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Abstract

When amino acids vary during evolution, the outcome can be functionally

neutral or biologically-important. We previously found that substituting a sub-

set of nonconserved positions, “rheostat” positions, can have surprising effects

on protein function. Since changes at rheostat positions can facilitate func-

tional evolution or cause disease, more examples are needed to understand

their unique biophysical characteristics. Here, we explored whether “phyloge-
netic” patterns of change in multiple sequence alignments (such as positions

with subfamily specific conservation) predict the locations of functional rheo-

stat positions. To that end, we experimentally tested eight phylogenetic posi-

tions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per

position and biochemical assays that yielded five functional parameters. Five

positions were strongly rheostatic and three were non-neutral. To test the cor-

ollary that positions with low phylogenetic scores were not rheostat positions,

we combined these phylogenetic positions with previously-identified hLPYK

rheostat, “toggle” (most substitution abolished function), and “neutral” (all

substitutions were like wild-type) positions. Despite representing 428 variants,

this set of 33 positions was poorly statistically powered. Thus, we turned to the

in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which

comprised 12–13 substitutions at 329 positions and could be used to identify

rheostat, toggle, and neutral positions. Combined hLPYK and LacI results

show that positions with strong phylogenetic patterns of change are more

likely to exhibit rheostat substitution outcomes than neutral or toggle out-

comes. Furthermore, phylogenetic patterns were more successful at identifying

rheostat positions than were co-evolutionary or eigenvector centrality mea-

sures of evolutionary change.
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1 | INTRODUCTION

Advances in personalized medicine and bioengineering
require more accurate predictions of the functional out-
comes of amino acid substitutions. Although decades of
work have been directed to this effort, the majority
of prior substitution studies were biased toward positions
that are conserved during evolution.1 This in turn inad-
vertently biased the development of many computer algo-
rithms, which rely upon the general principles derived
from substitutions at conserved positions.2 However, we
previously showed that these general substitution princi-
ples do not apply to a subset of evolutionarily non-
conserved positions3–5 and that, likely as a direct
consequence, their substitution predictions fail.2

We have thus turned our attention to better describ-
ing this special subset of nonconserved positions. One of
their defining features is that, when individually
substituted with a range of amino acids, various func-
tional parameters (e.g., binding affinity, allosteric regula-
tion) are modulated. Indeed, the functional range for
each position can span several orders of magnitude.3–7 As
such, substitutions at these “rheostat” positions provide
ready opportunities for fine-tuning function during evo-
lution and protein engineering. The rheostat substitution
behavior is strikingly different from (i) positions for
which most substitutions abolish function (a “toggle”
substitution outcome; e.g., 2) and (ii) positions that can
accommodate a range of substitutions without any
change in protein function (a “neutral” substitution out-
come; e.g., 8). Both toggle and neutral positions are often
associated with their own evolutionary signatures: con-
served positions are expected to exhibit toggle substitu-
tion behavior, whereas highly nonconserved positions
may be expected to exhibit neutral substitution behavior.

The fact that both rheostat and neutral positions have
been associated with nonconservation is a conundrum. A
resolution could be realized by considering that “non-
conservation” can be divided into several categories,
based on the absence or presence of change patterns in
multiple sequence alignments. Random amino acid
changes (no pattern) are expected for positions that lack
structural or functional evolutionary constraints. In con-
trast, changes at other positions are the means by which
homologs accrue biologically significant change. For
example, both paralogs and isozymes use sequence
change to evolve functional differences important to
organismal success.

Several analyses have been developed to detect pat-
terns of change that might be associated with functional
importance. These patterns can be grouped into three
major classes: (i) positions with pairwise co-evolution,
(ii) positions constrained by “interactions” with multiple

positions (“eigenvector centrality”; note that “interac-
tions” are not necessarily direct structural contacts, as
discussed in9,10), and (iii) positions for which amino acid
changes are related to branching in the protein family's
phylogenetic tree. Another way to think of this third class
of “phylogenetic” positions is that they are nonconserved
in the whole family but conserved within subfamilies.

Indeed, comparisons of phylogenetic positions in the
linker region of 15 engineered LacI/GalR homologs led
to the first discovery of rheostat positions.5 The associa-
tion between rheostat and phylogenetic positions was
subsequently one of the parameters tested in the machine
learning “fuNTRp” predictor, which included the phylo-
genetic algorithm ConSurf11 in endeavors to discriminate
rheostat, neutral, and toggle phenotypes for individual
positions.12 Although ConSurf scores contributed �34%
to the fuNTRp signal, this tool was not trained on bio-
chemical functional data. Instead, fuNTRp was trained
on complex phenotypic data derived from deep muta-
tional scanning experiments, which used allele frequency
to infer changes in cellular phenotype that, in turn, arose
from altered protein function(s) and/or stability. Thus,
the goals of the current study were (i) to directly evaluate
the correlation between phylogenetic signatures and
rheostat positions that modulate functional parameters
measured in biochemical assays and (ii) to determine
whether other patterns of evolutionary change (not
included in fuNTRp) could help to discriminate rheostat,
toggle, and neutral positions.

As a model system, we first assessed whether phyloge-
netic positions in human liver pyruvate kinase (hLPYK;
Figure 1) exhibited rheostatic substitution outcomes in
any of five biochemical parameters associated with its
catalytic function and allosteric regulation. Next, we ret-
rospectively compared substitutions for a larger set of
hLPYK rheostat, neutral, and toggle positions to a wide
range of pattern scores deduced from sequence align-
ments. However, even though this data set comprised
428 hLPYK variants, they described overall substitution
outcomes for only 33 positions, which was insufficient
power for statistical analyses.

Thus, we tested bioinformatic correlations in a second
protein, utilizing the whole protein dataset available for
the Escherichia coli lactose repressor protein (LacI). The
latter comprised in vivo repression and induction pheno-
types for 12–13 substitutions at 329 LacI positions (sum-
marized in13,14; hereafter referred to as the “Miller data”)
and thus provided the statistical power needed to assess
correlations of rheostat positions with various types of
nonconserved scores. Results from both hLPYK and LacI
show that phylogenetic positions are more likely to show
rheostat substitution outcomes than neutral or toggle
outcomes. Furthermore, algorithms that detected
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phylogenetic patterns were more successful at identifying
rheostat positions than were co-evolutionary or eigenvec-
tor centrality measures.

2 | RESULTS

2.1 | Biochemical testing of substitution
outcomes for phylogenetic positions in
hLPYK positions

hLPYK is a homotetramer responsible for converting
phosphoenolpyruvate (PEP) and adenosine diphosphate
(ADP) into pyruvate and adenosine triphosphate (ATP)
as the last step in glycolysis. hLPYK is allosterically acti-
vated by fructose-1,6-bisphosphate (abbreviated as Fru-

1,6-BP in the text and as FBP in parameter names) and
allosterically inhibited by alanine (Ala).15 These two
effectors bind to distinct sites on hLPYK, and thus five
functional parameters—reflecting binding and allosteric
response—were determined for each substituted protein:
Ka-PEP, Kix-Ala, Kix-FBP, Qax-Ala, Qax-FBP. Ka-PEP is an
apparent affinity value for PEP in the absence of effector.
Kix-Ala and Kix-FBP are binding constants for the respective
allosteric effectors, in the absence of PEP. Qax-Ala and
Qax-FBP are the allosteric coupling constants between PEP
binding and the respective allosteric effector binding and
are equal to the ratio of PEP affinity in the absence of
effector over the PEP affinity in the presence of saturat-
ing effector. These relationships of these parameters to
the functional data are shown in Figure S1, and values
determined for positions in the current study are in
Table S1.

