 
APPROACH FOR IN SILICO  MODEL 
EVALUATION IN THE CONTEXT 
OF DRUG DEVELOPMENT AND 
EVALUATION

Modelling and simulation takes its roots in academia and 
has been embraced by sponsors (including drugs’ commer-
cial sponsors) who have rapidly understood the economic 
potential of this approach. When developing and assessing 
the models, academic researchers have emphasized the in-
novation and the scientific (technical) value of the models, 
focusing on different requirements to define their acceptabil-
ity (e.g. mathematical, statistical, computational, pathophysi-
ological, pharmacological). This has led to a multiplication 
of tools for model evaluation, covering a wide range of meth-
odologies for mathematical and statistical model evaluation, 
independent/external validation, scientific ((patho)physio-
logical/pharmacological) plausibility of parameter estimates, 
etc.42 Some model evaluation tools were developed specifi-
cally for the purpose of transfer to clinical applications.43

However, these tools still have a long way to go in terms 
of implementation and general uptake and in terms of rigor in 
their implementation which currently can be variable and un-
balanced (i.e. very strong claims are often made by develop-
ers with poor reporting and/or a weak verification/validation 
process). In this white paper, we will discuss the different 
available evaluation tools that we believe could be of interest 
for model evaluation (see section 9).

Drug developers and regulators have hitherto more fo-
cused on the application itself (drug) and the specific ques-
tion that can be addressed by the models. Model development 
and evaluation are proposed in well-defined contexts of use 
that take into account the regulatory impact (cf. section  7) 
and the consequence of model inadequacies for the relevant 
decision making at the level of the patient and public health, 
making some models acceptable for some contexts but not 
for others. This entails the necessity of pre-defining the re-
quirements for model acceptability in an application-wise 
manner, irrespectively of the specific model technology used 

(e.g. empirical statistics vs. two-stage approach vs. empiri-
cal models vs. PBPK(-PD), SM/QSP models vs. agent-based 
models). This also shows the need for understanding the ac-
tual value (strengths and limitations) of the proposed/avail-
able tools for model evaluation, their applicability to various 
model technologies and their relevance for the scientific 
question(s) of interest.

The regulatory evaluation of models is ideally supposed 
to be in line with the latest scientific knowledge in the field. 
While sponsors have the full liberty (and are encouraged to 
be as innovative as possible) in the choice of the approaches 
for evidence generation to support their claims, the regula-
tory assessors’ role is to ensure that the proposal is scientifi-
cally sound and valid given the context of use, the regulatory 
impact, and given pre-established standards. For the interest 
of patients and public health, the regulators should always 
push the sponsor to provide the highest level of evidence and 
quality of modelling data. Although driven by regulators, 
establishment of standards should be a joint effort between 
all the stakeholders involved in the process (i.e. regulators, 
industry, academia, patients, healthcare professionals, HTA 
and payers). The current gaps and challenges encountered 
in in silico model reporting and evaluation likely affect the 
interactions between sponsors and regulators and, in some 
cases, this can delay drug market access for new drugs that 
patients need.

From a practical perspective, the regulators are expected 
to provide some guidance to sponsors on the presentation of 
their model development and evaluation results for optimal 
communication. At EMA, a range of regulatory procedures 
exists to interact and dialogue with sponsors on case-by-case 
basis, including for M&S related aspects. These procedures 
include Innovation Task Force (ITF) meetings, scientific ad-
vice protocol assistance and qualification advice/opinion.44-46

The ongoing Model-Informed Drug Development 
(MIDD) Pilot Program at the FDA is a very good example of 
how modelling related questions and context are fine-tuned 
to ensure clarity and set expectations, thanks to regular inter-
actions between sponsors and regulators.47 Additionally, ref-
erence documentation is available such as Q&A documents, 
concept and reflection papers and specific guidelines.9,16,48,49

It should however be noted that, apart from the PBPK 
guideline, none of these guidance documents refers specifi-
cally to the in silico models beyond the pharmacometric fam-
ily. Hence, there is an unmet need for regulatory guidance for 
in silico model evaluation also including models built with 
other technologies (e.g., agent-based models) in the context 
of drug development and evaluation, a need shared by regula-
tory agencies worldwide. One possible reason explaining this 
absence of specific guidance could be the lack of focus within 
the scientific community on creating evaluation tools able to 
meet regulatory scrutiny. Another reason could be that histor-
ically, the number of regulatory submissions including these 
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T A B L E  1   Definition of key terms related to computer modelling and simulation in drug development

Biological system Complex ensemble of entities of a population or an individual that are interdependent and function as a whole. 
The entities and the limits of the defined system itself may be of various scale of organization (population, 
individual, physiological system, organ, cellular, molecular, etc.).

In silico models Abstract and simplified representation of a biological system, composed of a set of rules or algorithms describing 
the system’s behaviour, implemented and studied computationally. According to the mathematical nature of 
the rules, the behaviour of the system can be studied over time and/or space and quantitatively or qualitatively. 
The term in silico refers to the computational nature of the model and discerns it from its in vitro and in vivo 
counterparts.22 In the context of drug development, the set of mathematical rules and algorithms are typically 
used to predict drug effects and/or disease outcome in different scenarios. Thus, it is a generic term referring 
to a broad scope of computational models such as Quantitative Systems Pharmacology, system medicine and 
physiology-based multi-scale multi-physics models.23-25 From a methodological point of view, in silico models 
may be found at any level of the spectrum ranging from fully data-driven to fully mechanistic models (cfr 
definitions below)

In silico clinical trials Class of trials for pharmacological therapies 26-29 or medical devices based on modelling and simulation 
technologies. Such trials produce digital evidence that can serve in complement to or replacement of in vivo 
clinical trials for the development and regulatory evaluation of medical therapies.30,31

Data driven models ( 
black-box models, 
phenomenological 
models

Models developed from observations or data with the aim of reconstituting a set of rules explaining those data. 
These models can be developed using statistical, mathematical and/or computational methods including 
bioinformatics, machine learning and artificial intelligence. This type of models is built to match the 
observation content of the data but the resulting rules do not necessarily correspond to real, physical or tangible 
mechanisms, which makes it more difficult to interpret, hence the term of black-box model.22

Mechanistic models 
(white box models, 
hypothesis-driven 
models)

Set of theoretical rules and algorithms based on known mechanisms expected to reconstitute observed behaviours. 
Consequently, the rules describe known or hypothesized mechanisms in a lower scale of organization and 
the model read-out often regards an emerging behaviour at a higher scale of organization. This type of model 
is essentially hypothesis-driven and allows to test the validity of the underlying mechanisms, and to explain 
an observation, hence the term of white box model.22 Most mechanistic models contain phenomenological 
elements because of abstractions that are made, e.g. a mechanistic model at the tissue level does not capture 
the mechanisms at the cellular or subcellular level. Nevertheless, when the model is built around the known 
mechanisms we use the term mechanistic despite the presence of some phenomenological elements,

Agent-based models Agent-based models (ABM) are an effective approach for modelling discrete, autonomous agents such as cells or 
bacteria.32

Artificial Intelligence (AI) In the field of in silico modelling, AI is a set of technologies that have an adaptive and anticipatory capacity to deal 
with a defined problem while showing a certain degree of autonomous learning and improvement in solving 
the problem in question. The scope of technologies belonging to AI is very broad and includes, for example, 
machine learning, deep learning, etc. The capacity to learn for an algorithm may arise from different processes 
such as supervised or non-supervised learning and reinforcement learning.33

Model-Informed Drug 
Discovery and 
Development

Quantitative framework for prediction and extrapolation, centred on knowledge and inference generated from 
integrated models of compound, mechanism and disease level data and aimed at improving the quality, 
efficiency and cost effectiveness of decision making.4