To select hLPYK positions for this study, we first used
a variety of algorithms to analyze a previously curated
sequence alignment comprising 241 PYK sequences that
ranged from <20% to 99% sequence identity, in organ-
isms from bacteria to mammals.16 The resulting bioinfor-
matic scores for experimentally assessed hLPYK positions
are presented in Table S2. Current experiments focused
on positions with high phylogenetic scores and were cho-
sen by their TEAO-specificity scores.17 These scores were
convenient for guiding experiments because TEAO ranks
subfamily-conserved (i.e., putative rheostat) positions at
the top of its specificity list, whereas the other two phylo-
genetic algorithms rank these positions in the middle of
the list. Further, since an individual position could have
high scores in both phylogenetic and co-evolutionary ana-
lyses (Figure S2), we performed a two-tier selection of
hLPYK positions, first identifying those within the top
15% of TEA-O specificity scores and then de-selecting
any within the top 20% of co-evolving scores. This
allowed us to focus on positions that only showed a
strong phylogenetic pattern.

hLPYK positions 107, 156, 177, 192, 259, 320,
423, and 538 met these criteria and were subjected to
mutation and biochemical characterization (Figure 1).
Each position was randomly substituted with �10 to
15 amino acids. The resulting functional changes for each
variant were quantified via five functional parameters
(Figure 2, Table S1), each of which were then individu-
ally analyzed with the RheoScale calculator4 to quantita-
tively assign substitution outcomes for each position
(Figure 3, Figure S3, Table S2). (Note that an individual
position can exhibit a rheostat, toggle, or neutral substitu-
tion outcome for each of the five functional parameters;
at neutral positions, most substitutions have function
similar to wild-type; at toggle positions, most substitu-
tions abolish function.) Previous studies determined

FIGURE 1 Locations of the phylogeny positions on the hLPYK

structure (PDB: 4IMA87). The top structure shows the

homotetramer, for which three subunits have gray ribbons and one

has a black ribbon. The lower structures show two views of the

structure of a single monomer, with stars approximating the

locations of the active (yellow), allosteric inhibitor (green), and

allosteric activator (cyan) sites. Magenta spheres identify positions

with strong phylogeny scores tested in this study: 107, 177,

192, 259, 107, 423, and 538
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thresholds for the rheostat, toggle, and neutral scores that
were used to assign an overall substitution behavior to
each position2,4,8; those thresholds are indicated in
Figure 3 by dashed horizontal lines.

Of the eight phylogenetic positions evaluated, posi-
tions 107, 192, 320, 423, and 538 had strong rheostatic

behavior in at least one parameter. Furthermore, four of
these positions exhibited rheostatic outcomes for multiple
functional parameters; similar “multiplex” behavior has
been previously noted for positions near the hLPYK allo-
steric sites.4,6 In contrast, the four multiplex positions in
this study were located far from the allosteric or catalytic

FIGURE 2 Functionality of hLPYK variants in response to allosteric effectors. At each indicated position, data are shown for all

variants with measurable activity. For each pair of plots, activation in the presence of Fru-1,6-BP is shown on the left and inhibition in the

presence of alanine is shown on the right. For all variants of one position, assays were conducted at the same time along with a wild-type

sample. The full set of wild-type assays is shown in the top two panels to demonstrate reproducibility. Each value of Kapp-PEP (y-axis) was

determined from samples with varied PEP concentrations; Kapp-PEP corresponds to the concentration of PEP that yielded half-maximal

velocity. Varied concentrations of the allosteric activator and inhibitor, Fru-1,6-BP and Ala respectively (x-axis) were used to determine

values for Ka-PEP (y intercept). Error bars on each data point (some are smaller than actual data point) represent fit errors in Kapp-PEP. See

Figure S1 for more explanation of these plots and data fitting
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sites (Figure 1); three are located in PYK subunit and
domain interfaces, which are known to play significant
roles in PYK allosteric communication.18–26 Other nota-
ble features for each position are included in Supplemen-
tary Material.

The other three phylogenetic positions—156, 177, and
259—did not exhibit strong rheostatic substitution behav-
ior in any single parameter, but they also failed to meet
the criteria previously defined for neutral positions.8 To
better evaluate the non-neutrality of these positions, we
combined all available measurements for each position
(all variants, each with up to 5 functional parameters) to
generate a “composite neutral” score (Figure 4). Overall,
the phylogenetic positions of this study had fewer neutral

outcomes (lower composite neutral scores) than those in
a prior study that searched for neutral positions.8 Nota-
bly, for phylogenetic position 259, >60% of the variants'
parameters were not neutral, which indicates significant
functional perturbation even though this position did not
meet the threshold established for a strong rheostat
position.

2.2 | Retrospective comparison with
PYK bioinformatic signatures

The results above support the hypothesis that rheostat
positions can be identified by high phylogenetic scores.

FIGURE 3 RheoScale

scores for hLPYK positions

indicate their rheostatic (a),

toggle (b), and neutral

(c) substitution outcomes. The

hLPYK positions from the

current (“Phylogeny Study”) and
prior studies4,6,8 are listed on the

x-axis. Positions in the prior

“Neutral Study” were chosen by

their having an absence of a

detectable evolutionary pattern

in the pYK sequence alignment.

Positions in the prior “Allostery
Study” were located in or near

the two hLPYK allosteric

binding sites. The RheoScale

calculator was used to

determine the overall effect a

variant on the protein with

respect to affinity to PEP

(Ka-PEP), allosteric inhibition

(Kix-Ala), coupling of PEP and

Ala (Qax-Ala), allosteric

activation (Kix-FBP), and coupling

of the allosteric activator to PEP

(Qax-FBP). Vertical dashed lines

are to aid visual inspection of

5 symbols plotted for each

position. Horizontal dashed

lines represent the empirical

significance thresholds

determined for the three types of

substitution outcomes2,4,6,8
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However, they do not test the corollary that positions
with low phylogenetic scores are not rheostat positions.
Thus, we next performed a retrospective study of all the
PYK positions for which we have multi-variant substitu-
tion sets (e.g., Figure 3). These 33 positions included
(i) positions in and near the allosteric binding sites,
which contained both rheostat and toggle positions
(“Allostery Study”4,6) and (ii) positions identified by their
lack of identifiable change patterns, which comprised
mostly neutral and near-neutral positions (“Neutral
Study”8). For the retrospective analysis, these sets of posi-
tions were regrouped based on their substitution out-
comes (neutral, rheostat, or toggle). Six positions did not
fall in any of these categories: Their substitutions differed
too much from wild-type to be classified as neutral posi-
tions, but their substitutions did not sample enough of
the accessible functional ranges to be classified as rheo-
stat positions. Thus, we treated them as a fourth type of
substitution outcome (“Moderate”) (Figure 5).

These four substitution types were plotted to show
their distributions of various scores derived from the PYK
multiple sequence alignment (Figure 6). Kruskal–Wallis

ANOVA was used to test the null hypothesis that all four
groups derived from the same distribution of scores. This
hypothesis was refuted for all score sets except sequence
entropy, which showed little ability to discriminate the
four types of substitution outcomes (p values are listed in
Figure 6 legend). Although the four distributions appear
to be distinct, their overlap hinders reliable predictions
about individual positions. Instead (and as used in the
current study), these methods would at best be suited for
identifying a group of positions with greater chance of
containing rheostat positions. However, as detailed in the
next paragraph, several caveats prevented our reaching
this conclusion from this dataset alone.

First, although it reflects biochemical analyses of
428 protein variants, the comparison was poorly powered
with only 33 positions. This was especially true for the
toggle group, which comprised only five positions. Sec-
ond, the means of selecting these 33 positions biased the
distributions shown in Figure 6: For example, although
TEA-O specificity appeared to be among the best at dis-
criminating rheostat positions, the dataset was skewed
because 8/33 positions were chosen to have high TEA-O

FIGURE 4 Composite neutral scores for hLPYK positions. The combined scores were calculated using all available values for the five

functional parameters, as described in Section 4. A score of one means that, at the indicated position, all functional parameters for all

variants were equivalent to wild-type. A score of zero means that no functional parameter for any variant at that position was like wild-type.