Pharmacometrics Pharmacometrics is the branch of science concerned with mathematical models of biology, pharmacology, 
disease, and physiology used to describe and quantify interactions between xeno biotics and patients, including 
beneficial effects and side-effects resultant from such interfaces.29 Related activities encompass developing 
and applying mathematical and statistical models to characterize, understand, and predict a drug’s PK/PD and 
biomarker-outcome behaviour.34

Population PK (PopPK) 
and Pharmacokinetic 
/ Pharmacodynamic 
(PK/PD) models

PopPK is the study of pharmacokinetics (i.e., time course of concentration at a certain dosing regimen) at the 
population level, in which data from all individuals in a population are evaluated simultaneously using 
a nonlinear mixed-effects model.35 PK/PD-modelling links dose-concentration relationships (PK) and 
concentration-effect relationships (PD), thereby facilitating the description and prediction of the time course of 
drug effects resulting from a certain dosing regimen.36

Physiologically Based 
Pharmacokinetic 
(PBPK) models

PBPK models estimate the PK profile or exposure in “a target tissue or organ after a drug dose by taking into 
account the rate of absorption into the body, distribution among target organs and tissues, metabolism, and 
excretion”.37

(Continues)
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types of models is rather low compared to pharmacometric 
models, which is a vicious cycle as without proper guidance 
sponsors are reluctant to include digital evidence into their 
dossier. Importantly, the framework presented in the white 
paper, including regulatory impact aspects, can contribute 
to the consistency of regulatory assessment across world re-
gions. The authors therefore strongly support the idea that this 
subject constitutes a good candidate for a consensus approach 
(e.g. through a new ICH guideline).

POINTS TO CONSIDER FOR 
EVALUATION OF MECHANISTIC IN 
SILICO  MODELS

While this paper is not intended to provide a definite recom-
mendation for evaluation, it is the authors’ conviction that a 
framework to support the in silico model evaluation rationale 
is needed, similarly to what is proposed in the ASME V&V40 
for medical devices.18 The steps listed below and elaborated in 
the following sections are considered essential in the process 
of model evaluation, being it for communication between in 
silico scientists (e.g. publications in scientific journals, com-
munications in meetings) or for regulatory submissions. A 
flowchart of the different steps is provided in Figure 1.

1.	 Description of question(s) to be addressed and Context 
of Use (COU) (section  5)

2.	 Definition of model acceptability criteria for proposed 
question(s) and COU (section 6)

3.	 Description of model influence and/or regulatory impact 
(only for regulatory submissions) (section 7)

4.	 Risk-based analysis of decision consequence (section 8)
5.	 Description of model credibility activities (model verifi-

cation & validation activities) (section 9)
6.	 Applicability and Uncertainty (section 9)
7.	 Model-informed decision making

Ideally, these points should be defined at planning stage 
and included in a modelling and simulation plan, i.e., a doc-
ument in which relevant assumptions, input data, imple-
mentation steps and output are clearly presented along with 
mitigation measures. This can constitute the basis for contin-
ued dialogue and interaction with regulators. To illustrate the 
points made below, we will work with three use cases, exam-
ples of in silico models in the context of drug development. 
A full description can be found in section 11.

QUESTION OF INTEREST AND 
CONTEXT OF USE

The scientific question(s) to be addressed by the model-
ling exercise need(s) to be clear and well described. Each 
question should be stated separately in case several ques-
tions would be addressed by the proposed model. Once all 

Systems medicine models This type of in silico model aims at studying a pathophysiological system by focusing on various possible 
biological scales. The scale may vary from the genetic and signalling pathways to cell-cell communication, 
processes at tissue level and clinical outcomes. Such models often focus on a specific disease and attempt to 
predict the effect of a specific type of treatment, sometimes on a defined branch of the population. This defines 
the model's context of use.38

Quantitative Systems 
Pharmacology (QSP)

QSP is broadly defined as an approach to translational medicine that combines computational and experimental 
methods to elucidate, validate and apply new pharmacological concepts to the development and use of 
small molecule and biologic drugs. QSP will provide an integrated “systems level” approach to determining 
mechanisms of action of new and existing drugs in preclinical and animal models and in patients.39

Model uncertainty A certain amount of contingencies and inaccuracies may arise from the model predictions/simulations and 
resulting decisions. These uncertainties may be due to the model structure (assumptions), parameters and/or the 
inputs.40

Model uncertainty 
quantification

Characterization of the model uncertainty with quantitative metrics. It assesses how much the outcome of the 
model is impacted when some part of the system or some inputs are changed or not precisely known. By 
systematically identifying the sources of uncertainty, characterizing their probability distribution and analysing 
their impact on the model's outputs of interest, the evaluation process ensures that the uncertainty's impacts on 
the model predictions are understood and controlled.32,41

Historical data / Legacy 
data

Data previously collected in a relevant context but for a different purpose. Historical data, when appropriate for the 
context of use and of sufficient quality, can be used for validation of new models.42

Good simulation practice In analogy to the ICH Good Clinical Practice or the OECD Good Laboratory Practice, GSP could be a quality 
standard for the designing, implementing and reporting of in silico trials in the context of the development and 
regulation of medical treatments. When established in concertation with the proper authorities, compliance 
with the GSP standard could ultimately provide public assurance that the digital evidence generated by in silico 
technologies is credible.40,41

T A B L E  1   (Continued)
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the questions are well identified, the next step is to describe 
the proposed modelling approach to answer each question, 
including the data sources for model development and evalu-
ation. It is critical to ensure that the modelling and simu-
lation final output really addresses the scientific question. 
According to the EMA current policy, the Context of Use 
(COU) is considered to be the full, clear and concise descrip-
tion of the way the methodology is to be used and the related 
purpose of the use.9 The COU is a critical reference point for 
the regulatory evaluation of any qualification application as 
will become clear by the frequent referral to the COU in the 
following sections.

Examples of questions of interest are given below. These 
examples show that questions of interest are not limited only 
to interactions between drugs or their pharmacodynamics ef-
fects or even the interaction between a drug and organs/dis-
eases. They can extend to the demonstration of clinical utility 
in the wider population after market uptake.

•	 What is the effect of enzyme Z inhibition and/or in-
duction on drug X as a victim drug?

•	 What is the effect of drug X as perpetrator on other drugs 
via enzyme Z inhibition +induction?

•	 What is the relationship between drug X systemic concen-
trations and pharmacodynamic effect A at cellular/organ 
level?

•	 What is the relationship between drug X systemic concen-
trations and clinical efficacy response A?

•	 What is the relationship between state of cell A/organ B at 
time of treatment and the effect of drug X systemic con-
centration on the clinical efficacy?

•	 How will the drug X perform in patient populations that 
were excluded from clinical trials?

•	 How long does the drug X have to be administered to 
achieve the desired effects?

•	 What is the lowest dose at which the drug X can be given 
without negatively impacting treatment outcomes?

•	 How do the efficacy, effectiveness and safety of the drug 
X evolve over a longer period of time?

•	 How does the drug X perform in terms of patient-relevant 
outcome measures?

Some examples of COU are provided below:

•	 Optimization of the treatment regimen for first-in-human 
studies using a QSP model (developed based on in 
vitro, ex vivo and/or in vivo animal data)

•	 Use of agent-based models and related simulations for 
dose optimization for new therapies for infectious disease 
in a reference population using preclinical animal dose-
response data and exploratory clinical trial evaluating short-
term efficacy.

•	 Use of an agent-based model handling sparse clinical data 
to predict unobserved responses/in an in silico-augmented 
exploratory Phase 2 clinical trial

•	 Use of a multi-scale multi-physics model of a rare pathol-
ogy on a virtual population to establish the effect of a spe-
cific treatment in the absence of clinical trial data in the 
target population

•	 Use of a PBPK model to establish the clinical effect of 
enzyme Z moderate inhibition and induction by drug X in 
the absence of clinical data generation.

F I G U R E  1   In silico Model Process flowchart
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•	 Application of a multi-scale multi-physics model on a vir-
tual population to define inclusion criteria for a clinical 
trial design

Of course, the question of interest and the COU are 
strongly linked to one another. This can be observed clearly 
in the credibility matrix of the three core examples of this 
white paper (section 11).

MODEL ACCEPTABILITY CRITERIA 
FOR A PROPOSED QUESTIONS AND 
CONTEXT OF USE

Model acceptability criteria need to be well established. This 
should be done upfront during the planning phase before the 
start of any data collection (see flowchart Figure 1). This in-
cludes the level of credibility and validity of models intended to 
support scientific claims in communications (e.g. publications) 
and/or regulatory decision making. For regulatory submissions, 
it is recommended to consider the regulatory endorsement of 
the set of criteria selected and the approach planned to be used 
for model evaluation. Different regulatory procedures and guid-
ance documents in place should be consulted to facilitate these 
interactions.

Model acceptability criteria will depend heavily on the 
COU and on the available tools for model evaluation. For reg-
ulatory submissions, the regulatory impact also needs to be 
taken into account as discussed below. It is very possible that 
the COU needs to be refined after acceptability evaluation, es-
pecially in case an adaptive pathway approach is adopted 50 
and HTA bodies, patients and healthcare professionals enter in 
an early dialogue with the regulators and industry before the 
beginning of Phase 2 clinical studies. In turn, it is also possi-
ble that the acceptability criteria might be expanded after new 
model evaluation tools become available for the proposed type 
of model.

In case a mechanistic in silico model (e.g. PBPK, agent-
based or QSP) would be used to waive a clinical study (i.e. 
for high regulatory impact applications) the following could 
be included in the acceptability criteria:

•	 The software platform should be qualified (as per the 
EMA PBPK guideline) for all the concerned metabolism 
pathways (section  9.1, verification)

•	 The mathematical adequacy of code used for the drug 
model should be established (section 9.1, verification)

•	 Parameter sources and values should be disclosed and jus-
tified for the drug model (section 9.2 validation)

•	 For both efficacy and safety, the impact of uncertainties in 
the model and their impact on the simulation results has to 
be discussed (section 9.2 validation).

Three examples of how model acceptability criteria can 
be made explicit and linked to context of use and scientific 
questions are provided in section 11.

REGULATORY IMPACT

Regulatory impact is a terminology proposed for the first 
time by Terry Shepard 51,52 to describe the role played by 
modelling data in the regulatory decision-making. This ter-
minology is now largely understood and widely used in the 
EU regulatory network. According to the regulatory impact 
terminology, when modelling and simulation data are only 
considered to play a descriptive role, because the key data 
for the question addressed is coming from other sources, the 
regulatory impact is considered to be low. However, when 
modelling results constitute the key source of evidence to an-
swer the question of interest, i.e. replacing data traditionally 
generated in a clinical trial, the regulatory impact is consid-
ered to be high. The medium regulatory impact lies some-
where in between: modelling results are additional evidence 
to be complemented by other data from other sources, such 
as for dosing selection in a given patient (sub)population.51,52

The concept of regulatory impact should be perceived as 
broader than the model influence as per the risk informed 
credibility assessment (ASME V&V40). Benchmarking 
against the current evidentiary standard is implicitly included 
in the regulatory impact concept. The ‘regulatory impact’ ter-
minology is therefore interesting because it puts the in silico 
modelling data in perspective as compared to the other poten-
tial data sources (nonclinical in vitro, ex vivo and in vivo or 
clinical trials) to address the questions of interest. In addition, 
it implicitly compares the role of in silico modelling data in 
model-informed drug development programs to what would 
have been done traditionally to address the same question 
without in silico modelling.

The stringency and the demandingness of the acceptabil-
ity criteria in regulatory submissions defined in the previous 
section will also depend on the regulatory impact, with in-
creasing levels of requisites/demandingness from low to high 
regulatory impact applications.

As illustrated in the examples in section  11, regulatory 
impact should in principle be explicit in each submission.

RISK BASED ANALYSIS OF 
DECISION CONSEQUENCE AND 
MODEL RISK

After establishing the regulatory impact, the next step is a 
risk-based analysis of the decision consequence. This means 
assessing the consequence of an adverse outcome resulting 
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from an incorrect decision that was made based on the model. 
The concept of model risk has been thoroughly discussed in 
the ASME V&V40 standard for medical devices and can be 
summarised as the combination of the influence of the com-
putational model on the decision-making (model influence) 
and the consequence of an adverse outcome resulting from 
an incorrect decision based on the model (decision conse-
quence). The same concept can also apply to the drug de-
velopment related models as shown here. The higher the 
model influence and the decision consequence, the higher is 
the model risk. An example of such high model risk is when 
extrapolating efficacy and safety information from limited 
clinical data collected during Phase 1 and exploratory Phase 
2 clinical trials.

An additional source of uncertainty in disease and drug 
mechanistic in silico models is the trial and human errors 
that are not easy to anticipate when creating virtual popu-
lations (e.g. dosing errors, compliance). The level of uncer-
tainty can directly influence decisions taken based on the 
modelling results. It therefore becomes critical to quantify 
an in silico model's estimated uncertainties and to evaluate 
the implications of these uncertainties on the targeted patient 
populations to demonstrate the specified clinical utility. As 
long as the uncertainty decreases and the confidence in the 
new drug increases thanks to newly generated data across 
the clinical trials phases, the model risk lowers. An example 
of this is a model-based dose selection for a confirmatory 
phase 3 study, based on preclinical observations and PK data 
in healthy volunteers and patients.14 Confirmatory datasets 
(retrospective, real-world data and prospective), when avail-
able, can mitigate the model risk.

MODEL CREDIBILITY ACTIVITIES

After completion of all previous steps, model credibility ac-
tivities can be designed and executed. These activities start 
with identification of credibility goals, including desired 
qualitative or quantitative outcomes (e.g. pre-specified ac-
ceptance criteria) based on scientific rationale.18 Credibility 
activities include verification of the software, the code and 
the calculations, validation of the model using comparator 
studies, and evaluation of the applicability of validation as-
sessments to the COU. Credibility factors are the individual 
elements of these credibility activities, for instance the cred-
ibility activity of code verification encompasses credibility 
factors such as software quality assurance and numerical 
code verification.

The identification, design, execution and regulatory as-
sessment of the credibility activities are general for the model 
assessment process. However, the specific tools and techni-
cal approaches/aspects relevant for the verification and the 
validation activities often differ between model types, as 

illustrated in.32 Such specific requirements are beyond the 
scope of this paper.

Model verification

Verification is often termed as “solving the equations right” 
as opposed to validation which is “solving the right equa-
tions”. Verification is to be performed on the level of the 
software platform (software quality assurance), the numeri-
cal code and the calculations. The term software platform 
refers to a computational modelling and simulation (CM&S) 
software executable running on a specified offline or online 
computational environment characterized by its underlying 
operative system and hardware components. All together, 
these verification activities ensure that a CM&S software ex-
ecutable and a model are correctly implemented on the com-
putational platform of choice, that the model is accurately 
solved for its intended COU, and that adequate documented 
evidence of the verification activities is established to enable 
appropriate regulatory/scientific revision.