The three hLPYK studies are denoted at the top of the plot, along with the average composite neutral score for that study. The “phylogeny”
positions in this work were chosen by their high TEA-O specificity scores. The “neutral” positions were chosen by their lack of change

pattern in the sequence alignment.8 The “allostery” positions were chosen by their proximities to allosteric binding sites.4,6,8 The composite

neutral calculation shows that the functional parameters of the phylogeny positions were more susceptible to change than then those in the

neutral study
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specificity scores. Likewise, the performance of the “least
patterned” score (previously used to identify functionally
neutral positions8) was biased because 9/33 positions
were chosen by this score. Third, if a large percent of all
PYK positions are rheostat positions, correlations
between scores and rheostat outcomes could arise from
random chance. Fortunately, a large dataset is available
for LacI that allowed a more comprehensive assessment
of the relationship between rheostat positions and bioin-
formatic signatures.

2.3 | Retrospective comparison of LacI
rheostat, toggle, and neutral positions with
bioinformatic scores

LacI is a member of the LacI/GalR transcription repres-
sor family, which comprises orthologs and paralogs that
regulate many aspects of bacterial metabolism. To

regulate transcription, LacI binds to DNA operator
sequences and small molecule allosteric sugars (reviewed
in27). In vivo, LacI-DNA binding inhibits RNA polymer-
ase transcription of downstream genes (“repression”).
When sugars bind at the LacI allosteric site, the affinity
of LacI for DNA operator is modified. The well-known
effect of the allosteric inducers allolactose and isopropyl
β-D-1-thiogalactopyranoside (IPTG) is to weaken affinity
for the DNA operator and thereby alleviate repression;
this process is called “induction”.28,29

In vivo repression and induction phenotypes were
measured by the Miller lab for 12–13 substitutions at
nearly every position in LacI.13,14 As further discussed in
the Supplemental Text, numerous studies with purified
LacI variants (summarized in30) are available that relate
these phenotypes to specific biochemical parameters
(Figure S4). In the current study, the repression and
induction phenotype data were separately analyzed with
the RheoScale calculator to determine the overall

FIGURE 5 Locations of the rheostat, toggle, neutral, and moderate positions on the hLPYK structure (PDB: 4IMA87). The top left

structure shows the homotetramer as a ribbon. The top right shows the structure in spacefilling to highlight the solvent exposed positions.

The lower structures show two views of a single monomer. Positions with rheostat outcomes (magenta) comprised 55, 56, 75, 82, 107, 118,

192, 320, 423, 446, 449, 476, 481, 514, 531, and 538. Toggle substitution outcomes (black) were observed for positions 444, 501, 482, 483, and

494. Neutral substitution outcomes (cyan) were observed for positions 138,199, 206, 208, 214, and 246. Moderate substitution outcomes (lime

green) were observed at positions 156, 177, 210, 412, 259, and 445. For structural reference the catalytic sites are shown in yellow (positions

85, 87, 89, 125, 126, 284, 308, and 340)
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substitution behavior for each position in LacI (Table S3).
Example calculations are shown in Figure S5; individual
position assignments are in the Supplemental List; the
numbers of positions exhibiting rheostat, neutral, or tog-
gle outcomes for the separate repression and induction
phenotypes are in Table 1; and the fractions of LacI posi-
tions showing the “aggregate” neutral, rheostat, or toggle
substitution behaviors are in Table 2.

Forty percent (40%) of the LacI positions
rheostatically altered either repression and/or induction
(Table 2), which exceeds the fractions of either toggle
(11%) or neutral (23%) positions. A dominant substitution

outcome could not be assigned to the remaining positions
(“unclassified). Some unclassified positions likely
exhibited substitution outcomes similar to the 6 “moder-
ate” PYK positions. Other unclassified positions may be
rheostat positions: For example, neither the low-
resolution repression nor induction assays measured
enhanced function, which has been observed in high-
resolution data sets for LacI (e.g., 5,31); as a consequence,
some of the “wild-type” substitutions may in fact have a
significant functional effect.

We next compared the LacI substitution outcomes to
a variety of bioinformatic scores, using a curated

FIGURE 6 Various

bioinformatic scores for four

classes of hLPYK positions. The

distributions of (a) sequence

entropy, (b,e,f) phylogenetic,

(c) co-evolutionary, (d) least

patterned, and (g) composite

eigenvector centrality scores for

hLPYK neutral (“N”), moderate

(“M”), rheostat (“R”), and toggle

(“T”) positions are shown. Black
lines within each distribution

represent the mean and standard

deviation. For the TEA-O

specificity plot (f), the fact that

many of these hLPYK positions

were chosen via this parameter

may bias the distribution. In (e),

note that ConSurf calculations

derive analog (continuous)

scores for each position (shown

here) and then discretize these

scores into nine categories; we

preferred the continuous score

because it avoids the use of

predetermined thresholds.

p values from Kruskal–Wallis

ANOVA, which tests the

hypothesis that the four sets of

scores are derived from the same

distribution, are as follows:

Sequence entropy, 0.631;

ConSurf, 0.0048; TEA-O

conserved, 0.017; TEA-O

specificity, 0.0183; composite co-

evolution, 0.0032; composite

EVC, 0.011; least patterned,

0.0015
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alignment previously generated for the LacI/GalR family.
This alignment sampled 34 major subfamilies of
orthologs and paralogs, with sequences identities that
ranges from �15% to 99%.9,10,32 All LacI/GalR homologs
are from bacteria. The original rheostat positions identi-
fied in the LacI linker were nonconserved, with strong
phylogenetic patterns and poor co-evolution scores.5,32

We here compared, contrasted, and combined the 17 dif-
ferent score types for the set of protein-wide LacI rheo-
stat, toggle, and neutral positions (Figure 7 and
Figure S6). Our goals were to assess whether any patterns
of evolutionary change showed a significant ability to
identify rheostat positions and to determine whether sep-
aration thresholds could be identified for any of the three
substitution categories (Table 3 and Tables S4 and S5).

For rheostat positions, the true class (“TC”)
predictions showed that the phylogenetic methods

out-performed other types of analyses (Table S5). Indeed,
by this measure, TEA-O specificity had the best predic-
tions for rheostat positions (TC 0.81). For example, of the
top 15% of TEA-O specificity scores (the selection criteria
used for hLPYK position), 52% were LacI rheostat posi-
tions, which is greater than the 40% expected from ran-
dom selection. (This performance would be better if any
of the unclassified positions, which comprised 24% of the
top TEA-O specificity scores, were rheostat positions.)
These results are consistent with our prior observations
for rheostat positions in the LacI linker5 and with the
experimentally verified positions in hLPYK (above).
However, TEA-O specificity also had high false class
(“FC”) rates for neutral and toggle positions (Table S5).
For example, of the top 15% of TEA-O specificity scores,
16% were toggle positions and 8% were neutral positions.
Thus, TEA-O specificity scores are a useful filter when
choosing potential rheostat positions for experimental
testing, but the score does not facilitate robust prediction
of individual rheostat positions.

Another assessment of the algorithms' abilities to sep-
arate the three categories uses the statistical criterion
“volume under the ROC surface” (VUS, Table S4, see Sec-
tion 4). Again, the phylogenetic analyses showed better
overall separations for the three classes of rheostat, tog-
gle, and neutral positions than did other types of analyses
(Figure 7, Figure S6, Table S4). Of the phylogenetic ana-
lyses, ConSurf had the best overall performance by this
measure (VUS 0.65).

Since sequence entropy is the baseline metric for
“nonconservation”, it is interesting to look more closely
at this analysis. Sequence entropy scores showed that
most LacI rheostat positions were indeed nonconserved;
however, they exhibited a broad range of scores
(Figure 7). In agreement with textbook expectations, tog-
gle positions generally exhibited lower sequence entro-
pies (more conservation) and neutral positions generally
exhibited higher sequence entropies (less conservation).
However, as with hLPYK, no clear thresholds in the
sequence entropy scores separated the different types of
LacI positions (Tables S4 and S5). Indeed, a surprisingly
large number of toggle positions exhibited high sequence
entropy scores and a few neutral positions exhibited low
scores (Figure 7).