Software quality assurance (SQA)

SQA ensures that the CM&S software executable is correctly 
functioning, and that it produces repeatable results. A rel-
evant aspect of this testing activity is a full understanding of 
the CM&S requirements and specifications, the test cases, 
their limits, and their execution in the regression testing to 
ensure all the bugs, errors, and faults are addressed accord-
ingly to their potential effect(s) on the COU and the model 
risk.

CM&S software can generally be classified as user-
developed software, off-the-shelf software (commercial or 
open source license), modified off-the-shelf software, or 
most frequently combinations thereof. A software developer 
should tailor SQA activities upon the characteristics of the 
software components present in the model.

For user-developed and/or modified off-the-shelf software, 
SQA activities should comprise:

•	 Software testing, i.e. implement a manual or automated 
(unit test) process for specific parts of the software, 
where a static analysis is carried out to identify defects 
in the source code and in the software development 
environment, such as compilers and libraries called by 
the model.

•	 SQA documentation generation regarding all imple-
mented tests, where (specific parts) and on what (specific 
functionalities).

•	 Code review on software source code, software tests and 
documentation review
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For off-the-shelf software (components), SQA activities 
should comprise:

•	 Running the available benchmark verification test cases 
provided by the software provider.

•	 Documentation generation including references to the 
SQA procedures carried out by the software provider.

A guidance document as developed for the R statistical 
programming package53 is an example of supporting docu-
mentation to R users.

Numerical code verification (NCV)

The NCV process is generally carried out by the software 
developer and/or user. It is a process that ensures the cor-
rect implementation and functioning of the CM&S software 
executable and model by means of estimating the correct-
ness and numerical error in the calculated results (including, 
but not limited to, the spatial and temporal convergence rates 
& order) as well as by performing graphical and numerical 
checks. When the model equations allow, this verification 
step can be executed with the full model (blurring the distinc-
tion between code verification and calculation verification). 
However, when the model becomes more complex (due to 
more complex geometries, equations etc.), relevant bench-
mark problems should be identified and used to perform code 
verification. See e.g.54 for an example of the development of 
simplified flow problems that can be used as standard bench-
mark tests for code verification for blood damage predictive 
models. Of note here is that, as a less stringent NCV, simu-
lated data obtained from benchmark tests implemented with a 
verified code can be used for the verification of other codes.18

To achieve a robust NCV, the model developer should (de-
pending on the COU):

•	 Compare numerical solutions returned by the CM&S soft-
ware executable with exact analytical or semi-analytical 
solutions provided by a verified source (e.g. provider);

•	 Compare numerical solutions returned by the model running 
on any specific computational environment other than the 
original settings (model numerical solutions of reference).

•	 Generate adequate documented evidence of the performed 
comparison activities and include references to the docu-
mented results from SQA verification tests conducted by 
the CM&S software developer

Calculation verification

Calculation verification encompasses estimation of discretisation 
errors, numerical solver errors and (human) use errors and the 

effect these errors have on the model results. The discretisation 
error arises from solving the computational problem at a finite 
number of spatial and/or temporal grid points. Numerical solver 
errors refer to errors induced by the selection of specific solver 
parameters. Human errors are errors introduced into the calcula-
tion by the model user in key inputs and output (e.g. typos).18

To achieve a robust calculation verification, the model de-
veloper could (depending on the COU).

•	 Analyse spatial and temporal convergence and adapt 
discretisation parameters or solver tolerances where 
necessary.

•	 Run a problem-specific sensitivity analysis on the solver 
parameters to demonstrate that their impact on the simu-
lation results is negligible in the scope of the envisaged 
model accuracy.

•	 Verify key inputs and outputs by either user, internal or 
external peer review, depending on the credibility goals 
for this particular credibility factor.

Specificities of in silico models for drug 
development

The aforementioned verification process corresponds to that of 
general engineering models and in silico models of medical de-
vices that are heavily physics-based. These verification actions 
require a well-accepted “source of truth”. For many physics-
based models used in medical device modelling, this source is 
the fundamental differential equation or law that usually de-
pends on space and time (such as the Navier-Stokes equation 
to describe fluid dynamics). Models of biomedical processes 
rely on mechanistic knowledge, which is not always quantita-
tive and which is not error-free. Additionally, said processes 
often span multiple scales, which are intricately coupled and 
cannot be separated without considerable errors.55 Because of 
this, there is an increase in models that consist of multiple sub-
models capturing different scales (multiscale models) or phe-
nomena (multiphysics models). In case of multiscale models, 
orchestration between the different space/time scales is taken 
care through homogenization approaches and in case of mul-
tiphysics models through transformation of properties across 
physics theories.56 For such models, the general philosophy is 
that credibility should be assessed at the level of an individual 
submodel as well as on the orchestration. In certain cases, where 
the homogenisation functions are also models, they too should 
be explicitly included in the credibility process. Another family 
of models that is increasingly used in the context of drug devel-
opment is that of agent-based models, which are mechanistic 
with at least some of the inputs being discrete. The discrete ele-
ments can range from cell state transitions (with everything else 
described by differential equations in a space-time continuum) 
to the entire system being based on discrete rules. Verification 
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of the continuous part of the model requires extensive verifica-
tion whereas the discrete parts only require code verification as 
they involve algebraic calculations. However, as local instabili-
ties might arise, a parameter exploration is warranted.

For all the aforementioned models, it is also important to 
ensure that model structure and related parameters are identi-
fiable with the data used for model development. Appropriate 
tools should be used for this purpose.57,58

Model validation

As previously mentioned, validation activities are about show-
ing whether the right equations are being solved, i.e. whether 
the in silico model is able to predict/simulate the reality of in-
terest and the sensitivities and uncertainties of the model are 
clear. This starts with a clear description of the model's concep-
tual form along with its assumptions, ontology and input data 
quality. Subsequently, model validation requires the develop-
ment of a validation comparator providing data to perform the 
evaluation. No validation can be performed without such com-
parator data.32 The assessment step then compares the predic-
tion/simulation results with the comparator data to ascertain 
model credibility. Besides this direct comparison, it is equally 
important to estimate the uncertainty in this comparison.

In silico models, related assumptions, 
ontology and input data quality

Credibility factors related to the in silico model evaluate 
model form/structure (governing equations, geometry, com-
putational domain, variables, quantities, boundary/initial 
conditions etc.) and model input (parameter values for model 
form elements). In silico models used in the context of drug 
development are mainly describing biological processes, in 
contrast to models used in medical devices that often depend 
on physics. Their form and input depend largely on non-
exhaustive and poorly measurable material (knowledge and 
data) even on fundamental behaviour. Consequently, there 
may be multiple assumptions, gaps and hypotheses necessary 
to construct the conceptual form and to derive (or suggest) 
a convenient mathematical form. These need to be clearly 
described in the modelling report and their impact discussed. 
While every model is built on hypotheses, their high quantity 
and potentially large impact on the output of a pathophysiol-
ogy model imposes specific attention to the following points:

•	 A rigorous and complex knowledge management and 
curation (e.g. Strength of Evidence) which can evolve 
dynamically.

•	 A tight coupling between the conceptual (e.g. graph-based 
on underlying pathophysiology and pharmacology) and 

mathematical form (equations). For instance, a unique 
source for equations as well as their full documentation 
adds more credibility in the model form.