Since we are frequently queried about the relation-
ship between the popular co-evolution analyses and rheo-
stat positions, we also explicitly compared the maximum
pairwise co-evolution scores for several algorithms for
the three classes of LacI positions. The algorithm with
the best discrimination is shown in Figure 7; results from
other analyses are in Figure S6. None of the co-evolution
scoring methods showed significant differences among
the score distributions for rheostat or toggle positions.

TABLE 1 Numbers of LacI positions assigned to each

substitution category for repression and induction phenotypes

Category Repression Induction

Neutral 108 171

Rheostat 109 49

Toggle 30 12

Unclassified 81 60

Positions assessed 328a 292b

aMiller et al did not substitute the C-terminal tetramerization domain or
position 1.13,14
bInduction cannot be measured for many of the variants in repression
category 4 (“I-”in the original Miller reports). If too few substitutions were

available for a position, RheoScale does not calculate scores. For that reason,
many repression toggle positions were excluded from analyses of induction
phenotypes.

TABLE 2 Numbers of LacI positions with each aggregate

substitution behaviora

Category Counts Fraction

Neutralb 76 0.23

Rheostat 131 0.40

Toggle 42 0.11

Unclassified 83 0.25

LacI monomerc 329

aThe neutral, rheostat, and toggle designations for the repression and
induction phenotypes of each position (summarized in Table 1 and detailed
in Table S3) were combined to assign an aggregate neutral, rheostat, and
toggle substitution behavior to each LacI position. More details of this

classification are in Methods.
bNeutral positions were neutral in both repression and induction
phenotypes.
cNot counting the C-terminal tetramerization domain; position 1 was used

to determine the fraction of each type of position even though it was not
substituted in the Miller study.
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However, the distributions of co-evolutionary scores for
neutral positions were often lower than the other two
groups. Likewise, several of the “eigenvector centrality”
measures of multiple constraints (which identifies the
most-highly connected nodes of a co-evolutionary net-
work10), exhibited a lower distribution of scores for a sub-
set of neutral positions.

We next tested whether multivariable combinations
could provide better discrimination of the LacI rheostat,
toggle, and neutral positions. First, to mirror the hLPYK
selection criteria, we performed a two tier selection of
LacI positions using the top 15% of the TEA-O specificity

positions and excluding the top 20% of co-evolution posi-
tions. However, the percentages of rheostat, toggle, and
neutral postions were almost unchanged (and thus the
actual utility of the co-evolution exclusion for hLPYK
remains unknown). Next, we used a union set of different
analyses to generate a “combination” score. In determin-
ing which analyses to include (see Section 4), we did not
require the combination to sample all types of analyses;
nevertheless, the best set comprised two co-evolutionary
scores, two eigenvector centrality scores, and all three
phylogeny scores. The combination score showed reason-
able separation for the three categories (Figure 7).

FIGURE 7 Various bioinformatic scores for three classes of LacI positions. The distributions of (a) sequence entropies and

representative (b) co-evolutionary (c) eigenvector centrality, (d,e) phylogenetic and (f) combined scores for LacI neutral (“N”), rheostat
(“R”), and toggle (“T”) positions. Black lines show the mean and standard deviation for each distribution of scores. The distributions from

additional co-evolutionary and eigenvector centrality algorithms are in Figure S6; statistical measures of these three groups are in Tables S4

and S5. In (d), note that ConSurf calculations derive analog (continuous) scores for each position (shown here) and then discretize these

scores into nine categories for its final presentation (not shown); the distributions of both continuous and discrete scores for the LacI

positions were examined in statistical analyses (Table 3). The distribution of discrete scores better identified neutral positions, whereas the

distributions of continuous scores better separated toggle and rheostat positions. (f) Combination scores were calculated for each LacI

position from the analyses listed in Section 4 (Equation (2))
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However, given the additional information in the combi-
nation, we were surprised that it was no better at separat-
ing the three position classifications than ConSurf alone,
which is a phylogenetic algorithm (Table 3 and
Figure S7).

Finally, we explored whether this or other combina-
tion scores could better separate the LacI neutral
positions from the combined rheostat and toggle (“non-
neutral”, non-N) positions (Figure S8). This was moti-
vated by the observation that several analyses appeared
to separate the N from the R and T classes (Figure 7).
Since many analyses also had uncorrelated scores
(Figures S9 and S10), they could contain different infor-
mation that could enhance discrimination of the neutral
positions. Indeed, we previously generated a simple com-
bination score that successfully identified neutral posi-
tions in hLPYK.8 The current LacI study provided
opportunity to test an exhaustive set of linear and
nonlinear combinations of analysis scores with statistical
rigor. Surprisingly, no combination better separated the
neutral/non-neutral positions than did ConSurf alone
(Figures S8 and S11). Since the lowest scoring ConSurf
positions appear to reliably be neutral positions, this
analysis appears to be a facile way to generate a control
set of neutral positions for studies in other proteins.

2.4 | PYK and LacI position predictions
with fuNTRp

Given that evolutionary patterns could not predict the
locations of rheostat positions with 100% accuracy,
knowledge of protein structure and dynamics may be

required for better predictions. As a first attempt at this,
we turned to the “fuNTRp” algorithm, which combines
structural and sequence alignment features and uses
machine learning trained on data from deep mutational
scanning studies.12 fuNTRp uses 10 input features: seven
structural, one genetic, and two derived from sequence
analyses, including the phylogenetic analysis ConSurf
that performed well for LacI. In fact, ConSurf was a top
contributor to the fuNTRp algorithm.12

We submitted the hLPYK and LacI sequences to the
fuNTRp webserver and compared predictions to
the experimentally determined rheostat, toggle and neu-
tral behaviors (Table 3). For the 33 positions in hLPYK,
only 33% of the experimentally strong rheostat positions
were correctly predicted (essentially the same as random
for a 3-class classifier); and only 40% of the experimental
toggle positions were predicted. Since these hLPYK toggle
positions manifest primarily in allosteric parameters,
their effects may be harder to predict than those that
abolish the conserved catalytic function. However, 66% of
neutral positions were correctly predicted (Table 3). Like-
wise, for LacI, fuNTRp was not better than sequence ana-
lyses alone at predicting rheostat or toggle positions, and
it was comparable to ConSurf and the combined method
for predicting neutral positions.

3 | DISCUSSION

Because substitutions at rheostat positions provide a
means to tune protein functional parameters, they may
provide a means (and a selective advantage) for species to
adapt to new environmental niches. Thus, we reasoned

TABLE 3 Statistical analyses of various algorithms' abilities to discriminate Neutral (N), Rheostat (R), and Toggle (T) positions

Analysis
TC
(N)

TC
(R)

TC
(T)a

FC
TjN

FC
RjN

FC
RjTb

FC
NjT

FC
TjR

FC
NjR

Thresholds:
C1, C2

LacIc

ConSurf
(continuous)

0.8276 0.5566 0.6323 0.0299 0.1425 0.2794 0.0882 0.2082 0.2351 �1.008, 0.1661

ConSurf (discrete)d 0.6964 0.5421 0.7985 0.0619 0.2417 0.1657 0.0357 0.2157 0.2421 4.6407, 7.8375