•	 An emphasis on a qualitative validation assessing if best 
practices in the conception and documentation of the 
model have been implemented in addition to the quantita-
tive validation with comparator data (thereby guarantee-
ing minimum standards reproducibility and quality and 
therefore credibility).59

Given the aforementioned points, the modellers should en-
sure and report compliance with model annotation and curation 
quality standards applicable for the type of model under scru-
tiny whenever available. Systems biology models can benefit 
from years of community effort into community standard ontol-
ogy building.60,61 To give an example, the use of a “scorecard” 
when reporting a model was recently proposed by a commu-
nity effort to ensure the reproducibility of models in systems 
biology.62 As previously stated, in silico models of biochemical 
cellular and biomedical processes rely heavily on knowledge, 
often in the form of heterogeneous and semantic data. For that 
reason, important efforts must be put to thoroughly reference 
and annotate the model and to make sure entities and variables 
can be identified unambiguously, for which one can rely on the 
use of standard ontologies (e.g. Gene Ontology, ChEBI). That 
endeavor to ensure model transparency and reproducibility 
can be achieved by following guidelines arising from model-
ling community efforts such as the BioModels initiated-effort 
MIRIAM (Minimal Information Required in the Annotation of 
Models) 63 or the standard SBML and CellML formats to en-
code models, in systems biology.64

A set of questions is listed below to qualitatively evaluate 
the credibility of an in silico model.

•	 Validation of the conceptual form: are the included 
knowledge, formulated assumptions validated by a bi-
ologist or a clinician in the field?

•	 Is the model granularity adapted to the question of interest 
and the context of use?

•	 Auditability/transparency: Is it possible to access the 
source justifying the model form and the parameter 
values?

•	 Uncertainty management: are the uncertainties associated 
with the model form and inputs and their impact on model 
predictions understood and controlled?

•	 Sensitivity analysis: Is the model sensitivity to input pa-
rameters and its impact on model predictions understood 
and controlled?

•	 Risk of tautology: is there a risk that a bias has been intro-
duced in the model form or inputs influencing the answer 
into the desired way?

•	 Simulation design: is the in silico experiment design rel-
evant to address the question(s) of interest?
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•	 Relevance to clinical outcome: are the in silico model re-
sults relevant for clinical purpose?

•	 Relevance to the COU: are the in silico results relevant to 
the context of use and specified clinical utility?

Comparator data

When performing the model validation, comparator data is 
required. This data can come from various sources, includ-
ing dedicated (in vitro/ex vivo/in vivo) validation experi-
ments, or historical nonclinical, clinical trials or real-world 
validation data. Additionally, this data can come from the 
same experiment used in model development, provided 
it is a different (unused) subset and is clearly defined in 
the approach upfront. Regardless of the source, data used 
to perform the validation needs to be trustworthy, mean-
ing of good quality, and relevant to the COU. Comparator 
data credibility factors are related to the test sample (e.g. 
animal disease model) and the test conditions (e.g. drug 
administration). For all factors, elements such as the quan-
tity, range of characteristics, measurements and measure-
ment uncertainty need to be reported. The measurements 
performed to characterize these test samples can be used 
as model inputs but can, in case of quantification of the 
uncertainty on the input, also enable quantification of the 
uncertainty in the model output. Furthermore, the meas-
urement data can be used during model evaluation to de-
termine equivalency between model input and comparator 
data. All aspects of the test samples and conditions need 
to be investigated separately, as they will have an im-
pact on the comparator data and hence on its usefulness 
to establish model credibility. Below, a non-exhaustive 
list is provided of comparator data elements requiring 
characterisation:

•	 Quantity: samples sizes, number of test conditions;
•	 Range of characteristics: range of test sample charac-

teristic of interest, range of test conditions;
•	 Measurement: rigor with which measurement data 

characterize each test sample, for both comparator 
input and output, as well as the test conditions;

•	 Uncertainty of measurements: uncertainty associated 
with tools and methods used to obtain measurements 
characterizing test samples and conditions.

When experimental data are reported in the literature 
as comparator data, most often insufficient information 
is available to assess the quality of said comparator data, 
including information on how exactly this data was estab-
lished: which model systems were used, which protocols 
were followed, etc. This meta-data is sometimes also re-
ferred to as the birth certificate of the data. As an example, 

consider the mechanical properties of arterial tissues which 
play an important role in models of arterial disease pro-
gression. Almost all publications describing the mechani-
cal properties of arterial tissues will mention information 
such as the species and anatomical location of the tested 
sample, the machine used and the loading protocol. Far less 
publications also include information on the time between 
donor death and sampling, time between sampling and test-
ing, and transport conditions of the sample even though 
these factors have been shown to have substantial influence 
on the obtained parameter values. Efforts are undertaken 
to ensure presence of the necessary metadata. The recently 
published standard ISO 21899:2020  specifies the general 
requirements for the validation and verification of process-
ing methods for biological material in biobanks. ASME is 
looking into expanding the IT’IS (Foundation for Research 
on Information Technologies in Society) tissue properties 
database,65 in eight material property groups (including 
mechanical, thermal and electromagnetic). Additionally, 
at the end of 2020, a new community challenge, C4BIO 
(c4bio.eu) was launched jointly by academia and industry 
to develop community-wide standardized testing protocols 
that include recording of the necessary metadata that will 
allow the data to pass regulatory scrutiny.

Assessment

With the previous steps completed, the accuracy of the 
model output can be assessed in terms of equivalency of 
input parameters as well as (rigor of the) output compari-
son.18 Equivalency of input parameters between the in silico 
model and comparator data is described for both type and 
range, with higher degrees of equivalency leading to higher 
credibility. Output comparison is related to a number of ele-
ments, starting with quantity – i.e. how many outputs were 
compared. Additionally, increased equivalency of types 
of output between in silico model and comparator leads to 
higher credibility. Comparison of the output can be done 
through visual inspection (low credibility) and direct assess-
ment of the difference between experimental and computa-
tional results. Depending on the COU also statistical testing 
of predictions against random prediction null hypotheses 
(e.g. classification: AUROC; ranking: spearman correlation) 
might be warranted. To further increase credibility, uncer-
tainties coming from experiments and computations need to 
be quantified and incorporated in the output. Finally, when 
making the comparison, the level of qualitative and quantita-
tive agreement between quantities of interest that is deemed 
satisfactory needs to be in accordance with the COU (e.g. 
high regulatory impact requires high model accuracy and 
inclusion of uncertainties on both comparator and model 
results).



816  |      MUSUAMBA et al.

Applicability and uncertainty

Once a model has been successfully run, then it is necessary 
to compare the completed activities and results with what was 
expected. If both are within the accepted parameters, then the 
model can be considered as credible; otherwise, it might be 
necessary to review the model or the question of interest.66 
By evaluating the applicability of the verification and valida-
tion activities to the COU, again mindful of the model risk, an 
assessment of whether there is sufficient model credibility to 
support the COU can be made.32 Applicability as defined in 
the ASME V&V40 refers to whether the measured quantities 
and the application domain of the Comparator and the model 
are identical, which is not always the case. Pathmanathan 
et al. provide a step-by-step guide for analysing applicabil-
ity during the validation of evidence for biomedical in silico 
models.67

Uncertainty is one of the critical aspects while assessing 
the credibility of a model. To study the model's uncertainty, it 
is necessary to check the uncertainty quantification (UQ) and 
sensitivity analysis (SA). UQ is the process of determining 
the uncertainty in model inputs, and then estimating the re-
sultant uncertainty in model outputs whereas SA is the study 
of which inputs most affect a model output. Overall, UQ 
and SA test the robustness of model predictions.67 A critical 
component of any uncertainty analysis is openness of the as-
sumptions being or not made, the tools used, and the way that 
results are interpreted. Educated decisions can only be made 
through an understanding of both the process of estimating 
uncertainty and its numerical results.68

REMAINING GAPS AND 
CHALLENGES FOR THE FUTURE

The aim of the white paper is to present a high-level frame-
work that could guide the whole model evaluation process 
in a holistic and comprehensive manner without neces-
sary focusing on very technical and specific aspects re-
lated to different specific applications or types of models. 
These topics will be covered in future communications. 
ASME V&V40 standard was indeed initially proposed for 
medical devices. However, this approach of establishing 
the credibility of a model and its associated simulations 
as a method to answer a scientific question of interest is 
general and also applicable to drug development. Some 
adaptation is needed to better fit to the context of drug 
development: of note the regulatory impact, which is one 
additional key point in the framework as proposed in the 
white paper, is not included in the ASME V&V40: The 
regulatory impact (which is conceptually different from 
the model influence) was added, to better fit to the drug 
development setting.