Combination 0.7981 0.5518 0.6351 0.1672 0.0348 0.3024 0.0625 0.2316 0.2166 1.1381, 2.1954

fuNTRp 0.6842 0.3307 0.7381 0.0789 0.2368 0.1667 0.0952 0.4016 0.2677 N/A

hLPYK

fuNTRp 0.667 0.375 0.400 0 0.3333 0.400 0.200 0.3125 0.3125 N/A

aTC (i): Given that the truth was i, what was the probability that a position was correctly classified as i, with i corresponding to N, R, and T, as indicated. The
threshold values used to carry out these calculations are in the last column.
bFC (ijj): Given that the truth was j, what was the probability that a position was misclassified as i, with i and j corresponding to N, R, and T, as indicated. The
threshold values used to carry out these calculations are in the last column.
cResults for other bioinformatic analyses of LacI scores are in Tables S4 and S5.
dThe threshold values shown for discrete ConSurf scores were determined after applying kernel estimates. In practice, since the nature of these ConSurf scores
is discrete, thresholds are rounded to 4.5 and 7.5.
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that substitutions at rheostat positions may evince an
identifiable evolutionary signature. Indeed, the current
results show that phylogenetic analyses of hLPYK and
LacI performed reasonably well for discriminating
between rheostat, toggle, and neutral substitution out-
comes. As such, these methods can be used to identify
sets of positions that are enriched for rheostat positions
for further experimental consideration. However, the
extensive overlap among their score distributions
prevented them from being highly predictive for individ-
ual rheostat positions. Some positions with high phyloge-
netic scores were not strong rheostat positions, and some
rheostat positions did not have high phylogenetic scores.

For hLPYK, the possibility remains that non-rheostat
positions with high phylogenetic scores have some
untested role in function or protein stability. This is an
inherent limitation of sequence data: any pattern associ-
ated with one particular functional change can be con-
founded by signals arising from the multiple pressures
that influence protein evolution.33 However, the LacI
in vivo phenotype data aggregate multiple structural and
functional steps (Figure S4), so these analyses should
reflect more of the constraints that contribute to
evolution.

At least two factors might hamper the success of
sequence alignments for predicting substitution out-
comes. First, most extant homologs differ at multiple
positions, and non-additivity among some subsets of sub-
stitutions (“epistasis”) can confound detection of signals
associated with single amino acid changes (e.g., 34–41).
Second, the rheostat/toggle/neutral character of a posi-
tion could change during evolution (i.e., differ among
homologs). This would decouple any correlations
between sequence patterns and substitution outcomes.
Indeed, we previously observed that evolutionarily-
constrained positions are in different locations on the
otherwise common architecture of the LacI/GalR sub-
families.9 Similarly, when we compared rheostat/toggle/
neutral substitution outcomes in 10 engineered LacI/
GalR homologs, the outcomes for analogous positions
sometimes varied. For example, position 60 acted as a
repression rheostat in four homologs, a neutral position
in another, and had varying moderate effects in all
others.4,5 Although some positions changed their substi-
tution outcomes, it is possible that a subset of positions
could exhibit rheostat behavior for the whole family.
Since hLPYK is one of four human isozymes, it will be
interesting to see whether the behaviors of established
rheostat positions are conserved in the mammalian sub-
family or among bacterial homologs.

If analyses of sequence alignments have inherent lim-
itations, other input is likely needed to predict substitu-
tion outcomes. One computational predictor, fuNTRp,

incorporates a variety of structural features along with a
phylogeny score and other features for each position.
Given that the phylogenetic signal (ConSurf) was a key
contributor to analyzing the fuNTRp test sets,12 it is puz-
zling that fuNTRp was not more successful at identifying
rheostat positions in hLPYK and LacI. One difference
could arise from our use of curated sequence alignments,
as opposed to the automated sequence alignments used
in fuNTRp. Another difference could arise from the
fuNTRp training set, which included several intrinsically-
disordered proteins. Indeed, seven of the ten parameters
assessed in the machine learning were structural, and the
predicted propensities for solvent accessibility, secondary
structure, residue flexibility, and intrinsic disorder were
significant features of fuNTRp predictions. All of these
features differ significantly between intrinsically disor-
dered proteins and globular-soluble proteins, to which
hLPYK and LacI belong. If globular-soluble, intrinsically-
disordered, and integral-membrane proteins have differ-
ent proportions or structural features for their rheostat,
neutral, and toggle positions, this might affect machine
learning algorithms.

Finally, although not the motivating focus of this
study, the LacI results provided another opportunity to
assess the success of various methods in identifying posi-
tions that are neutral for overall function. In hLPYK, we
previously showed that the “common” attributes of neu-
tral positions (high sequence entropy, surface exposure,
and insensitivity to alanine substitutions) were not suffi-
cient to identify neutral positions with high confidence.8

However, a combination score derived from several types
of sequence analyses did successfully identify both neu-
tral and near-neutral positions,8 which were used as a
comparison set in this study. The current work with LacI
shows that combinations can predict neutral positions
but, surprisingly, none of the combinations outscored
ConSurf alone (Figures S8 and S11). Likewise, of the
three substitution classes, the neutral class was well
predicted by fuNTRp for both proteins; perhaps the big-
gest contribution of ConSurf to fuNTRp was in the identi-
fication of neutral positions.

It is interesting to note that the most extreme combi-
nation/ConSurf scores almost entirely comprised neutral
positions, even though other neutral positions did not
have extreme scores. The practical outcome of this obser-
vation is that these analyses should provide a reliable
way to identify neutral positions for control studies. An
intriguing hypothesis that arises from this observation is
that the extreme scores might identify neutral positions
that are common to all members of the protein family,
whereas the other neutral positions may be subfamily- or
homolog-specific (i.e., neutral in some homologs and
rheostat or toggle in other homologs, as observed in4,5).
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3.1 | Conclusion

Up to 10,000 differences can be identified in the exomes
of any two unrelated individuals42,43 and many mutations
at nonconserved positions cause disease (e.g., 16,44,45).
Thus, the value of understanding the “rules” that dictate
functional outcomes of substitutions at nonconserved
positions cannot be underestimated. For hLPYK, the use
of phylogenetic patterning identified five out of eight
positions with rheostatic behavior and a sixth position
with low overall neutrality. Retrospective analyses of
other hLPYK positions and the whole protein analysis
of LacI supports the conclusion that the phylogenetic pat-
tern of amino acid change can be useful for predicting
potential rheostat positions. To improve the reliable iden-
tification of rheostat positions, the current work suggests
that additional methods—beyond analyses of sequence
alignments—are needed. One possibility will be to con-
sider various aspects of protein structure and/or dynam-
ics. One recent computational model found that rheostat
positions in the LacI linker region showed a distinct pat-
tern of dynamic coupling to the DNA binding domain.46

It will be very interesting to determine the generality of
this approach for identifying the locations of and
predicting the substitution outcomes at rheostat
positions.

4 | MATERIALS AND METHODS

4.1 | Bioinformatic score calculations

A brief summary of the various types of analyses used
with multiple sequence alignments is as follows:

1. Sequence entropy calculations are the simplest param-
eter that can be extracted from a multiple sequence
alignment. These calculations estimate conservation
using an information theoretic approach (Shannon
entropy) to quantify the distribution of observed
amino acids at each position.47 In addition to quanti-
fying the overall amino acid variability observed at
each position, this calculation discriminates between
the following two scenarios, each with all 20 amino
acids observed at a given position in an alignment
with 100 sequences: (i) each amino acid could be
equally represented (5 occurrences each, perfectly
nonconserved) or (ii) one amino acid could occur
81 times, with the other amino acids represented once
each (highly—although not perfectly—conserved).
Sequence entropy scores differ for these two and other
intermediate conditions.

2. Several methods incorporate phylogenetic trees in
their analyses of multiple sequence alignments.

“Consurf”48,49 uses a phylogenetic tree to estimate the
conservation of a position based on its evolutionary
rate. “Evolutionary trace analysis” (ETA) also uses a
phylogenetic tree to identify positions that diverge ear-
lier in evolutionary history.50,51 “Two entropies
analysis—Objective” (TEA-O) is a third phylogenetic
tree-based method that calculates sequence entropy at
multiple phylogenetic levels to identify positions that
are globally conserved (TEA-O “conserved”) along
with those that are nonconserved globally but con-
served within subsets of the tree (TEA-O “specific-
ity”).17 Given the potential usefulness of the TEA-O
specificity score, we note here that this program is no
longer compatible with the upgrades to computer
operating systems that occurred during the course of
this work; it should be re-coded for future projects.