There is an increasing need for use of in silico models 
and simulations in drug development. There are for example 
settings where clinical data generation to demonstrate drug 
efficacy and/or safety is just not feasible due to ethical or 
practical constraints. Reliable models would offer an alter-
native source of evidence for drug efficacy and safety assess-
ment and per se would accelerate the availability of safe and 
effective drugs for patients.

There is a need for rigor and transparency in the meth-
ods used for model development and validation on the one 
hand and their wider acceptance as a valuable source of 
evidence by the scientific community including academia 
scientists, pharmaceutical industry, regulatory bodies and 
HTA/payers, on the other hand. Adequate model evaluation 
is considered a corner stone. An environment that permit 
establishing the credibility of mechanistic models and their 
adequate regulatory evaluation/assessment in a very ob-
jective and consistent manner is currently lacking with an 
unmet need for that. The proposed framework can be consid-
ered as an important step toward the creation of such an en-
vironment with well established, transparent and commonly 
agreed criteria for establishment of mechanistic model ac-
ceptability. The methods used for this purpose need to be 
well described and commonly agreed. Given the novelty, the 
multidisciplinary nature and the relatively recent arrival in 
the drug development setting of these mechanistic in silico 
models, we consider that we are still in the learning phase 
of identifying the most appropriate tools for model verifi-
cation, validation/qualification. Similar as for other quanti-
tative tools which have been used for longer and are more 
widely accepted (e.g. statistical approaches, popPK, PK/PD 
models), it is expected that the model evaluation tools will 
evolve in number and in performance with the increase of 
the use of these types of models.

Therefore, a need exists for documenting the available 
tools, the manners they are being used, the conditions 
for their adequate use and the challenges encountered. 
This white paper is one step in that direction, outlining 
a framework, similar to that of the ASME V&V40 for 
medical devices, emphasizing the need for transparency 
in the data sources and methods used, the clear link with 
the scientific question and the context of use, as well as 
the proposed acceptability of criteria. In addition, this 
white paper contains a glossary of key terms used in the 
context of in silico model development and evaluation. 
Given the sometimes-conflicting terminologies that exist 
in this domain, such a glossary should be included in all 
communication to facilitate the communication and avoid 
misunderstanding during scientific review of regulatory 
submissions or research papers.

The current hurdles for larger acceptability of in silico 
models as a reliable source of evidence for high (regulatory) 
impact applications in drug development include:
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1.	 lack of international standards and best practice docu-
ments commonly accepted by all relevant stakeholders,

2.	 poor communication between stakeholders to that regard, 
and

3.	 relatively slower development of regulatory science as 
compared to commercial solution developments.

There is currently an unmet need for regulatory guid-
ance/best practice documents clearly describing standards 
for mechanistic in silico model development, evaluation 
and reporting considering the specificities not only in their 
structure, the data sources for their construction and eval-
uation but also in the software and algorithms used for 
their implementation. Ideally, this should take the format 
of an ICH guideline to ensure involvement of all relevant 
stakeholders and wider acceptability by regulators, drug 
developers and the scientific community. Lack of general 
framework of reference inevitably results in fragmentation 
of initiatives, development of conflicting terminologies, 
and difficult communication. A general framework on the 
other hand would ensure coordination of initiatives, har-
monization of terminology and efficient communication 
among different stakeholders. Such a general framework 
for computer modelling and simulation is highly needed. 
Stakeholders such as the EMA, the VPH institute and the 
Avicenna Alliance already initiated the dialog and brain-
storming on best practices for computer modelling and 
simulation, as illustrated in this white paper.

Besides this, the VPH institute and Avicenna Alliance 
are also leading an initiative focusing on Good Simulation 
Practice (GSP), in analogy with the Good Laboratory 
Practice (GLP), Good Clinical Practice (GCP) and Good 
Manufacturing Practice (GMP) guidelines. GSP will in-
deed provide a quality framework for recognition of com-
pliance monitoring procedures. Compliance with GSP 

will ensure that validated models and digital data gener-
ated by in silico methods will be of high quality, valid and 
reliable.

EXAMPLES WORKED OUT 
ACCORDING TO THE CREDIBILITY 
MATRIX

In this section, we provide three use cases of models follow-
ing the above-described verification and validation strategy. 
These are models that have not yet received formal regu-
latory approval but the developers are in various stages of 
interaction with regulatory bodies. After a brief summary 
of the model, a credibility matrix is used to provide key 
information on the different steps of the flowchart show in 
Figure 1.

EXAMPLE 1: Universal system simulator.
The Universal Immune System Simulator (UISS) is an agent-

based model of the human immune system that accounts for both 
innate and acquired immune response. In the past, UISS has been 
successfully applied to a large number of immune system disease 
modelling scenarios.69-74 In preliminary studies,75-78 it has been 
shown that the resulting simulator (UISS-TB) could be used to 
simulate the relevant individual human physiology and physio-
pathology in patients affected by Mycobacterium tuberculosis 
(MTB) and to test in silico the efficacy of new vaccines against 
tuberculosis. (Figure 2) Moreover, UISS shows the capability of 
simulating the intrinsic immune system behaviour against MTB 
infection (eliciting or not eliciting the complete clearance of the 
infection or, eventually, allowing the chronic establishment of 
MTB reservoir inside the host due to both MTB characteristics 
and genetic features of the host). The key elements of the frame-
work for UISS agent-based model as proposed by the developer 
are summarized below.

F I G U R E  2   UISS-TB predicts the dynamic of the tuberculosis course with a specific vaccine administered, suggesting possible interactions to 
maximize the chance of success in a personalized fashion
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Credibility matrix

Drug Therapeutic vaccines for pulmonary tuberculosis, such as RUTI.

Type of model Physiology based agent-based model (ABM).

Scientific 
Question(s) of 
interest (QOI)

What is the dose-response curve of a specific vaccine for active tuberculosis in a reference population of adults 
affected by Mycobacterium tuberculosis?

What is the most optimal dose to maximize the efficacy of tuberculosis vaccine?

Context of use UISS is a physiology- and agent-based model of the human immune system. UISS-TB includes a disease model 
component for the infection of pulmonary tuberculosis, the treatment (the therapeutic vaccine to be tested) effect 
component, and is run over a virtual population, representative of the target population.

The aim of the model is the dose selection for confirmatory trials, with a significant reduction of the human 
experimentation in the phase II dose-response trial. Data input would include:

−	clinical data from the phase 1 safety assessment trial
−	 clinical data from a limited scale exploratory trial: only a single arm (e.g. drug-response strains) and only two arms 

(a placebo group and a treatment group with a dose close to the maximum tolerated dose (MTD).

Acceptability 
criteria

(Precision level)

•	 Data/input for model building
The UISS-TB model is informed by a set of NI = 22 inputs, named vector of features (VoFs), formed by quantities 

that can be measured/observed in an individual MTB patient. All 22 inputs have to be considered with their 
admissible minimum, maximum, and average values.

•	 Model structure and key parameters:
Model structure and parameter sources and values should be disclosed and justified for the disease and the drug model, 

as well as for the virtual population simulator.
•	 Model verification acceptancy criteria

a.	Computation (Calculation, platform) and code verification
GitLab versioning control system will be used. The following will be monitored and results provided:
For the Deterministic model
−	Absence of Round-off errors
−	Absence of Conservation errors.
−	Absence of Discretisation errors.
−	Uniqueness: repeated deterministic runs produce identical results.
−	Smoothness: analyse lag correlation.
−	Non-chaoticity: Lyapunov’s exponent.
−	Time step convergence analysis
For the stochastic model verification.
−	Convergence and consistency analysis.

o.	Software Quality Assurance
GitLab QA to run regression testing, including all VV&UQ tests.
Long-term: Compliance with IEC 62304 “Medical Device Software - Software Life Cycle Processes”.
•	 Model validation activities and related acceptancy criteria
•	 The UISS model needs to be able to model to simulate and to adequately predict the key features of patients 

experimentally recruited in the Phase 2 study.
•	 The UISS model needs to be able to predict the distribution of immunogenicity biomarkers at the other three 

follow-up time points and compare these to those observed experimentally.

Regulatory impact Medium: modelling results are additional evidence to be complemented by data from clinical trials.

Risk based analysis 
of decision 
consequence

In the case of UISS-TB-IG, an underestimation of the optimal dose might affect the efficacy of the treatment, and an 
overestimation might induce adverse effects. If we assume that the final decision is the marketing authorisation of 
the new therapeutic vaccine, the influence of the model is low for both the final efficacy component and the safety 
component that will rather be informed by the results of the confirmatory Phase 3 trial. For a lower-than-optimal 
prediction, we could have an increased risk of recurrence. For the higher-than-optimal prediction, we could have 
an increase of reported adverse effects. However, typical overdosing adverse effects for TB vaccines ore mild in 
nature (occasional muscle spasms, pain at the site of injection, etc.). Thus, also the consequence of a model error 
can be considered mild.

Credibility activities 
results

The credibility factors (as described in Section 9) were evaluated with overall satisfactory results Details and results of 
model verification activities have been previously published.72,81

Model informed 
decision

The dose-response relationship was characterized for efficacy of vaccine against tuberculosis that allowed optimal 
dose selection for the confirmatory trial.
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Of note, the credibility matrix above was initially proposed 
by the authors and refined after discussion with regulators. 
As described, two related questions are to be addressed by the 
agent-based model: characterization of the dose-response rela-
tionship for efficacy and dose selection. The COU is presented 
with a link to the question, the data source and an analysis of 
clinical consequences if the model is wrong (as part of a risk-
based analysis). Regulatory impact is considered medium, 
model acceptability criteria are provided a reference as well for 
the results credibility activities implemented to meet the pre-
specified criteria.

EXAMPLE 2: Virtual Assay for Drug Cardiac Testing.
Virtual Assay is a software for running human in sil-

ico drug trials to augment drug cardiac testing.79 The 
core engine provides a user-friendly graphical user in-
terface (GUI) to efficient algorithms for the sampling 

and solution of populations of virtual human cardiac cell 
models (Figure 3). Each model in the population is char-
acterized by a different set of ion channel parameters, 
with biology described in the form of systems of ordi-
nary differential equations, producing non-identical ac-
tion potential outputs to account for variability. The Drug 
Module directly converts the drug action parameters for 
their use by the Core Engine in each of the models of the 
population. The Analysis Module finally generates visual 
reports of the conducted drug-dose response studies, per 
individual model and provides statistics of biomarkers of 
drug action across the entire population, including the 
automatic detection of adverse drug effects. The key el-
ements of the framework Virtual Assay model for drug 
cardiac safety testing as proposed by the developer are 
summarized below.

Credibility matrix

Drug All new drugs candidates given the regulatory requirement of assessment of in vivo drug-induced pro-
arrhythmic cardiotoxicity, and especially those that may be ruled out due to potential false positive signal 
based on hERG assays and multichannel effects.

Type of model The Virtual Assay Software: human-based cardiac electrophysiology modelling and simulation framework.

F I G U R E  3   schematic overview of the Virtual Assay software platform at its main components: the Core Engine (middle), Drug Module (left) 
and Analysis Module (right). X: ion channel availability; h: hill coefficient; D: doses; IC50: half-maximal inhibitory concentration; M.P.: Membrane 
Potential; CTRL: Control (no drug)
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Credibility matrix

Scientific Question(s) of 
interest (QOI)

Would the drug result in risk of developing Torsades de Pointes in the human population, even in the context 
of positive hERG assays and multichannel effects?

Context of use INPUT: in vitro data on drug-induced action on ion channels (through 2 key parameters: the concentration that 
causes 50% of ion channel blockage (IC50) and the steepness of the drug response curve (Hill coefficient (h))

OUTPUT: Simulations with the Virtual Assay software categorize drugs as being safe or inducing pro-
arrhythmic cardiotoxicity in human.

Decision on the potential cardiotoxicity will be informed by the simulations, combined with experimental data 
from animal models and potentially stem-cell derived cardiomyocytes. Mechanistic models can be helpful 
to rule out a positive non-clinical signal.

Acceptability criteria
(Precision level)

•	 Data/input for model building:
In vitro data on drug action on 3 cardiac ion channels (Nav1.5, Cav1.2 and hERG). Evidence of the acceptable 

quality and documentation on the sources of data will be provided.
•	 Model structure and key parameters:
The structure of the Virtual Assay software is summarised in Figure 3. The Core Engine (middle panel) 

generates a virtual population of human cells. A Drug Module (left panel) allows simulating the drug 
action on the ion channels using the input data. The Analysis Module (right panel) extracts metrics from 
the simulation for drug classification. Justification of model structure and parameter sources is provided 
in.82

•	 Model verification activities and related acceptancy criteria
•	 Computation (platform) and code verification
Virtual Assay has been developed in C++. Drug simulations in a modern laptop require approximately 5-10 

minutes for each drug concentration for a population of 100 cell models, and simulations are run in parallel 
on multiple cores. Verification of numerical scheme and code comparison has been conducted as explained 
in.82

▪	 Software Quality Assurance
The Virtual Assay software includes documentation and benchmark verification test cases. Details on software 

verification are provided in.82

▪	 Model assumptions and related sensitivity analysis
Sensitivity analysis is incorporated in the population of models, as this consists of using the same baseline 

model but with key parameters varied randomly, thus generating thousands of virtual cells.
▪	 Numerical and graphical tools
The Virtual Assay software incorporates a friendly interface, simulation software and visualisation of outputs.
▪	 Uncertainty management
The population of models approach incorporated in Virtual Assay tackles uncertainty in electrophysiology 

model parameters. In the case of uncertainty in input values, simulations with the most extreme cases are 
run and compared.

•	 Model validation activities and related acceptancy criteriaThe accuracy of drug classification using 
Virtual Assay was requested to be superior to the classification based on hERG alone and at least 80%.

The sensitivity in the prediction of cardiac toxicity of individual drugs needs to be >60% or 70%.

Regulatory impact High regulatory impact: modelling and simulation results constitute the key source of evidence to answer the 
question of interest, i.e. replacing data traditionally generated in a clinical trial

Risk based analysis of 
decision consequence

High clinical influence given the new Q&A Guidelines: impact on the decision to accept phase 1 to 3 trial 
designs, and also based on this model, waiver of intensive monitoring of electrocardiogram (ECG) in 
confirmatory trials. This is also crucial for the evaluation of cardiotoxicity in cancer drugs. Wrong model 
prediction/simulation could expose patients to risk of lethal arrhythmias, in following clinical trials due to 
cardiotoxic drugs.