3. Co-evolutionary analyses estimate the extent to which
two positions vary together during evolution. For
example, if a specific mutation at position A is always
correlated with a specific mutation at position B, then
positions A and B “co-evolve”. Numerous mathemati-
cal frameworks have been developed to quantify co-
evolutionary behaviors. As previously reported (and
as occurs in other protein families), the scores
assigned to individual pairs of positions do not agree
well among different co-evolution algorithms,9,52 even
when additional procedures are used to subtract evo-
lutionary “noise” from the calculations.9

Since no co-evolutionary method has been shown to
find more “important” positions than any other, we
previously used five, mathematically-divergent co-
evolution algorithms for LacI studies9,10 and four
methods for hLPYK studies,8 including: (i) Observed
Minus Expected Squared (OMES53,54), which is based
on Chi-squared-like goodness of fit); (ii) Explicit Like-
lihood of Subset Covariation (ELSC55) and
(iii) Statistical Coupling Analysis (LacI only; SCA56),
which are based on a subset perturbation approach;
(iv) McLachlan-based Substitution Correlation
(McBASC57–59), which is based on coordinated
changes within physiochemical classes; and (v) Z-
Normalized Mutual Information (ZNMI52), which
uses an information theoretic approach. Although sev-
eral newer co-evolutionary analyses have been devel-
oped, the focus of the field has been on improving
amino acid contact prediction (reviewed in60). We
decided not to use these versions: since many rheostat
positions do not contact each other, we reasoned that
these algorithms would impose unsuitable con-
straints.
Since co-evolution scores are assigned to pairs of posi-
tions, each individual position has n-1 co-evolution
scores, where n is the number of positions (columns)
in the sequence alignment being analyzed. Since this
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is difficult to map on a structure or to compare to
functional outcomes, we assigned each position its
maximal co-evolution score (maximal edge weight,
“MEW”9). We also used MEW scores to generate a
composite coevolution score from the set of co-
evolutionary methods for each family.8–10 For simplic-
ity, the composite co-evolution MEW was used for
hLPYK position selection; for detailed statistical ana-
lyses of LacI, we separately evaluated all five MEW
scores associated with the five different co-
evolutionary methods; no benefit was observed for the
LacI composite MEW score.

4. Another type of sequence analysis is derived from co-
evolutionary methods: “Eigenvector centrality” (EVC)
uses a network-based approach to identify “central”
positions that have the greatest degree of connectivity
within a weighted co-evolutionary network.10 These
positions can be thought of as being the most con-
strained overall—by evolutionary “interactions” (not
necessarily structural) with several other positions—
as opposed to having the highest single constraint
from a partner position. Since eigenvector centrality
scores were derived from co-evolutionary scores
(above), we again generated multiple sets of EVC
scores for each family, along with a composite score
generated from all EVC analyses.10

5. We previously used scores from (i) co-evolutionary
and TEAO algorithms and (ii) prediction information
from the SNAP machine learning program to that pre-
dicts neutral substitutions61,62 to identify positions
with the least evidence of any pattern of evolutionary
change (“least patterned”).8 For the nine least pat-
terned positions in hLPYK, three were perfectly neu-
tral in all five parameters and five showed only
moderate functional change. Thus, using this limited
dataset, the least pattern score appeared to identify a
dataset that was enriched for neutral and near-neutral
positions. As described below, these calculations were
repeated with more types of sequence analysis scores
and statistical rigor for the LacI dataset.

4.2 | Evolutionary patterns and selection
of positions to be tested in hLPYK

For hLPYK, sequence evaluations, protein expression/
purification, and enzymatic assays are the same as previ-
ously reported8 and are briefly outlined here. A
previously curated sequence alignment of 241 different
PYK sequences16 was analyzed with the phylogenetic
algorithms TEA-O17 and ConSurf,11,48,49 co-evolutionary
algorithms, and eigenvector centrality algorithms. For
the latter two approaches, we used four different

algorithms to detect co-evolving positions and to calcu-
late eigenvector centrality and then combined those
scores into composite scores for each approach via deter-
mining the Z-normalized mean. Bioinformatic scores for
experimentally assessed positions are presented in
Table S2; correlations among different algorithms,
derived using all positions in the PYK sequence align-
ment, are shown in Figure S2.

Next, nonconserved hLPYK positions were ranked
based on how well each position tracked with phylogeny
and showed co-evolution with another position. For phylog-
eny, we used the TEA-O algorithm because it reports two
separate scores: a score that ranks a position's overall con-
servation, and a score that ranks a position's conservation
within alternative phylogenetic lineages (i.e., subfamilies).
This latter score was particularly useful because the
branching positions (i.e., potential rheostat positions) were
at the top of the list. In contrast, branching positions could
fall into the middle of the list for ConSurf or Evolutionary
Trace Analysis scores, and a selection threshold for these
rankings was unknown. Finally, since it is possible for an
individual position to have high scores in both phylogenetic
and co-evolutionary analyses, we selected twenty hLPYK
positions that were within the top 15% of positions that
trace phylogeny and outside of the top 20% of co-evolving
positions. Based on these criteria, positions 107, 156,
177,192, 259, 320, 321, 347, 348, 379, 422, 423, 431, 452,
467, 472, 476, 498, 538, and 540 were hypothesized to be
rheostats based on these criteria. Of these, eight positions
(107, 156, 177, 192, 259, 320, 423, and 538) were randomly
selected for experimental analysis.

4.3 | Experimental analyses of hLPYK
phylogenetic positions

Within the pLC11 plasmid (a gift from Dr. Andrea
Mattevi63), codons of positions that were selected for test-
ing in hLPYK were subjected to mutagenesis using the
QuikChange protocol (Agilent, Santa Clara, CA) and
primers (Integrated DNA Technologies, Coralville, IA)
that were degenerate in all three positions of the codon.
Mutant plasmids were transformed and expressed into
FF50 E. coli which lack the two E. coli pyk genes.64

Mutated plasmids were subsequently purified from iso-
lated bacterial colonies and changes in the hLPYK coding
regions were identified by DNA sequencing. For protein
expression, 100 μg/mL ampicillin was included for plas-
mid selection. Cell pellets were harvested via centrifuga-
tion and stored at �20�C until use. Once cell pellets were
sonicated, the hLPYK protein was partially purified by
using ammonium sulfate fractionation and subsequent
dialysis. After dialysis, proteins were spun in a
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microcentrifuge at 18,000 RPM for 2 hours in a cold room
prior to data collection to remove a protein precipitant.

Enzymatic activity was determined with a lactate
dehydrogenase/NADH coupled assay to monitor a
change in absorbance at 340 nm (e.g., 65,66). Assays were
performed in a 96-well plate, with each row being a titra-
tion of activity with various concentrations of phospho-
enolpyruvate (PEP) at one concentration of effector. For
each variant or wild-type, two plates were assayed, one
for each allosteric effector. For the majority of variants
that exhibited activity, Kapp-PEP values were determined
as the concentration of PEP that results in one half of
Vmax, and the Kapp-PEP value was determined at each con-
centration of allosteric effector. The responses of Kapp-PEP

to both varying concentrations of allosteric activator
fructose-1,6-bisphoshate (abbreviated as “Fru-1,6-BP” in
the text and as “FBP” when used in parameter nomencla-
ture) and allosteric inhibitor alanine were fit to:

Kapp�PEP ¼Ka�PEP
K ixþ Effector½ �

K ixþQax Effector½ �
� �

ð1Þ

where Ka-PEP is the protein's affinity for PEP in the
absence of effector X and Kix is effector binding in
the absence of PEP. Qax is the allosteric coupling constant
that is equal to the ratio of PEP affinity in the absence of
effector over the PEP affinity in the presence of saturat-
ing effector. These parameters are further described in
Figure S1.