Credibility activities results The credibility factors (as described in Section 9) were evaluated with overall satisfactory results. Details and 
results of model verification activities have been previously published.80-82

Model informed decision The drug’s pro-arrhythmic cardiotoxicity was characterized for 62 compounds, based on their Torsade 
de pointe (TdP) score. Each drug could be categorized as safe or risky based on their TdP score. 
Subpopulations of patients at higher risk were identified for some of the drugs.

The credibility matrix above was also proposed by the 
authors and discussed with regulators. One question is ad-
dressed by the model and associated simulations for each 

tested drug: characterization of risk of developing Torsade 
de Pointes. The COU is presented is presented in relation 
to its role in the overall decision making and analysis of 
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clinical consequences if the model is wrong (as part of a 
risk-based analysis). Regulatory impact is considered high, 
model acceptability criteria are provided as well as a ref-
erence for the results credibility activities implemented to 
meet the pre-specified criteria.

EXAMPLE 3: Myocardial physiology.
A QSP type disease model and a Virtual Population 

are used to evaluate the ranges of clinical benefit through 
C1 modulation, and refine the target population based on 

response variability analysis in a Virtual Population of 
ST Elevation Myocardial Infarction (STEMI) treated with 
percutaneous coronary intervention (PCI) (Figure 4). It is 
hypothesized that blocking ROS production at the level of 
the complex 1 (C1), the beginning of the respiratory chain, 
will reduce damage of the overwhelming ROS production 
during the reperfusion and bring a relevant clinical benefit. 
Key features of the model as per the framework are pre-
sented below.

F I G U R E  4   Disease Computational Model structure. Light blue rectangles represent the submodels with the associated number of parameters, 
variables and reactions. Dark blue rectangles represent the major connector variables shared between submodels. Myocardium submodels are 
duplicated throughout 10 zones to introduce a spatial discretization of the myocardium

Credibility matrix

Investigational product Modulator of respiratory complex 1: inhibitor of ROS production

Type of model QSP-type disease model: based on ordinary differential equations (ODE). The model had 625 parameters and 173 
ODE.

Scientific Question(s) of 
interest (QOI)

What is the target population to demonstrate the effect of C1 modulation as it would have been evaluated in a 
classical phase 2 clinical trial?

Context of use A mechanistic disease model describing myocardial infarction pathophysiology and effects of C1 modulation is used 
with a Virtual Population to identify markers that characterize responders to C1 modulation in a Phase II setting in 
silico.

Data extracted from the scientific literature and preclinical in vitro experiments and in vivo experiments were used to 
build and calibrate the model.

Individual patient data from a subset of a clinical trial dataset were used for a quantitative calibration of the clinical 
outcomes calculated by the model combined with a Virtual Population.

The model and related simulator are proposed to support an upcoming Phase III trial design aimed at confirming the 
drug clinical benefit.

Acceptability criteria Code verification should include the convergence analysis of all dynamics concerning space discretization of the 
left ventricle. As all patients will use the same space discretization, the model needs to present qualitatively the 
same results by predictive visual check for two discretization schemes so that it is safe to assume that inter-patient 
variability is unchanged.

Calculation verification was carried out by using the simulation outputs obtained with the lowest possible solver 
tolerances as reference solution. The error between simulated outputs and reference solutions needs to be lower 
than a given threshold (1%).
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Credibility matrix

Further quantitative acceptability criteria on the software side are model item transparency, documentation 
completeness and unit checking.

Model acceptability is mainly assessed on the 4 outcomes with a quantitative validation based on independent 
individual data extracted from a previous clinical trial dataset (placebo arm, 26 patients). In our COU, the most 
important capability of the model is a correct prediction of a class/individual outcome based on its descriptors 
(and needs to be validated as such). For trial design purposes we should thus compare virtual patient classes with 
real patient classes and individual patient (ranks) with individual patient (ranks), respectively. According to these 
two requirements two precision levels have been checked for classifying ranking and patients by the model

•	 A response classifier model should have the capacity to identify patients with a severe outcome according to 
Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) above 0.7 for a number of classification 
scenarios (similar as for any predictive biomarker).

•	 A response ranking model should have a significant capacity to rank individual patient's outcome severity. This 
capability should be tested by a suitable statistical procedure, i.e. by Spearman rank correlation significantly 
different from random permutation.

Qualitative acceptability criteria need to be checked for validating explorative capabilities of the disease model not 
covered by the quantitative input (patient descriptors) output (creatine phosphokinase (CPK), troponin I (TnI), Infarct 
Size (IS) and left ventricular ejection fraction (LVEF)) validation. A set of credibility factors are defined including

•	 Model form is deemed acceptable if the conceptual form is validated by a biologist, a clinician or logical modelling; 
if model granularity allows the answer to the QOI; if a transparency checking is allowed in the model structure.

•	 Model inputs are deemed acceptable if used assumptions are listed and their impact on model prediction explored 
and if a sensitivity analysis has been performed

•	 Model is deemed relevant to the context of used if the simulation protocol is delivered prior the experiment; M&S 
output(s) is/are biomarker(s), a surrogate or a clinical outcome; validity domain is relevant to the COU

Regulatory impact Medium: modelling results are additional evidence to be complemented by data from clinical trial.

Risk based analysis of 
decision consequence

The treatment being indicated as a complement of the first line (percutaneous coronary intervention), suboptimal 
patient selection will not result in harm to patients. However, it may lead to a suboptimal design for the phase 3 
and a suboptimal indication for market authorisation, leading to off-label use of the drug.

Credibility activities 
results

All credibility factors were evaluated:
Model form evaluation
•	 KM validation: Acceptable (Validation by review)
•	 Relevance of Computational Model granularity: Good (Model granularity is adapted to the QOI(s))
•	 Transparency checking: Good (Comprehensive checking)
•	 Model reuse: Good (The model or a part of the submodels has been reused from a different COU)
Model inputs evaluation
•	 Uncertainty management: Poor (No uncertainty management performed yet)
•	 Sensitivity analysis: Poor (No sensitivity analysis performed yet)
Relevance to the Context of Use
•	 Simulation design: Acceptable (Simulation protocol delivered prior the experiment)
•	 Relevance to clinical outcome score: Good (M&S output(s) is/are clinical outcome)
•	 Relevance to the COU: Good (Relevance of M&S output(s) of interest and validity domain to COU)
The model of ischemia reperfusion was quantitatively validated on 4 outcomes. Evaluation metrics for the primary 

outcome (Infarct size) were the following:
•	 Spearman rank correlation: 0.51
•	 ROC curve AUC average: 0.77The Computational Model of myocardial ischemia reperfusion is thus validated for 

the anticipated use but should be completed with uncertainty analyses.

Model informed decision Two criteria were identified to characterize optimal responders: Final TIMI flow grade above 3 and Mid or Proximal 
lesion location. The selection of this sub-population doubles the clinical benefit (from 5% to 10% of average 
infarct size reduction).

These results support a subgroup analysis with the results of a potential phase 3 clinical trial evaluating 
C1 modulation.

Based on the provided information in the credibility ma-
trix by the Sponsor above, the question of interest for the 
Myocardial physiology model consists in the characterization 

of the target population to demonstrate the effect of C1 modula-
tion. The COU in link to the scientific question is related to the 
optimization of the confirmatory trial design. The mechanistic 
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model and related simulator were developed using data from 
the scientific literature, preclinical in vitro experiments and in 
vivo experiments. Individual patient data from a subset of a 
clinical trial dataset were used for a quantitative calibration of 
the clinical outcomes calculated by the model combined with a 
Virtual Population. Regulatory impact is considered medium, 
Model acceptability criteria are provided as well as the credi-
bility activities implemented to meet the pre-specified criteria. 
Risk-based analysis and final model informed decision are also 
provided.
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