For each variant, the fit parameters are reported in
Table S1 along with errors of the fit. A general problem
in generating large datasets is that it is not tractable to
reproduce each measurement. (A total of 108 variants
were generated for this study and were characterized
with >20,000 enzymatic assays.) Thus, as controls for
reproducibility, a wild-type hLPYK was included in the
assay experiments for the set of substitutions made at
each position. The average error obtained from all wild-
type samples, which were gathered over many different
days and by separate lab members, is shown in the top
panel of Figure 2 and serves as a proxy for the whole
dataset. Finally, we note that each position's assignment
is determined by the results of 10–15 substitutions; thus,
the conclusion should be robust to errors in individual
substitutions.

Positions 107 and 320 were unusual among the posi-
tions tested in that each had multiple variants that lacked
activity. Since this could artefactually arise from prob-
lems during protein purification, these assays were
repeated at least three times for each “dead” variant to
confirm these results. These variants are indicated in
Table S1 and are incorporated into rheostat analyses of
Kapp-PEP. Note that “no activity” can be a result
of abolished PEP binding, abolished catalysis, and/or

unfolded/unstable protein. The current experiments can-
not differentiate among these three options.

4.4 | Classifying mutational outcomes at
hLPYK positions

Instead of thinking about the role of individual amino
acid side chains (i.e., “residues”), we here consider the
overall role of each position within a protein. Such an
assessment requires characterizing multiple amino acid
variants at each position. Although it would be ideal to
have all 20 amino acids at each position, our prior experi-
ences suggest that the overall substitution role of a posi-
tion can be generally assessed from 10–12 substitutions
per position.4 Thus, after the five functional parameters
(Ka-PEP, Kix-Ala, Kix-FBP, Qax-Ala, Qax-FBP) were determined
for each hLPYK substitution, the aggregate data for each
position were evaluated with the RheoScale calculator.4

This calculator uses histogram analyses to assess the
toggle-like, rheostatic, and neutral character of each posi-
tion. “Neutral” scores reflect the fraction of substitutions
that are equivalent to wild-type function. “Rheostat”
scores reflect the fraction of the total, accessible func-
tional range that was accessed by at least one substitu-
tion. “Toggle” scores reflect the fraction of substitutions
that are greatly damaging to function.

Detailed information on how these scores are formu-
lated for four hLPYK parameters—Kix-Ala, Kix-FBP, Qax-Ala,
Qax-FBP—including the bin number and the functional
ranges, were previously determined using a variety of
datasets.4,6,8,66 Specific details of the histograms are shown
in Figure S3. As noted above, a replicate of wild-type was
performed the same day that each position's data were col-
lected, and wild-type data from all days were averaged for
each parameter. These values established the baseline
against which variants' data were compared in RheoScale
analyses. For the fifth parameter, Ka-PEP, we had not yet
performed in-depth analyses of RheoScale parameters,
since previous studies focused on allosteric regulation6

and neutrality.8 Therefore, further analysis of Ka-PEP was
warranted and is described in the next section.

4.5 | RheoScale analyses of the hLPYK
parameter Ka-PEP

All histogram analyses require empirical assessments of
the parameters chosen. For RheoScale analyses, good
estimations of the “best” and “dead” activities are critical.
For the allosteric parameters, we previously set dead
values to 10-fold greater than the maximal ligand concen-
tration used.4,6 For Ka-PEP, the highest concentration of
PEP was 10 mM and thus “dead” was previously assigned
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as 100 mM. However, when inspecting histogram ana-
lyses of the Ka-PEP parameter, we noticed that the range
had multiple unfilled bins between 10 mM and 100 mM.
Since Ka-PEP is fit by a different mechanism than Kix-Ala,
Kix-FBP, Qax-Ala, Qax-FBP, we realized that the 10-fold crite-
rion for Ka-PEP resulted in a range that was too wide and
thus artificially deflated rheostat scores. Therefore, the
range from 10 mM to 100 mM was grouped into one bin,
thereby grouping variants with small responses to 10 mM
PEP (and which could not be measured with a high
degree of certainty) into a single bin that was distinct
from the “dead” bin, which was set to 100 mM. (Note
that RhoeScale analyses are carried out with log scale for
variant parameter sets that span many orders of magni-
tude, like those observed for Ka-PEP.) This approach was
validated using the set of 427 substitutions generated in a
whole protein alanine scan of hLPYK,66 which we rea-
soned should sample the full, accessible range of Ka-PEP

values; based on the resulting histogram for these data
(Figure S12) we concluded that this was the most appro-
priate range for RheoScale analyses of the Ka-PEP

parameter.

4.6 | Composite neutral score for hLPYK
functional parameters

Both the toggle and rheostat natures of a position are asso-
ciated with a given protein function (e.g., position X shows
high rheostat nature in the substrate binding parameter),
and rheostatic changes in a single parameter are sufficient
to classify a rheostat or toggle position. In contrast, for a
position to be neutral, it must be neutral in all functions
that can be evaluated. Therefore, our ongoing efforts to
assign functions to positions would be improved by having
a composite neutral score that encompasses all functions
monitored. To that end, for each position, we first counted
the number of times any of the five possible parameters
was neutral, across all variants. We then normalized that
to the total number of measured parameters (e.g., 5 times
the number of variants) to determine a composite neutral
score for each position. On this scale, a value of zero indi-
cates that all parameters for all variants were significantly
different than their corresponding wild-type parameters; a
value of one indicates that all parameters for all variants
were equivalent to wild-type.

4.7 | Assigning LacI rheostat, toggle, and
neutral substitution behaviors

To quantify the aggregate substitution behaviors of indi-
vidual LacI positions, we adapted the RheoScale

calculator4 for use with the qualitative phenotypic data
reported in the Miller13,14 study. For each LacI variant,
repression phenotypes were assigned to one of four quali-
tative categories. One category encompassed the tight
repressors (including wild-type LacI); two categories of
intermediate repression were designated; a fourth cate-
gory was used for weak or dead repressors. Inducibility
phenotypes were likewise assigned to one of four catego-
ries, with wild-type again falling in the strongest induc-
ibility category. Thus, following a prior example,46 we
assigned these four categories numerical values (1, 2,
3, and 4) and used RheoScale to calculate rheostat, toggle,
and neutral scores for each position for each of the two
phenotypes. Examples of transformed data and histo-
grams are shown in Figure S5. Rheostat scores were cal-
culated using the method that gives more weight to bins
with intermediate values.4 Calculated rheostat, toggle,
and neutral scores for each position's repression and
induction are reported in Table S3.

Next, we considered significance thresholds for these
three scores. Since the use of low-resolution experimental
data limited histogram analyses to four bins, the thresh-
olds previously established for high-resolution data were
inappropriate. Furthermore, and again because of the
low-resolution experimental data, we had the most confi-
dence in classifying each position with its dominant sub-
stitution outcome rather than trying to assess any
intermediate behaviors along the neutral-rheostat-toggle
spectrum. Classification results are summarized in
Tables 1 and 2 and listed in the Supplemental List.
Assignments were made using the following criteria:

First, we identified positions for which all substitutions
were in the wild-type-like “strong repression” or “strong
induction” categories. This identified which positions were
neutral for each of the two phenotypes (Table 1). Note that
this is likely an overestimation of truly neutral positions,
since the “strong” phenotype categories spanned a wide
range of experimental outcomes.13,14 For example, the
strong repression bin spans a range that is at least 50-fold,
if not larger. Nevertheless, positions for which all substitu-
tions fall in the “strong” bin should not be classified as
“rheostat” positions: Their variants could not sample half
of the available functional range, which is the minimum
criterion previously used to designate rheostat positions.4,6

Second, we identified positions for which more than
75% of the non-wild-type substitutions were in the weak/
nonfunctional classification and no more than two sub-
stitutions were in the strong category (Table 1). This
threshold was slightly more stringent than one used in
ref.2 because it is in better agreement with results from
the high-resolution in vivo repression study.5,46 Positions
that satisfied this criterion were designated as “toggle”
for either repression or induction phenotypes.
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For the remaining positions, we designated those
with rheostat scores greater than 0.6 as having rheostat
substitution outcomes (Table 1). This rheostat score
threshold is higher than in previous studies (including
hLPYK), which used a threshold of 0.54: For high resolu-
tion data, two of the ways a rheostat score of 0.5 could be
achieved was by (i) half of the substitutions causing inter-
mediate functional outcomes spanning the entire possible
range, or (ii) the range of outcomes spanning at least half
the possible functional range. However, for the low-
resolution phenotype data used herein, a rheostat score
of 0.5 might not span half the available range. Thus, we
decided to use a more stringent threshold of 0.6. Even
with this stringent threshold, 40% of LacI positions were
classified as rheostat positions for at least one of the two
phenotypes (Table 2, Supplemental List).

Finally, we compared the substitution outcomes for
the two phenotypes to assign a composite substitution
behavior to each position (Table 2, Supplemental List):
Neutral positions must be neutral for both phenotypes.8

Thirty-eight positions exhibited toggle outcomes for one
phenotype; if the toggle phenotype was assigned to
induction, then repression was neutral (or unclassified);
if the toggle phenotype occurred for repression, then
effects on induction could not be measured and are thus
unknown. Four positions acted as rheostats for repres-
sion and as toggles for induction; we reasoned that the
toggle outcome would dominate any signal in a
sequence alignment and these positions were treated in
the current work as toggle positions (analogous to
hLPYK positions that were toggle in one of their five
functional parameters). LacI positions with toggle
repression/rheostat induction likely exist but could not
be detected in these experiments. Eighty-three positions
could not be assigned to a substitution category for
either phenotype and thus are not further considered in
this work. All other positions were assigned to the rheo-
stat category.

4.8 | Statistical comparisons of LacI
bioinformatic scores with experimental
outcomes

The sequence alignment for the LacI/GalR family was
previously reported and used to generate various evolu-
tionary bioinformatics scores for each amino acid posi-
tion in the alignment.9,10,32 This alignment contained
351 representative sequences of LacI/GalR paralogs from
34 subfamilies; sequence identities ranged from 99% to
�15%. For this work, we used the “whole family”
sequence alignment. Since we previously found that

“nested” analyses with subsets of sequences can provide
additional information about evolutionary changes,9 we
also explored an alternative LacI/GalR sequence align-
ment comprising sequences containing the “YPAL”
linker motif that is related to the type of DNA bound32;
however preliminary analyses did not exhibit noticeable
differences from whole family analyses. Analyses could
not be performed on the subfamily of LacI orthologs
(sequence identities from 99% to �40%) because it con-
tains too few sequences.10 Results from the various types
of sequence analyses described above were previously
used to generate 17 different sets of scores for each of the
amino acid positions in LacI.9,10,32 To demonstrate that
different types of analyses highlight different positions,
all possible pairs of score sets were plotted against each
other (e.g., Figure S9) and Pearson correlation coeffi-
cients were determined (Figure S10). As previously noted,
the eigenvector centrality analyses showed the best
within-class agreement.10

Next, we divided each of the 17 bioinformatic score
sets into subsets corresponding to the scores of rheostat,
toggle, and neutral positions. The distributions of the
scores for the three subsets were then compared to deter-
mine how well they discriminated the experimental rheo-
stat, toggle, and neutral substitution outcomes using
three-dimensional ROC analyses (i.e., ROC surfaces).
Three-dimensional analyses of ROC surfaces are analo-
gous to two-dimensional analyses of ROC curves. In the
three-dimensional analyses, the volume under the ROC
surface (VUS) can yield values within the interval
[1/6, 1]. The value of 1/6 corresponds to an uninforma-
tive predictor, whereas the value of 1 corresponds to a
perfect predictor.67 VUS were determined for all 17 score
sets. Confidence intervals for the VUS were derived
through the percentile bootstrap resampling method
using 1,000 bootstrap samples.

Next, we explored whether a combination of bioinfor-
matic score sets could be identified that had better sepa-
ration of the classes than any single score set. Since
exploring all possible combinations of 17 scores was
intractable for separating three classes, we narrowed
down the number of score sets by the following steps: We
selected representatives from the different scores using a
forward, backward, and a likelihood ratio based approach
to identify a union set of seven bioinformatic score sets.
This analysis was performed with SPSS software plat-
form. The union set was then used to create a “combina-
tion” score for each LacI position. To generate this score
from the component bioinformatic scores, we determined
which coefficients of a linear combination maximized the
VUS of the ROC surface. The final equation
obtained was.
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Combination¼�1:0000� ln EVC�ELSCð Þ�0:7365
� ln EVC�McBASCð Þþ0:2200
� ln CoE�McBASCð Þ�0:6882
� ln CoE�ZNDAMIð Þþ0:6480
� ln TEA�OConservedð Þ�0:3554
� ln ETAð Þþ0:8930� ConSurfð Þ ð2Þ

The confidence interval of the VUS corresponding to
the combination score was derived through the percentile
bootstrap with 1,000 bootstrap samples. Note that this
combinatorial analysis was derived solely to determine
the potential value of combining different types of bioin-
formatic analyses for predicting the locations of rheostat,
toggle, and neutral positions. This combinatorial score
was not subjected to external validation, nor do we expect
this empirical equation to extrapolate to scores sets for
other protein families.

For all analyses, we determined the generalized
Youden index,68,69 all three class rates at the Youden
based optimal threshold pair of points, and all six false
classification rates. For the optimization of the Youden
index, we considered kernel-based estimates of the densi-
ties of each group that are based on Gaussian kernels.
The analysis was performed using MATLAB 2019b. In
addition, for ConSurf and the combinatorial score, we
determined pairwise ROC curves that refer to all possible
pairs of neutral, rheostat, and toggle comparisons
(Figure S7).

Finally, we further considered the ability of Equa-
tion (2) combination to discriminate the LacI N and
non-N (combined R and T) classes (Figure S8). Since this
seven-component combination was again equivalent to
ConSurf, we further considered a comprehensive set of
linear and nonlinear combinations of the analyses. Fur-
ther details and an ROC curve for an example calculation
are in Figure S11. Surprisingly, even though the different
analyses contained different information (i.e., did not
have strongly correlated scores; Figures S9 and S10), no
combination outperformed ConSurf for separating N ver-
sus Non-N, although several combinations were
comparable.

4.9 | fuNTRp predictions for hLPYK
and LacI

fuNTRp is a machine learning algorithm that uses struc-
tural and bioinformatic information to predict the rheo-
stat, toggle, and neutral substitution outcomes for each
position in a protein.12 The seven structural features used
by the algorithm include (i) the observed amino acid side
chain chemistry, size, and charge and (ii) predictions
about each position's solvent accessibility, secondary

structure, residue flexibility, and disorder. One included
genetic feature was based on the “number of possible
nsSNPs (all codons)”.12 The two features derived from
sequence analyses included an automatic implementa-
tion of ConSurf (which does not use a curated multiple
sequence alignment) and the “MSA ratio” (which was
defined as the “fractions of residue amino acid per MSA
column”12). Thus, information from pairwise co-
evolution and eigenvector centrality scores were not
included in fuNTRp analyses. As reported by Miller
et al.,12 each of the ten chosen features contributed differ-
ent amounts to the final algorithm output. The hLPYK
and LacI sequences were submitted to the fuNTRp
website (https://services.bromberglab.org/funtrp/) to
generate predictions about the locations of rheostat, tog-
gle, and neutral positions.

4.10 | Additional methods

The expanded methods described in the Supplementary
material includecitations.70-87
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